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A B S T R A C T

Photoacoustic (PA) imaging has shown tremendous promise in providing valuable diagnostic and

therapy-monitoring information in select clinical procedures. Many of these pursued applications,

however, have been relatively superficial due to difficulties with delivering light deep into tissue. To

address this limitation, this work investigates generating a PA image using an interstitial irradiation

source with a clinical ultrasound (US) system, which was shown to yield improved PA signal quality at

distances beyond 13 mm and to provide improved spectral fidelity. Additionally, interstitially driven

multi-wavelength PA imaging was able to provide accurate spectra of gold nanoshells and

deoxyhemoglobin in excised prostate and liver tissue, respectively, and allowed for clear visualization

of a wire at 7 cm in excised liver. This work demonstrates the potential of using a local irradiation source

to extend the depth capabilities of future PA imaging techniques for minimally invasive interventional

radiology procedures.

� 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the past twenty years, image guidance has been utilized
increasingly to improve the precision and efficacy of diagnostic and
therapeutic procedures [1]. Typically, image guidance is provided
by ultrasound (US), X-ray computed tomography, fluoroscopy, or
magnetic resonance imaging. Photoacoustic (PA) imaging is a
promising technique that is non-ionizing, low-cost, and offers
high-contrast imaging of both the surgical tools and photoabsor-
bers that are often encountered in diagnostic and therapeutic
techniques. To provide accurate guidance, PA images can be co-
registered with US imaging to generate a photoacoustic-ultrasonic
(PAUS) image that contains clear anatomical information and
provides high-contrast visualization of important photoabsorbers,
such as hemoglobin or targeted nanoparticles [2]. To date,
however, the application of PAUS imaging has typically been
limited to superficial anatomical sites due to the relatively shallow
penetration depth of the external irradiation source.

PA imaging requires a narrow-pulse-width laser irradiation
source, photoabsorbers to generate PA-induced pressure waves,
and an US transducer for signal detection. The light provided by the
pulsed irradiation source is absorbed by photoabsorbers and
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immediately converted to heat. This thermal transient leads to rapid
local expansion, creating pressure waves that can be detected with
high spatiotemporal resolution by an US transducer. The resulting
pressure waves are dependent on local fluence, optical absorption,
and thermally dependent material properties [3]. The initial local
pressure (p0) generated by the PA effect can be described as

po ¼
bc2

C p
maF ¼ GA; (1)

where b½1K� is the thermal coefficient of volume expansion, c½ms � is

the speed of sound through tissue, C p½ J
K�kg� is the heat capacity at

constant pressure, ma½ 1
cm� is the optical absorption coefficient, F½ J

cm2�
is the local laser fluence, G is the Grüneisen coefficient, and A½ J

cm3� is
the local deposition energy.

As laser light travels through a medium (e.g., tissue), fluence is
lost due to optical scattering and absorption by tissue components
like blood and adipose tissue. This fluence loss is the primary cause
of the limited depth penetration that has previously hindered the
clinical application of PA imaging. Compensating for fluence loss is
a nuanced problem. The laser fluence applied to skin in clinical
applications is regulated by the American National Standards
Institute (ANSI), which recommends that clinical skin exposure to
low near-infrared (NIR) light not exceed specific fluence levels
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Fig. 1. Schematic of PA imaging system driven by an interstitial irradiation source.
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ranging from 20 mJ
cm2 at 700 nm, to 50 mJ

cm2 at 900 nm, to 100 mJ
cm2 at

1050 nm [4,5]. Therefore, depth penetration cannot be improved
by simply increasing surface fluence. Previous work has explored
using a 1064-nm wavelength laser for PA imaging applications. At
this wavelength, tissue scattering and absorption is decreased
compared to lower NIR wavelengths, while the exposure limita-

tions through skin rise linearly to 100 mJ
cm2, providing a situation in

which more laser light can be delivered to target photoabsorbers
[4–6]. The reduction in tissue scattering and absorption at
1064 nm also results in reduced background signal in PA images,
which improves the contrast of the images compared to imaging at
lower wavelengths in the NIR range [7]. However, the depth
penetration with 1064-nm irradiation can still be quite limited for
clinical applications, and such an implementation can restrict
opportunities for multi-wavelength imaging. One final method to
improve imaging depth is to fundamentally change the absorption
properties of the target being imaged, a technique that has been
demonstrated for metallic objects [8].

