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Abstract

The standard OpenMath is a crucial ingredient for creating an integrated envi-
ronment combining systems for computer algebra with proof checkers. OpenMath
consists of a formal grammar of OpenMath objects, their encodings, Content Dic-
tionaries, Phrasebooks and other tools. The OpenMath standard allows integration
of computational systems of different kind. Here we demonstrate how OpenMath
works by setting up an environment in which Maple expressions are type-checked
by the proof checkers Lego and Cogq.

1 Introduction

The observation that computation and deduction are closely related led to sev-
eral approaches to integrate computer algebra systems with theorem provers.
Roughly speaking, there are three directions in which to proceed: include com-
puter algebra capabilities in theorem provers [5,21], include theorem proving
capabilities in computer algebra systems [11,7,22,16] or, include computing
and theorem proving capabilities in a new framework [10].

Connections between computer algebra software and proof checker/auto-
mated deduction systems are usually being developed by partners from one
of the two research communities. In this light, it is no surprise that most
approaches have the flavor of incorporating one into the other.

For instance, the computer algebra system Mathematica with its powerful
rewriting mechanism is taken up in the Theorema project [7] for formal proof
checking purposes. And vice versa, proof checkers are inclined to incorporate
v reduction (rewriting of types on the basis of computation whose algorithms
are verified) and to let the computations be taken over by a computer algebra
system within the formal proof checker.

The use of OpenMath enables a much more flexible and, indeed, open
approach: both the computer algebra system and the proof checkers are usable
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via an independent standard language. Thus, it is up to the user, which tools
to use for setting up an integrated system, without having to take a particular
one as a fixed starting point. In this way, the idea of verification of results
and indeed proof checking gains more solid ground, as one might well replace
one system with another having the same functionality.

OpenMath is a language for representing and communicating mathemat-
ics [3]. Originally, it was conceived as a language for all computer algebra
systems [15,13]. However, in its latest version, it is equipped for conveying
mathematical expressions from all areas of mathematics, for instance logic.
Now OpenMath can be used to express formal mathematical objects, so that
formal theorems and proofs, understandable to proof checkers, can be com-
municated, as well as the usual mathematical expressions handled by CA
systems.

Additionally to the language, OpenMath will also provide a range of ap-
plications and plug-ins which use OpenMath in several areas, in particular
electronic publications, mathematical software packages, and the worldwide
web. One such tool is presented in this paper and shows how a piece of
mathematics, expressed using Maple syntax, can be read and transformed to
an OpenMath object which can then be shipped off to any software package
interfaced to OpenMath, for instance GAP, or Maple for computation and
Coq or Lego for checking well-typedeness. The environment described in the
example assembles several components: a conventional browser to provide the
user interface, a custom-built Java applet to take care of control issues, and
Coq or Lego to carry out the type-checking.

The paper introduces OpenMath in Section 2. In Section 3 a subclass
of OpenMath objects, called Strong OpenMath, is defined for which mean-
ingfulness can be well defined. Type checking of Strong OpenMath objects,
using the proof checker Lego as a server, is described in Section 4. In the last
section, we draw some conclusions and outline future work.

2 OpenMath

OpenMath consists of several aspects. Those presented in this section are: the
architecture of how OpenMath views integration of computational systems,
the OpenMath Standard, and the OpenMath Phrasebooks and tools. The
OpenMath Standard is concerned with the objects, their encodings, and the
Content Dictionaries. The reader is referred to the draft of the OpenMath
standard [13] for additional missing details.

2.1 OpenMath Architecture

The architecture of OpenMath is made up of three layers of representation of
a mathematical object: the private layer for the internal representation, the
abstract layer for the representation as an OpenMath object, and the commu-
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nication layer for translating the OpenMath object to a stream of bytes. An
application dependent program manipulates the mathematical objects using
its internal representation, it can convert them to OpenMath objects and com-
municate them by using the byte stream representation of OpenMath objects.

