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1. Introduction 

Structural model updating is important for structural health monitoring, structural control and 
structural reliability analysis, and many methods have been developed. Due to the problems of modeling 
error, measurement noise, and “incomplete” measurement, the results of structural model updating are 
uncertain in nature. Therefore, many methods have been developed following the probabilistic approach. 
The performance of structural model updating utilizing measured dynamic characteristics depends very 
much on the quantity and quality of the measured data, which in turn depends on the number of sensors 
used and their corresponding locations. It is thus critical for researchers or engineers to define the sensor 
configuration before any field tests. 

The problem of optimally placing sensors was perhaps first investigated by Shah and Udwadia (Shah 
& Udwadia 1978). They considered a linear relationship between small perturbations in a finite 
dimensional representation of the structural parameters and a finite sample of observations of the system 
time response, and formulated the optimal sensor locations as an optimization problem to minimize the 
error in the parameter estimates. Many other researchers have studied the issue of optimally installing a 
given number of sensors on a target structure for the purpose of model and modal identification. In 2000, 
Papadimitriou and colleagues (Papadimitriou et al. 2000) introduced the information entropy measure, 
which is a direct measure of the uncertainties in model parameter estimates that when minimized can be 
used to determine the optimal sensor locations. Traditional numerical optimization algorithms are not 
applicable, as this is a discrete optimization problem with only a limited number of sensors. Genetic 
algorithms have proved to be well suited for the solution of discrete optimization problems, and thus in 
this paper a computationally efficient optimization method is developed that is based on the genetic 
algorithm (GA) concept. The main objective of this paper is to address the problem of optimally placing 
sensors on a typical transmission tower for the purpose of structural model updating.  

2. The Bayesian statistical framework 

The optimal sensor placement method is developed from the Bayesian statistical framework. Owing to 
the limited space in this paper, only the main equations are reviewed here. Interesting readers are 
redirected to reference (Chow et al. 2010) for the detail formulation. Consider a class of structural models 
M with model parameters , which is used to represent the input-output behavior of a structure. For a 
specific M, let ( ; ) dNq n R  be the model output vector at time nt n t , where Nd is the total 
number of DOFs of the system. The system output ( ) oNy n R  at time nt  of the oN  observed DOFs is  

0( ) ( ; ) ( ; )y n S q n e n ,                    (1) 

where 0
o dN NS R  is a selection matrix with only one “1” in each row to show the corresponding 

measured DOF; ( ; )e n  is the prediction error. For the purpose of optimal sensor placement, the oN
observed DOFs are specified using a sensor configuration vector that is expressed as  

0 ˆS u ,              (2) 

where ˆ dNu R  is a vector with continuous integers from 1 to Nd, ˆ= 1,2,3, , du N , and oNR .
It is clear that the sensor configuration vector shows the DOF numbers, at which sensors are installed. 
The optimal structural model parameters  are determined by minimizing ( )J  with respect to .

( )J  is given by 
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 The posterior PDF of the parameters  can be obtained using the asymptotic approximation 

1

2, ,
oNN

p D c JM ,                 (4) 

Assuming a non-informative prior distribution ( )  and a large number of observed data points N,
which is usually the case in dynamic tests, the posterior PDF peaks markedly at ˆ , which is the optimal 
parameter . In the globally identifiable case, the posterior PDF can be approximated by a weighted sum 
of multivariate Gaussian distributions with a mean ˆ  and a covariance matrix 1 ˆ , where ˆ
matrix is the Hessian matrix of the function ( ) ( 1) ln ( ) 2og NN J  evaluated at ˆ .

3. Information entropy 

Assuming that the most probable value of  is ˆ , which can be identified by maximizing the 
posterior PDF in Equation (4). The information entropy H provides a unique measure of the uncertainties 
associated with the estimates of , depends on ˆ , D and M, and more important is the sensor 
configuration . It can be expressed as the mathematical expectation of the function 

ˆln , ,p M with respect to . Based on the asymptotic approximation, the information entropy 
can be simplified as: 

21 1ˆ ˆˆ, , ln(2 ) 1 ln ln det ( , )
2 2

H N QM              (5) 

Owing to the space limitation in this conference paper, detail expression of the Q matrix will not be 
given here. Interesting readers are redirected to reference (Jaynes 1978) for the detail formulation. Now, 
the optimal sensor placement problem for a given model class can be converted into a minimization 
problem with the information entropy given in Equation (5) as the objective function and the sensor 
configuration vector  as the minimization variables. However, direct minimization of the information 
entropy may causes numerical problem as its order of magnitude can be very large. To solve this problem, 
only the relative values of H are considered in this study. Consider a reference sensor configuration 0
with an information entropy of 0H . From Equation (5), the change in information entropy  for the sensor 
configurations  and 0  can be expressed as 