To circumvent the depth penetration limitation of NIR
irradiation, endoscopic, intravascular and transrectal PA imaging
techniques have been developed for targeting deeper tissues [9–
14]. Although these techniques have been effective for imaging
particular structures, such as the prostate, colon, or vascular wall,
they have not been applied more generally to deep-tissue imaging.
Furthermore, the smaller US transducers that are used to
accommodate PA endoscopic or intravascular imaging have lower
sensitivity and a reduced receive-aperture extent (compared to
larger, more conventional US arrays), resulting in reduced image
quality [15]. Therefore, in order to deliver light to deep tissues
while maintaining image quality, an interstitial optical source
could be introduced to provide local irradiation of the target, while
a conventional diagnostic US array could be used for external
acoustic detection and PA image formation.

This work investigated the use of a single interstitial optical
fiber co-registered with an external US transducer to provide PA
images for specific interventional radiology (IR) procedures (e.g.,
laser ablation or biopsy guidance). Optical fibers were modified to
serve as a local, interstitial irradiation source. To demonstrate
initial feasibility of the interstitial PA imaging system, wire targets,
gold nanoshells (AuNSs), and deoxyhemoglobin were imaged in
tissue-mimicking phantoms and in ex-vivo tissue.

2. Materials and methods

2.1. General setup and fiber processing

The imaging setup consisted of a pulsed laser source that
triggered the receive acquisition of a clinical US system. A Quanta-
Ray1 PRO pulsed Nd:YAG laser coupled into a tunable GWU
versaScan optical parametric oscillator (OPO; Newport Corp.,
Irvine, CA) was used to provide pulsed NIR irradiation. After exiting
the OPO, the beam was sent through a neutral-density filter to a
plano-convex focusing lens (Thorlabs Inc., Newton, NJ) that
adjusted the spot size to allow for better coupling into optical
fibers with a 1000-mm diameter. This diameter was chosen
because it coincides with the size of needles often used in biopsy
procedures, providing more clinically relevant implantation of the
fiber into the tested phantoms [16]. After the focusing lens, a
custom-built fiber holder was connected to a three-dimensional
micrometer-driven platform to allow for precision translation of
the fiber coupling stage (MBT616D; Thorlabs Inc., Newton, NJ).
From the coupling stage, the fiber was inserted into a phantom and
used to generate a PA signal that was detected with a Vantage 128
US system using an L11-4v linear array operating at 6.25 MHz
(Verasonics, Inc., Redmond, WA). A schematic of the complete
system setup is provided in Fig. 1. Pulse energy readings were
taken with a Nova II meter connected to a PE50-DIF-ER-V2 detector
with diffuser (Ophir Optronics Solutions Ltd., Jerusalem, Israel)
while laser wavelength was calibrated using a Thorlabs CCS175
compact spectrometer (Thorlabs Inc., Newton, NJ). Energy delivery
to the fiber was estimated by splitting the primary beam into the
energy meter using a glass slide. The energy meter was also placed
at the irradiating side of each fiber prior to a study to determine the
wavelength-dependent ratio between measured input energy and
output energy. This ratio and the estimated input energy values
obtained from the beam splitter were utilized to normalize for
output fluence differences between wavelengths. Additionally,
laser spot size measurements were taken by coupling a continuous
wave (CW) laser into the fiber and measuring the projected spot at
5 mm from the fiber tip.