It is not in the scope of OpenMath to define how communication takes
place, or which services are requested in an integrated mathematical environ-
ment. It was decided at the beginning stage of development, that OpenMath
would concentrate on the objects dispatched, namely on the terms of some
mathematical theory. Therefore, OpenMath is one ingredient among many
others that are needed for achieving integration of computational tools.

OpenMath objects are representations of mathematical entities that can
be communicated among various software applications in a meaningful way,
that is, preserving their “semantics”. OpenMath provides basic objects like
integers, symbols, floating-point numbers, character strings, bytearrays, and
variables, and compound objects: applications, bindings, errors, and attribu-
tions. Content Dictionaries (CDs) specify the meaning of symbols informally
using natural language and, optionally, they might formally assign type in-
formation in the signature of the symbols. CDs are public and are used to
represent the actual common knowledge among OpenMath-compliant applica-
tions. A central idea to the OpenMath philosophy is that CDs fix the “mean-
ing” of objects independently of the application. In this paper’s example, the
public CD used to represent the Calculus of Constructions is understood by
the Java applet. Because of this, the formal signatures expressed using this
CD correspond to lambda terms and as a consequence, the applet described
in Section 4 is able to assign precisely the semantical content to a class of
OpenMath objects that are manipulated.

The integration of OpenMath in an application is achieved by a Phrase-
book, namely an interface program that converts an OpenMath object to/from
the internal representation. The translation is governed by the CDs and the
specifics of the application. The example given in this paper specifies how
this translation is achieved in a phrasebook for the system Lego. The same
example uses also a phrasebook for Maple to enable the input of mathemat-
ical expressions in Maple syntax and to convert them to OpenMath objects.
These objects are then translated to the corresponding objects in Lego syntax
by the Lego phrasebook.

2.2  OpenMath Objects

We now focus on the abstract layer, where mathematical objects are repre-
sented by labelled trees, called OpenMath objects or OpenMath expressions.
The formal definition of an abstract OpenMath object is given below.

Definition 2.1 OpenMath objects are built recursively as follows.

(i) Basic OpenMath objects: integers, symbols (defined in CD), variables,
floating point numbers, character strings, and bytearrays are OpenMath
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objects.

(i) If Ay, ..., A, A, B and C are OpenMath objects, vy, ..., v, are Open-
Math variables, Si,...,S, are OpenMath symbols, then
application(Ay, ..., A,) (n>0)
binding(B, vy, ..., v,, C) (n>0)
attribution(A, S; Ay, ... , S, An) (n > 0)
error(S, Ay, ..., Ap) (n>0)

are OpenMath objects.

All symbols appearing in an OpenMath object are defined in a Content
Dictionary as described in Section 2.4. Application in OpenMath is either
to be intended as functional application, like in the object application(sin,
x), or as a constructor, like in application(Rational, 1, 2). Binding objects,
like binding(lambda, z, application(plus, x, 2)), have been introduced in
the latest version of the OpenMath standard [13], thus turning OpenMath in
a language for logic. Attribution can act as either “annotation”, in the sense
of adornment, or as “modifier”. By default, the attributed object cannot
be viewed as semantically equivalent to the stripped object. In general, an
attributed object’s syntactic class is object!. However, when the object is
a variable, attribution does not change the syntactic class so that attributed
variables are considered variables. Attribution is used in Section 3 to express
the judgement that says that object A has type ¢ by attribution(A, type ).
Errors occur during the manipulation of an OpenMath object and are thus
of real interest when communication is taking place. Examples of errors are
error(division by zero), error(damaged encoding).

2.8 OpenMath Encodings

OpenMath encodings map OpenMath objects to byte streams that can be
easily exchanged between processes or stored and retrieved from files.