0
0

ˆ1 det ( , )
ln

ˆ2 det ( , )

Q
H H

Q
.      (6) 

Let 2s  be the geometrical mean of the eigenvalues of the covariance matrix 2 1ˆ ˆˆ ( ) ( , )Q  of the 
distribution ˆ, ,p M , which represents the overall spread of the distribution about the mean value 
of the structural model parameters. For the two distributions corresponding to the sensor configurations 

 and 0 , the parameter-uncertainty ratio can be shown as 

0

0

exp
H Hs

s N
,                                                            (7) 
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In this study, this ratio is employed to measure the change in uncertainty between two sensor 
configurations. By selecting 0  to be the full sensor configuration, the minimum value of the ratio in 
Equation (7) is unity. In the numerical case study, s0 corresponds to the case in which all horizontal DOFs 
of the model are instrumented.  

4. Optimization method for optimal sensor placement 

A computationally efficient numerical optimization method is developed based on a genetic algorithm 
(GA) to significantly reduce the computational time required in searching for the “optimal” sensor 
configuration. Consider the general case of optimally placing sN  sensors on a structural system of dN
DOFs. In total, d

s

N
t NN C  different sensor configurations are required for an exhaustive search, where C

is the binomial combinatorial coefficient. For structures with a large number of DOFs, an exhaustive 
search would be extremely time consuming or even impossible. The proposed optimization method offers 
an alternative means of obtaining the optimal or near optimal solutions by exploring just a small portion 
of the total parameter space. The proposed optimization method repeatedly modifies a population of 
individual solutions. At each step, the method selects individuals from the current population according to 
their objective function values to be parents, and uses them to produce children for the next generation. 
The population then converges toward an optimal solution over successive generations.  

In the original genetic algorithm, the minimization variables must be encoded into bit strings (i.e., 
chromosomes with “0”s and “1”s). In the problem of sensor placement, the minimization variables are the 
sensor locations and the size of the parameter space varies for different structures and different number of 
available sensors. The mapping between the physical minimization variables and the chromosomes is one 
big difficulty in the application of genetic algorithm in addressing the optimal sensor placement problem. 
In order to overcome this difficulty, an individual that represents a particular sensor configuration consists 
of sN  elements, each of which is used to represent the instrumented (or measured) DOF, is adopted in the 
proposed optimization method. This is the same as the sensor configuration vector given in Equation (2). 
For instance, the individual [3 15 21] represents a case with three sensors that are installed at DOFs 3, 15, 
and 21. Furthermore, the encoding procedure is not employed in the proposed method, and therefore, the 
genetic algorithm operators (e.g., crossover and mutation operators) are applied directly on the 
individuals.  

Figure 1. Flow chart of the proposed numerical optimization method 
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Figure 1 briefly illustrates the procedure of the proposed optimization method. To start with, an initial 
population of genetic strings of a fixed size is randomly generated to represent various possible sensor 
configurations. The parameter-uncertainty ratio in Equation (7) is the fitness function to be minimized in 
the optimization process. The raw fitness scores returned by the fitness function are converted to selection 
indexes within a given range before entering the selection process. This conversion is based on the rank 
of each individual, which is determined by the position of an individual in the sorted raw fitness scores 
(the rank of the fittest individual is 1, the next fittest is 2, and so on). The selection index of an individual 
with rank n is directly proportional to 1/ n , and the sum of the selection indexes of the entire population 
equals the number of parents needed to create the next generation. The selection process then uses the 
selection indexes to select the parents of the next generation from the current generation. The use of 
selection indexes removes the effect of the spread of the raw fitness scores. A higher probability of 
selection is assigned to individuals with a higher selection index value, or a lower value of the ratio 0s s .
An individual can be selected more than once as a parent, in which case it contributes its genes to more 
than one child. The selection process lays out a line on which each individual corresponds to a segment of 
the line with a length proportional to its selection index value. The method then selects parents by moving 
along the line in steps of equal size, allocating parents from the sections on which it lands. Consequently, 
an individual with a larger selection index will have a greater chance of being selected. 