Two different types of 1000-mm-diameter fibers were used in
this study. All but one study utilized custom-built, side-fire 1000-
mm fibers (Fig. 2.d; Thorlabs Inc., Newton, NJ). In order for optical
fibers to transmit light efficiently, both the proximal (i.e., the end
coupled to the incoming laser beam) and distal (i.e., the end acting
as a local optical source) ends of the fiber must be beveled to
appropriate angles and minimized of surface imperfections [12].
Proximal ends were left flat, polished, then qualitatively inspected
using a digital microscope (zipScope; Aven Inc., Ann Arbor, MI,) to
ensure surface smoothness (Fig. 2.b-c). If any scratches or cloudy
areas were present, the polishing sequence was repeated until the
surface appeared visually smooth. Upon completion of the
proximal fiber tip, the distal tip was sanded using a custom-built,
angled sanding apparatus (Fig. 2.a) until the tip was beveled to a
critical angle of 358; it was then polished in a similar fashion to the
procedure implemented for the proximal tip. The distal tip was
beveled to promote total internal reflection, which allows the fiber
to emit light perpendicularly (i.e., side-fire) rather than out the tip
(i.e., straight-fire) [12]. As the coupling medium at the end of the
fiber determines the critical angle needed, quartz end-caps were
added (Sutter Instrument Co., Novato, CA) to ensure that the fiber
tip was always air-backed. The spot size 5 mm lateral from the tip
was measured to be approximately 0.2 cm2. Side-fire fibers were
implemented in the majority of the studies as they could be readily
produced in-house and they tended to provide increased fluence in
their limited irradiation volume.

The last study utilized a clinically-approved fiber with a conical
distal tip that provided 3608 irradiation from a 358 half angle at the
distal tip with a spot size of 2.5 cm2 (i.e., 3.1 cm circumference and
0.8 cm height) at a lateral distance of 5 mm (Fig. 2.e; Pioneer Optics
Co., Bloomfield, CT); this fiber is typically used for administration
of photodynamic therapy.

All tissue-mimicking phantoms used in this investigation were
created using 8% (wt%) gelatin (Sigma-Aldrich Co., St. Louis, MO),
5% Intralipid1 (Sigma-Aldrich, St. Louis, MO), 1% silica (US Silica,
Frederick, MD), 0.1% formaldehyde (Sigma-Aldrich Corp., St. Louis,
MO), and 85.9% deionized (DI) H2O in order to generally mimic the



Fig. 2. Optical fiber polishing block, stages of fiber preparation, and completed fiber tips and CW irradiation patterns. (a) Beveled fiber block allows for creation of 358 angle on

distal fiber tip for light deflection. (b) Magnified image of proximal fiber tip before sanding or polishing. (c) Magnified fiber tip after polishing with 5-mm polishing film. (d)

Magnified capped side-fire fiber tip (top) and CW irradiation pattern (bottom). (e) Magnified capped conical-tip fiber (top) and CW irradiation pattern (bottom).
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acoustic and optical properties of tissue [17]. For all studies using
interstitial irradiation, the fiber source was placed approximately
5 mm laterally from the imaging target, while PA-induced acoustic
signal generation was detected with an external linear US
transducer. Pulse-echo US was then used to align the imaging
plane with the target of interest. All data presented were normalized
for wavelength-dependent differences in surface/fiber fluence.
Quantitative analysis of PA data was achieved by selecting a region
of interest (ROI) that included only the desired photoabsorber (e.g.,
titanium wire). In all plots with error bars, the average and standard
deviation for each point is presented; the specific sample number for
each plot is provided in the figure caption.

2.2. Tissue-mimicking depth phantom

To demonstrate the improvement in depth penetration when
using interstitial irradiation, the first study imaged wires at
increasing depth within a tissue-mimicking phantom using both
interstitial and conventional (i.e., external) laser irradiation. Due to
the geometry of the laser setup (Fig. 1), conventional irradiation had
to occur from the side while the US probe was placed on top of the
phantom. Wire targets were placed in the phantom along a diagonal
line with increasing depth. Given this construction, the distance
traveled by the photons (dp) was approximately equal to the acoustic
propagation distance (da) to the transducer (Fig. 3.a). Wires were
included at 7, 20, 37, and 47 mm depths (da) with corresponding
lateral offsets (dp) of 13, 23, 35, and 46 mm. Note that the first wire
was displaced more laterally than initially desired to allow for
adequate transducer positioning at the edge of the phantom. Using
conventional irradiation, 35-40 mJ of energy at 800 nm entered the
surface of the phantom (approximately 0.8 cm2 spot size). In
comparison, when using interstitial irradiation, pulse energy was

only 6 mJ at 720 nm (i.e., 30 mJ
cm2 at 5 mm) and had a maximum

energy of 8 mJ at 900 nm (i.e., 40 mJ
cm2 at 5 mm). Signal-to-noise ratio

(SNR) and contrast-to-noise ratio (CNR) were calculated as [18,19]