Two major encodings supported and described by the OpenMath standard
are XML and binary. The first encoding uses only ISO 646:1983 characters [2]
(ascir characters) and is “XML compatible”, thus it is suitable for sending
OpenMath objects via e-mail, news, cut-and-paste, etc and for being further
processed by a variety of XML tools. For instance the encoding of bind-
ing(lambda, x, application(sin, z)) is:

<0OMOBJ><0OMBIND><0OMS cd="fns" name="lambda'"/>
<OMBVAR><OMV name="x"/></0MBVAR>
<OMA><0MS cd="transc" name="gin"/>
<0MV name="x"/>

I Notice in particular that the syntactic class of an attributed symbol is object. This
technicality avoids nasty nesting in attribution objects.
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</0MA>
</0MBIND></0MOBJ>

From this encoding, it can be read off that the symbols (tagged by OMS)
lambda and sin are defined CDs called fns and transc respectively. The
elements OMA, OMBIND, and OMV identify, respectively, application, binding and
variables.

The second encoding is an ad-hoc binary encoding meant to be used when
compactness is crucial, for instance in interprocess communications over a net-
work. A detailed description of the encodings, and in particular the Document
Type Definition (DTD) for the XML encoding are given in [13].

2.4  OpenMath Content Dictionaries

A Content Dictionary holds the meanings of (various) mathematical “words”
referred to as symbols. In the previous release of the OpenMath standard, there
was a single ‘core’ CD named Basic. In the newest release, a set of official
CDs, each covering a specific area has been produced and is available at a
public repository site http://www.nag.co.uk/projects/OpenMath/corecd/.
The CDGroup MathML covers essentially the same areas of mathematics as the
Content elements of the World Wide Web MathML recommendation [8]. The
xML DTD for CDs is given in the OpenMath Standard [13].

CDs hold two types of information: that which is pertinent to the whole CD
(appears in the header of the CD), and that which is restricted to a particular
symbol definition (appears in a CD Definition). Information pertinent to the
whole CD includes the name, a description, an expiry date, the status of the
CD (official, experimental, private, obsolete), an optional list of CDs on which
it depends. Information restricted to a particular symbol includes a name, and
a description in natural language. Optional information examples of the use of
this symbol, and properties satisfied by this symbol both formal (i.e., in terms
of an OpenMath object), or commented (i.e., just valid XML). Signatures of
symbols are collected in Signature Dictionaries with entries consisting of an
OpenMath object representing the type of a specific OpenMath symbol in a
certain type system. Two sets of signature Dictionaries are currently under
development: one based on the Calculus of Constructions and its extensions
and the other based on an “informal” OpenMath-specific type system named
STS, for Simple Type System.

2.5 OpenMath Phrasebooks

The programs that act as interface between a software application and Open-
Math are called Phrasebooks. Their task is to translate the OpenMath object,
as understood using the Content Dictionaries, to the corresponding internal
representation used by the specific software application.

Several phrasebooks are under development as part of the OpenMath Es-
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prit Consortium project. Most notably, prototype versions of phrasebooks
for the computer algebra systems AXIOM and GAP are already available.
Phrasebooks for Maple? and Reduce have been produced in the initial stage
of OpenMath. For instance, the Maple phrasebook converts Maple notation
to the corresponding OpenMath abstract object, e.g. the + in the expres-
sion = + y is interpreted as an associative and commutative plus in Abelian
SemiGroups using its definition in the CD arithl.

The authors of this paper are currently developing phrasebooks for the
proof checkers Lego and Coq as described in more details in Section 4.

Notice that the OpenMath phrasebooks are only in charge of translating
between OpenMath and internal application-specific representation. Control
of the interaction among various applications is left to the implementor of the
integrated environment. For this task, OpenMath allows freedom of choice
between several paradigms [9,20].

3 Strong OpenMath

Although OpenMath does not enforce formally specified signatures of symbols,
it recognizes their advantages. In particular, formal signatures in a specific
type system can be used to assign mathematical meaning to the object in such
a way that validation of OpenMath objects depends exclusively on the context
determined by the CDs and on some type information carried by the objects
themselves. The rest of this paper shows details of how this is achieved in
OpenMath.