In each generation, the two parents with the best two fitness values automatically survive to the next 
generation. The rest of the parents are then bred using the crossover and mutation operators with pre-
defined probabilities. Crossover operators specify how two parents are combined to form a child for the 
next generation. Consider the two parents P1 and P2 as an example. 

1P = 1 2 3 4 5 6 , 2P = a b c d e f . (8) 

A random binary vector is generated for selecting genes from the two parents according to the rule that 
the genes are from the first (second) parent if the corresponding elements are equal to 1 (0). Thus, if the 
binary vector is [1 1 0 0 1 0], then the child will be 

Child= 1 2 c d 5 f . (9) 

Crossover enables the method to extract the best genes from different individuals and recombine them 
into potentially superior children. Mutation children are created by introducing random changes into a 
single parent within a feasible range. The mutation process adds to the diversity of a population, and thus 
reduces the chance that the optimization process will become trapped in local optimal regions. With each 
successive generation, the population is selectively updated and moves closer to the optimal solution. The 
process continues from one generation to the next until any one of the stopping conditions of the method 
(the maximum number of generations specified or the specified time interval in which there is no 
improvement in the objective function) is fulfilled.

One of the advantages of the proposed optimization method is that all function evaluations in a given 
generation can be carried out independently (i.e., the calculations of the selection indexes for individuals 
in a given population). As a result, parallel computing technique can be applied to the proposed method to 
further reduce the required computational time. Note that multi-core processors are commonly used 
nowadays in desktop and even laptop computers (i.e., Dual-core and Quad-core processors). This 
advantage is particular useful and make the entropy-based optimal sensor placement approach practical in 
real situations. Although it is unlikely, it is possible to have an individual with two or more sensors 
installed in the same DOF (e.g., [3 15 15 21] has two sensors install at DOF 15). Since the information 
can be obtained by this individual (with only three measured DOFs) is much less than others (with four 
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measured DOFs), it will not be able to survive in the next generation. Therefore, the proposed algorithm 
does not have any mechanism to prevent this kind of individual from generating.  

5. Numerical case study 

To numerically test the method, a three-dimensional finite element (FE) model of a transmission tower 
is developed in ANSYS® (see Figure 2). In the case study, only the stiffness of the braces is considered to 
be uncertain and is thus included in the identification process. For each level, the stiffness of the braces 
on the front and back faces is assumed to be the same, as is the stiffness of the braces on the left and right 
faces. Following this arrangement, only two model parameters are required to scale the stiffness of the 
braces at each level. For the purpose of optimal sensor configuration, all of the model parameters are 
assumed to be unity, and the system is assumed to have ambient excitation at all translational DOFs. 
Although the structure has a large number of DOFs, only translational DOFs are considered for possible 
sensor installation in this case study.  

For the single-sensor case, an exhaustive search requires only 72 function evaluations and it is not 
necessary to apply the proposed optimization method. The information entropy measures for the various 
sensor locations for this case as calculated by Equation (7) and summarized in Table 1. It can be observed 
from the table that the information entropy measure varies greatly, with the smallest value being about 
8.10 (at DOFs 67 and 27, see Figure 2) and the largest value about 38.30 (at DOFs 40 and 80). The large 
difference in the information entropy measure highlights the importance of selecting a suitable location 
for sensor installation. Note again that the smaller the information entropy measure s/s0, the lower the 
uncertainty in the identification results and the better the location for installing a sensor. 