SNR ¼ Si

so
; CNR ¼ Si � Soffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
i þ s2

o

q ; (2)

where Si and So are the mean signals inside and outside of the
target, respectively, and si and so are signal standard deviations of
these inside and outside regions, respectively. The ROI was 2 mm
(axial) x 12 mm (lateral) and was assigned based on the US B-mode
image. The noise (i.e., outside) kernel was of equal size and 1.5 mm
above each wire target. This ROI remained fixed for all trials within
each study.

2.3. Spectral-fidelity phantom

A tissue-mimicking phantom with an AuNS inclusion was
fabricated to assess the effect of depth-dependent scattering on



Fig. 3. (a) Side-view of tissue-mimicking phantom with wire inclusions and short-axis outline of transducer provided overhead; purple circles represent location of wires,

while blue-white circle denotes location of interstitial fiber; dashed gray lines depict propagation of acoustic waves; external and interstitial irradiation volumes are denoted

in red; dp is distance traveled by photons for external irradiation, while da is distance traveled by acoustic wave for both irradiation types. (b) Top-view of phantom;

transducer footprint is depicted by black dashed line; blue line represents side-fire imaging fiber location. (c) Top-view of prostate sample; green ellipse represents area of

AuNS injection, while white ellipse denotes control region. (d) Side-view of prostate sample. (e) Stack of liver sections cast in pure gelatin for deep interstitial laser delivery;

irradiation fiber (blue arrow) and wire imaging target (white arrow) are visible at bottom of image. (f) Liver sample for PA spectroscopy by interstitial laser irradiation; black

lines indicate approximate US imaging volume.
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multi-wavelength imaging. The AuNS target was multi-spectrally
imaged (720, 740, 745, 750, 755, 760, 765, 770, 775, 780, 800, 825,
850, & 900 nm) with both external irradiation (1.7 cm depth from
the incident surface and 35-40 mJ with a 0.8 cm2 spot size) and
interstitial irradiation (6-8 mJ per pulse). All nanoparticle
experiments used AuroShell1 gold nanoshells (Nanospectra
Biosciences, Inc., Houston, TX) that had an optical absorption
peak at 760 nm (Fig. 6.c). Absorption profiles were obtained on the
AuNS particles using a SynergyTM HT multi-mode microplate
reader (BioTek Instruments, Inc., Winooski, VT). For statistical
analysis, a 4 mm (axial) x 15 mm (lateral) kernel was utilized.

2.4. Prostate tissue phantom

To demonstrate feasibility of imaging with interstitial irradia-
tion in tissue, the next study in this investigation involved imaging
nanoparticle inclusions in ex-vivo bovine prostate tissue (Animal
Technologies Inc., Tyler, TX), where the nanoparticle clusters
modeled clinical regions of interest such as ablation targets. The
prostate tissue was trimmed of all loose fat and abnormalities and
then cast in a pure gelatin phantom (8% gelatin; 92% DI H2O). One
site at a depth of approximately 15 mm from the proximal prostate
surface was chosen for injection with AuNS particles. In order to
prevent migration within the prostate tissue, the particles were
suspended in 8% gelatin (1:1 volume ratio) before injection. After
injecting the prostate tissue with the particles, the phantom
solidified at 48C for 2 hours. The resulting phantom is shown in
Fig. 3.c-d. An 18-gauge needle was used to create a path in the
tissue for introduction of the optical fiber approximately 5 mm
medial to the inclusions and at equal depth. Images were
generated in the region containing nanoparticles as well as in
an adjacent control region (i.e., no particles). The targets were
imaged multi-spectrally (same wavelengths used in 2.3) using
interstitial irradiation with pulse energies ranging from 6-8 mJ.
Data analysis was achieved with a 4 mm (axial) x 6 mm (lateral)
kernel about each ROI.