The Calculus of Constructions (CC) and its extensions have been chosen
as starting point for assigning signatures to OpenMath symbols because they
are expressive, well suited to modelling algebra [4,1,26], and have decidable
type inference. Various extensions of the Calculus of Constructions have been
implemented in systems like Lego or Coq [25,14] that are freely available.
These systems can provide the functionalities for performing type checks on
OpenMath objects. Since the signatures are defined in separate Dictionaries,
one can, using the same mechanism outlined in the rest of the paper, choose a
different type system and, when possible, convert the available signatures to
the new type system.

The approach presented here is to define and use a CD, called ecc, for
representing terms in an ad-hoc version of ECC [23], OpenMath-ECC. In
order to be able to assign one ECC-like term to an OpenMath object, minor
modifications to ECC are needed, viz. the introduction of basic constants,
and the definition of type universes.

Definition 3.1 (OpenMath-ECC terms) Terms of OpenMath-ECC are
defined inductively as follows.

2 The version of the Maple phrasebook we used in the example is currently under revision
due to recent changes in the CD structure.
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(i) The constants for universes prop, symtype, and omtype, and the constants
integer, float, string, bytearray for the types of basic OpenMath objects are
terms.

(ii) Integers, floating-point numbers, bytearrays, and strings are terms (con-
stants).

(iii) Variables (x,y,...) are terms.
(iv) If M, N and A are terms, then so are:

MN MXe:M.N Tx:MN Yx:MN (M,N), m (M) m(M).

In this definition, as is done in ECC, the pair constructor is heavily typed,
it takes the type of the pair A as third argument in order to avoid type
ambiguities.

The CD definition of an OpenMath symbol can contain a signature cor-
responding to a type in OpenMath-ECC. These signatures are OpenMath
objects built using the ecc CD. Moreover, logical properties of an OpenMath
symbol can also be formally defined as OpenMath objects and can be included
as such in the symbol’s definitions. OpenMath objects that can be mapped to
a term in OpenMath-ECC are called Strong OpenMath objects. The mapping
is defined in a natural way.

(i) The OpenMath symbols are mapped as described in the CD ecc: integer
to integer, float to float, string for string, bytearray for bytearray, prop
for prop, symtype for symtype, omtype for omtype.

OpenMath symbols defined in ecc-CDs (CDs that use ecc to assign
signatures to the symbols) are Strong OpenMath and correspond to con-
stants of appropriate type (as defined in their signature). For instance,
the signature of the symbol posintT for the type of positive integers can
be defined in an ecc-CD as:

<signature name="posintT">
<OMOBJ><0MS cd="ecc" name="symtype"/></0MOBJ>
</signature>

and corresponds to a new constant posintT of type symtype.

(ii) Basic objects that are integers, floating-point numbers, bytearrays, and
character strings are Strong OpenMath and correspond to constants (ground
terms) of type integer, float, bytearray, and string, respectively.

(iii) OpenMath variables are Strong OpenMath and correspond to variables:
the OpenMath variable with name x corresponds to the OpenMath-ECC
variable z.

(iv) The remaining OpenMath objects are summarized in Figure 1, where #
in the second column denotes the OpenMath-ECC term corresponding
to the Strong OpenMath object ¢. The third column concerns the Lego
phrasebook translation described in Section 4.

Note that while application is built-in, abstraction and function space
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attribution(A,type t) At At
binding(B,attribution(v,type t), A) (Bt (\o:1.A) | (Bio:{A)
application(F, A) FA (FA)
binding(lambda,attribution(v,type t), A) Ao :tA [0: 1] A
binding(PiType,attribution(v,type t),u) o : t.a {v:{}u
binding(SigmaType,attribution(v,type t), u) | $0 : .4 <v:i>a
application(Pair, A;, Ay, S) (Al,A2>§ (A, 4y : S)
application(PairProj1, A) ™ (A) Al
application(PairProj2, A) T (A) A2

Fig. 1. Strong OpenMath

type are represented in OpenMath by appropriate binding symbols (1ambda,
PiType) defined in a new CD called cc. In addition, this CD provides the sym-
bols for the names of the types of the basic OpenMath objects. The CD Group
ecc extends the CD cc by defining the symbols Pair for pairing, PairProj1
and PairProj2 for projections and SigmaType for the dependent sum type.
Notice, in the second line of the above table (in which B is neither Lambda nor
PiType nor SigmaType), how new binding symbols can be introduced in CDs:
they should be given a signature mapping them to higher-order functions.