Table 1: Information entropy measure for a sensor at different DOFs 

measured DOF 67 27 5 45 32 72 58 18 

entropy measure 8.1031 8.1031 8.1665 8.1665 8.2239 8.2239 8.245 8.245 

measured DOF 14 54 23 63 76 36 49 9 

entropy measure 8.3598 8.3598 8.4237 8.4237 8.4388 8.4388 8.5652 8.5652 

measured DOF 30 70 3 43 22 62 13 53 

entropy measure 9.2339 9.2339 9.2607 9.2607 9.443 9.443 9.5022 9.5022 

measured DOF 21 61 12 52 31 71 4 44 

entropy measure 9.5466 9.5466 9.5904 9.5904 9.7338 9.7338 9.8281 9.8281 

measured DOF 66 26 57 17 64 24 73 33 

entropy measure 11.4401 11.4401 11.5788 11.5788 11.6253 11.6253 12.1192 12.1192 

measured DOF 75 35 55 15 11 51 20 60 

entropy measure 12.1201 12.1201 12.1224 12.1224 12.1702 12.1702 12.2888 12.2888 

measured DOF 48 8 2 42 46 6 29 69 

entropy measure 12.295 12.295 12.6988 12.6988 12.7158 12.7158 12.8097 12.8097 

measured DOF 74 34 47 7 65 25 56 16 

entropy measure 14.8729 14.8729 15.1388 15.1388 15.8692 15.8692 16.0981 16.0981 

measured DOF 37 77 38 78 39 79 40 80 

entropy measure 24.5756 24.5756 24.685 24.685 37.8736 37.8736 38.2967 38.2967 
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According to the results in Table 1, the good sensor locations follow a pattern, and the transmission 
tower can be divided into several parts according to the value of the information entropy measure. The 
information entropy measure of the DOFs at Levels 4 and 8 (see Figure 2) of the tower ranges from 8.10 
to 8.56, from which it can be concluded that the best sensor locations are at the top and middle parts of 
the structure if only one sensor is available. Levels 2 and 3 can be regarded as “second-best” on the 
structure for sensor placement. Levels 1, 5, 6, and 7 of the tower form a possible “third-best” location for 
sensor placement. The remaining part runs from DOF 37 to DOF 80, which are the DOFs at the cross 
arms of the transmission tower, thus implying that the cross arms are the worst locations for sensor 
placement when only one sensor is available.  

To better understand the sensor configuration with respect to the geometry of the structure, the 
possible DOFs are divided into nine groups based on their locations. Groups 1 to 8 refer to the DOFs on 
Levels 1 to 8, respectively, excluding the DOFs at the cross-arms. The DOFs on the cross-arms are 
included in Group 0 (i.e., DOFs 37, 38, 39, 40, 77, 78, 79 and 80). 

It must be remembered that the results for single sensor placement may not apply to cases with double 
or multiple sensors. The proposed optimization method is thus required when more than one sensor are 
available for the measurement. We summarized the entropy measures for the best fifty sensor 
configurations for the two-sensor case in Figure 3. Each sensor configuration corresponds to two points in 
Figure 3. This figure provides a graphical way for researchers to clearly identify the groups (or levels) 
that are favor for sensor installation by simply looking at the left most points on the figure. It is clear that 
Groups (or Levels) 4 and 8 are the most suitable locations for installing two sensors. Levels 2 and 3 are 
also good locations if two sensors are available. 

Using the proposed optimization method, the optimal sensor locations for cases with 3 and 4 sensors 
are identified and summarized in Figures 4 and 5, respectively. Similar to Figure 3, each sensor 
configuration has a value of information entropy measure, and corresponds to points along the same 
vertical line in the figures. The figures clearly show that Groups (or Levels) 2, 3, 4, and 8 are always the 
best sensor locations. Note that these figures do not contain all of the possible sensor configurations due 
to the huge number of possible combinations. There are 72

3C 59,640  possible sensor configurations 
for the three-sensor case, for example. The proposed numerical optimization method provides a 
convenient and feasible way to estimate sensor configurations that are close to optimal. 

6. Conclusions 

With the help of the proposed genetic algorithm based optimization method, the entropy-based optimal 
sensor placement approach is successfully applied to solve the sensor placement problem of a typical 
transmission tower. When only one sensor is available, the optimal location for this sensor is at the top 
(Level 8) of the tower. When two sensors are available, it is best to place one at the top (Level 8) and the 
other in the middle (Levels 2, 3 or 4) of the tower. Such conclusions cannot be extended to cases with 
more than two sensors due to the complexity of the sensor configurations. However, it can be concluded 
that the top (Level 8) and the middle (Levels 2, 3, and 4) of the tower are generally good locations for 
sensor placement. The cross arms of the tower should be avoided for sensor installation if the purpose of 
model updating is to identify the stiffness of the braces, because they always give large information 
entropy values, which result in greater uncertainty in the model identification results. The proposed 
optimization method significantly reduces the required computational power in identifying the optimal or 
close-to-optimal sensor configurations. As the function evaluations in a given generation is independent 
to each other, parallel computing techniques can be easily adopted to further increase the efficiency of the 
proposed method. The numerical case study in a commonly used desktop computer shows that the 
computational time can be reduced by about 40% with one additional processor.  



458  Lam HF et al. / Procedia Engineering 14 (2011) 450–459

Acknowledgements 

The work described in this paper was fully supported by a grant from the City University of Hong 
Kong (7002589). This generous support is gratefully acknowledged. 

Figure 3: Sensor locations for the two-sensor case 

Figure 4: Sensor locations for the three-sensor case 
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Figure 5: Sensor locations for the four-sensor case 
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