2.5. Liver tissue phantom

2.5.1. Wire imaging

The next study focused on imaging a titanium wire in ex-vivo
liver tissue to assess imaging depth in highly absorbing tissue. Ex-
vivo porcine liver samples (Animal Technologies Inc., Tyler, TX)
were stacked 7.5 cm high and encased in gelatin to prevent
movement (Fig. 3.e). A wire target was inserted into the tissue at
7 cm depth from the transducer face; note that the transducer long
axis was orientated slightly oblique to the wire. An interstitial
irradiation source was then inserted at an equal depth to the wire,
5 mm away laterally, and used to produce a PA signal from the
wire. All images were generated using 800 nm irradiation with
8 mJ of energy per pulse.

2.5.2. Deoxyhemoglobin imaging

To demonstrate the multi-wavelength imaging capabilities of
interstitial PA imaging and to assess spectral fidelity of an
endogenous absorber, ex-vivo liver tissue was multi-spectrally
imaged (720, 740, 745, 750, 755, 760, 765, 770, 775, 800, 825, &
850 nm) using only interstitial irradiation (6-8 mJ of energy at the
fiber tip) at a depth of 1.6 cm from the transducer (Fig. 3.f). Image
analysis kernels (4 mm axial x 4 mm lateral) were centered on
points 5.8 mm, 8.1 mm, and 10.4 mm lateral from the distal fiber
tip and analyzed to assess the degree of spectral shift (Fig. 7b). PA
spectra were compared to the known deoxyhemoglobin absorp-
tion spectrum.
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2.6. Conical-tip fiber

In an effort to demonstrate the potential of irradiating larger
portions of tissue with an interstitial source, the next study imaged
wire targets using a clinically-approved optical fiber with a conical
termination that provides 3608 irradiation about the distal tip
(Fig. 2.e and Fig. 8.b). Two wire targets were embedded in gelatin at
equal depth, and the optical fiber was inserted between the two,
equidistant from each wire. The wires were imaged with the
conical-tip fiber (2.5 mJ at 760 nm) at 3 different orientations (i.e.,
08, 908, 1808) and compared to images generated with a custom-
built, side-fire fiber (7 mJ at 760 nm), which only illuminated a
sector of the surrounding volume (Fig. 8.a). Note that energy
irradiating from the conical-tip fiber was only measured in one
direction with the energy meter previously described. For data
analysis purposes, a 2 mm (axial) x 2 mm (lateral) kernel was used.

2.7. Fiber-tip artifact

In all trials, the space immediately surrounding the fiber tip was
obscured by a PA-signal artifact of unknown origin (white arrows in
Fig. 8). In order to attempt to better understand and assess the source
of this artifact (i.e., phantom-dependent or fiber-dependent), fiber
tips of different varieties were imaged in pure gelatin as well as an
absorbing/scattering tissue-mimicking phantom free of all targets.
The tissue-mimicking phantom was created using the recipe
previously provided with the addition of 0.01% black ink (Drom-
gooles Fine Writing Instruments, Houston, TX) to provide an optical
Fig. 4. PA images of wire at different depths (7, 20, 37, & 47 mm depths) in a tissue-mimick

driven by interstitial irradiation. Note dynamic range is kept constant for all images of
density of 1. Beveled and capped fibers, unbeveled and capped fibers,
and unbeveled and uncapped fibers were imaged at the fiber tip in
both phantom types with contrast values recorded for each. Imaging
was performed with 8 mJ of energy at 800 nm, while a 4 mm (axial) x
6 mm (lateral) kernel was used for data analysis.

3. Results

3.1. Tissue-mimicking depth phantom

Results from the tissue-mimicking depth phantom study
demonstrate that interstitial irradiation, using significantly less
energy, can provide better image quality than external irradiation
at photon propagation distances of 13 mm or greater. As seen in
Fig. 4, when the dynamic range is kept constant throughout each
trial, PA signal from the wire target can be clearly seen at greater
depths using interstitial irradiation (i.e., 37, 47 mm), while it is not
visible with external irradiation for the same depth range. Some
artifacts are present in the images due to reverberation in the wire
target and a near-field artifact resulting from transducer crosstalk.
Additionally, as shown in Fig. 5.b, the SNR resulting from external
irradiation decreases from 41.8 at 7 mm depth to 0.95 at 47 mm in
depth, while the SNR resulting from interstitial irradiation ranges
from 53.1 to 25.3 over the same depth span. In a similar fashion
(Fig. 5.c), the CNR resulting from external irradiation decreases
from 0.99 to 0.07 over the course of increased imaging depth, while
the CNR resulting from interstitial irradiation only decreases from
1.12 to 1.07.
ing phantom. (a) - (d) PA imaging driven by external irradiation; (e) - (h) PA imaging

 same irradiation type.



Fig. 5. (a) PA signal, (b) SNR, and (b) CNR plot (N = 10) comparison of PA imaging of wires at increasing depth driven by interstitial (red) or external (blue) irradiation.
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3.2. Spectral-fidelity phantom

Results from the spectral fidelity study show that interstitial
imaging provides more accurate spectral information than tradi-
tional irradiation methods in a tissue-mimicking phantom. The
nanoparticles imaged had broadband absorption in the low-NIR
range, with an absorption peak at 760 nm. As can be seen in Fig. 6.a,
interstitial irradiation provided an absorption spectrum which
peaked at 760 nm and generally decreased monotonically away
from this peak. Conversely, traditional irradiation methods pro-
duced an absorption spectrum which peaked at 800 nm, demon-
strating a redshift inherent to traveling through scattering tissue.

3.3. Prostate tissue phantom

Results from the prostate tissue phantom study demonstrate
that it is possible to spectroscopically identify specific photo-
absorbers using interstitial irradiation in ex-vivo tissue. As shown
in Fig. 6.b, the signal from the region containing nanoparticles can
clearly be discerned when compared to the control region. The
signal from the injection site closely matches the absorption
spectrum of the injected nanoparticles, while the signal from the
control (i.e., non-injected) site strongly resembles the spectrum of
deoxyhemoglobin (Fig. 6.c).

3.4. Liver tissue phantom

3.4.1. Wire imaging

Results from the ex-vivo liver phantom show that PA signals
generated 7 cm from the transducer face in a highly absorbing
medium using only 8 mJ of energy in the low-NIR range can be
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Fig. 6. (a) PA signal spectrum (N = 30) generated by AuNSs in tissue-mimicking phanto
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3.4.2. Deoxyhemoglobin imaging

Results from the ex-vivo liver imaging study also indicate that
endogenous absorbers can be spectroscopically isolated at depth.
Approximately two centimeters deep from the transducer face, the
spectroscopic PA signal (Fig. 7.c) obtained from the three regions of
excised liver tissue correlated very strongly with that of
deoxyhemoglobin (Fig. 7.d). The imaged signals all have the
characteristic deoxyhemoglobin ‘‘hump’’ at approximately
758 nm. However, as distance from the fiber tip increases, spectral
fidelity decreases as a red-shift in the spectra occurs. Interstitial
irradiation at 5 mm from the fiber tip causes minimal shift in the
signal with approximately 1.3 nm of redshift for every millimeter
increase in distance from the fiber tip observed.

3.5. Conical-tip fiber

The results from the conical-tip fiber studies show that 3608
irradiation of target tissue, which is not possible with a simple
beveled fiber, is achievable through the use of a conical tip. The
signal generated by each wire was approximately equal when
irradiated with the conical tip, while at most only one wire
generated signal when irradiated by the beveled tip, as seen in
Fig. 8. Contrast values for the right and left wires using the side-fire
fibers were 7.19 (08) and 9.37 (1808), respectively, when directly
irradiated and 2.35 or less when not directly irradiated (e.g., right
wire in Fig. 8.e). For the conical-tip fiber, contrast values ranged
from 2.07 to 3.47 for all rotation orientations and wires. This fiber
removes the directional component introduced by the beveled
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Fig. 7. (a) PA image of wire embedded in ex-vivo liver at 7 cm. (b) PA image of hemoglobin in ex-vivo liver at approximately 2 cm. Magenta spot represents center of fiber,

while green, grey, and gold boxes represent kernels for 5.8-mm, 8.1-mm, and 10.4-mm analysis, respectively; dot in center of kernel denotes measurement point (i.e., where

distance from the source was measured). (c) Multi-wavelength acquisition (N = 30) of deoxyhemoglobin target at distances of 5.8 mm (green), 8.1 mm (grey), and 10.4 mm

(gold) from the inserted fiber tip. (d) Optical absorption spectrum of deoxyhemoglobin [20].
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fiber tip; although, due to the lower output fluence inherent to this
fiber, the overall contrast values are lower. Additionally, this study
showed that optical fibers used in the clinic can be repurposed for
use in fiber-driven PA imaging.

3.6. Fiber-tip artifact

This study demonstrated that all fiber types in the imaging
environments tested generate a PA-signal artifact at their distal tip
when imaging. For beveled, straight-capped, and straight-
uncapped fibers in gelatin, the contrast values were 27.1 dB,
29.4 dB, and 31.6 dB, respectively, while in an absorbing/scattering
tissue-mimicking phantom, the contrast values were 34.7, 40.6,
and 36.7, dB, respectively. There was an increase in PA signal for all
fiber types when imaging in the tissue-mimicking phantom
compared to pure gelatin.

4. Discussion

We have demonstrated that it is feasible to generate a PA image
using interstitial irradiation with an external US receive-array. In
this study, interstitial irradiation has revealed improved interro-
gation depth compared to conventional external irradiation. Using
an interstitially placed optical fiber, PA images were readily
achieved at depths of 7 cm in tissue using only 8 mJ (40 mJ
cm2 at

5 mm), while multi-wavelength imaging was demonstrated 2 cm
into tissue. The interstitial irradiation technique investigated
maintained better image quality (i.e., SNR, CNR) and spectral
fidelity at all depths tested when compared to conventional
external irradiation.

Although both beveled-tip and conical-tip fibers were used in
this study, potential clinical applications would likely implement
an interstitial irradiation fiber with a conical tip in order to achieve
a larger irradiation volume (i.e., prostate biopsy). Further
modifications to the irradiation fiber may be required for actual
clinical application. For instance, a diffuser could be used during
3608 irradiation with the conical tip fiber, permitting more of the
tissue sample to be imaged at a time and providing a more uniform
light distribution [21].

While the fluence levels generated at 5 mm during interstitial
irradiation do slightly exceed the acknowledged ANSI limit for skin

exposure at some wavelengths (e.g., 30 mJ
cm2 at 720 nm versus the 22

mJ
cm2 limit for skin), this fluence would not applied to skin but rather

would be inserted directly into soft tissue, which tends to have
lower absorption and scattering than skin over the wavelength
range used [22,23]. It is also important to note that no tissue
damage was noted in any trials using interstitial irradiation, nor



Fig. 8. Side-fire and conical-tip fiber comparison. (a) Illustration of side-fire fiber rotation and irradiation pattern; green circles represent location of wires, while blue-white

circle indicates position of fiber tip. (b) Illustration of conical-tip fiber rotation and irradiation pattern. (c) - (h) PA images of two wires embedded in gelatin; white arrows

denote PA-signal artifact at fiber location, and green circles outline PA signal generated from wires. PA images generated from side-fire irradiation at (c) 08, (d) 908, and (e)1808
rotation. PA images generated from conical-tip irradiation at (f) 08, (g) 908, and (h) 1808 rotation.
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were any spectral changes noticed in the tissue samples due to
ablative processes. Although fluence levels at 5 mm from the distal
fiber tip are likely to be safe for clinical use, one concern that must
be addressed before clinical adoption is that of high-fluence
regions immediately surrounding the fiber tip before the light
begins to diffuse. While more research is needed to determine
appropriate fluence levels for interstitial irradiation, it is likely that
soft tissue can withstand greater fluence levels than skin in the
low-NIR range. Should concerns over fluences proximal to the tip
be an issue, it could be possible to either increase the diameter of
the fiber end-cap and/or add a diffuser (e.g., inflatable balloon tip
with a scattering fluid) around the fiber tip to control local fluence
levels at the source and thereby protect nearby tissue.

There are instances in the presented results where the PA signal
spectra slightly differ from known absorption spectra. One cause
for this could be imprecision in wavelength calibration when using
the aforementioned spectrometer. Additionally, at lower wave-
lengths, increased scattering and absorption can cause a decrease
in signal beyond what is corrected for by energy normalization,
leading to a slight skewing of the data at these wavelengths.

During testing, an artifact appeared in some PA images that was
caused from the generation of a PA signal by the irradiating tip of
the interstitial fiber. This artifact appeared independent of the
imaging medium, occurring in both pure gelatin and tissue-
mimicking phantoms. One potential explanation for this artifact is
that proximal chromophores adjacent to the fiber tip absorb
energy where fluence would be highest (i.e., before tissue
scattering occurs). In the case of gelatin phantoms, the water
used in the phantom could provide the source of absorption.
Despite the low optical absorption of water in the low-NIR range,
the relatively high fluence at the fiber tip could be enough to
induce an appreciable PA effect [20]. One further possibility is that
mismatched refractive indices at the insertion site (i.e., water-
tissue interface immediately surrounding the fiber tip) causes light
to backscatter, which could manifest as a fluence gain in the tissue
immediately surrounding the fiber tip. Continued classification of
the tip artifact will allow for improved imaging using interstitial
fibers.

To implement interstitial irradiation, an optical fiber must be
introduced percutaneously in order for light to reach the target
tissue. Current minimally invasive, standard-of-care techniques
common in IR, such as thermal ablations and image-guided
biopsies, could reasonably accommodate the optical fiber through
placement alongside or following the extraction of interstitial
instruments. During photothermal ablation, a fiber delivering the
output of a CW laser is already in place within the target tissue
[24,25]. To incorporate PA guidance into photothermal therapy, a
single optical fiber would remain in place, while the laser source
could be switched between the CW source for treatment and the
pulsed source required for PA imaging. Radiofrequency (RF)
ablation techniques could also be adapted to include an interstitial
optical fiber to provide PA imaging to monitor liver and cardiac
ablation procedures [26].

PA imaging techniques are also capable of monitoring tissue
state during ablative procedures by utilizing thermography and
spectroscopy to assess oxygen saturation, tissue denaturation, and
temperature [27–29]. In both RF and photothermal ablation
techniques, real-time PA-based thermography could be used to
monitor the temperature of critical structures adjacent to the
ablation target, while assessment of oxygen saturation or tissue
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denaturation could be used as a treatment endpoint, thereby
providing precise treatment margins [30,31]. However, should
clinical fluence value recommendations fall below the values
presented, further investigation of the effect of SNR on spectral
unmixing in in-vivo animal models will be necessary.

Needle biopsies also provide a practical pathway for interstitial
irradiation. During biopsies, real-time PA spectroscopy could be
applied for identification of normoxic and hypoxic tissue. Hypoxic
or necrotic tissue is characteristic of the core of a fast-growing,
possibly aggressive tumor, therefore the clinician could adapt the
sampling locations based on the tissue’s oxygen state, which could
later also be used to inform radiation treatment planning [32]. A
typical biopsy needle has a diameter of at least 1.27 mm (18-
gauge), which could easily accommodate the 1000-mm optical
fibers implemented in this preliminary investigation.

By utilizing B-mode images from the existing US array in
concert with interstitial PA imaging, the interstitial irradiation
source would be co-registered with the imaging plane, while the B-
mode images would provide anatomical visualization and context
of surrounding tissue structures during a clinical procedure [2].
Photoacoustic imaging driven by an interstitial irradiation source,
especially if combined with the proven anatomical visualization
capabilities of B-mode imaging, shows great promise for IR
applications due to its potential to guide and monitor minimally
invasive procedures and its compatibility with existing clinical
equipment and workflow.

5. Conclusion

This work demonstrated the feasibility of using an interstitial
source to provide sufficient local fluence in generating reliable PA
images that are acquired with an external US array. Multi-
wavelength PA imaging was demonstrated on nanoparticle targets
in ex-vivo tissue and in tissue-mimicking phantoms. Similar
imaging techniques could be used in clinical procedures to provide
real-time feedback during PA image-guided biopsies or thermal
therapy. As demonstrated by the results of this feasibility study, the
clinical role of PA imaging in the future can be further expanded by
implementing local, interstitial irradiation for characterizing deeper
tissues using conventional clinical US systems.
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