An OpenMath object in the first column is Strong OpenMath if all the sub-
objects it contains are Strong OpenMath. Its semantics is the corresponding
OpenMath-ECC term in the second column.

Example 3.1 Suppose that the symbolic type RationalT for the type of ra-
tionals is introduced in some CD and corresponds to the Sigma type

binding(SigmaType,
attribution(num,type integer),
attribution(den,type integer),
(greater_than den 0)).

Then, the signature for constructor Rational is defined by the Strong
OpenMath object
binding(PiType,
attribution(num,type integer),
attribution(den,type integer),
attribution(rat_cond,type (greater_than den 0)),
RationalT),

This signature represents the term

[Inum : integer.Ilden : integer.Ilrat_cond : (greater_than den 0).RationalT.
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4 Towards Phrasebooks for Lego and for Coq

Initial work has been done by the authors to interface Lego and Coq to Strong
OpenMath through a Java client-server applet. The resulting phrasebooks are
encoder/decoder Java classes linked with the OpenMath Java library provided
by the PolyMath Development Group [27].

The Lego phrasebook transforms any Strong OpenMath object into the
corresponding term in the language used by Lego. Basic objects are translated
into new constants of the appropriate type. Column 3 in Figure 1 shows
the translation performed by the OpenMath Lego phrasebook for compound
Strong OpenMath objects and  denotes the Lego term corresponding to the
Strong OpenMath object t. Figure 2 is a screen-shot of the applet that shows
the result of type-checking the expression sin(z *y) + 2 + sin(z)? in a specific
Lego context.

As one can see from the figure, the current version of the Lego applet takes
as input a mathematical expression in Maple syntax. The Maple phrasebook
provided by the OpenMath Java library converts this expression into an Open-
Math object. The Java applet then feeds this object to the Lego phrasebook
for obtaining the corresponding Lego term. This Lego term is then shipped
to Lego with a context and a command to be performed on the term. Lego
runs on a server machine and communicates to the applet the results of the
query it has received via the buttons in the graphical user interface. These
buttons define which command is sent and will be executed by the server ap-
plication on the expression given as input. In particular, the query to Lego can
be type-checking. If type-checking is successful, then the Strong OpenMath
object corresponding to the input expression is a meaningful mathematical
expression that can be processed further. In the current version of the applet
each button is a specific Lego command. We plan to investigate [17,18] among
the several possible choices for a more standardized query language.

The Java class implementing the OpenMath phrasebook for Lego can of
course be re-used for connecting Lego to any other Java application based
on the same OpenMath library. In fact, we have been able to use the Java
phrasebook for the computer algebra package Maple for parsing the input
expression and generating an OpenMath object. As more phrasebooks for
software packages become available, it is easy to imagine an increasingly so-
phisticated applet that is able to talk to several systems.

In the future we intend to link the applet’s functionalities to the IDA
project, which brought forth the undergraduate course ” Algebra Interactive”
[12] used by mathematics and computer science students. In such a project,
it is a reasonable prerequisite to check, at the client side, whether the in-
put represents a particular type of mathematical object that is expected for
the computation done by the mathematical server (e.g., an integer, a polyno-
mial over a specified ring and with specified indeterminate, or a permutation
group). This check should be performed before sending the input to the math-
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N Netscape: Lego Applet [af[EEL

File Edit “iew Go Communicatar Help|

The Opentdath Lego applet. =~

Type the term in Maple-like syntaz:

sinGal + x"2 + sinGo"E

The Lego output is

walug = plus dplus (=in times = VI2 (power x intE)D dpower (=in =) intE)
tuwpe = float

wihat = Check = |

Use example I Submit OM to Lego I

Startup I

|&pplet first running

Fig. 2. Screen-shot of the OpenMath-Lego Applet

ematical server in order to avoid having to deal with often uncomprehensible
error messages. Another direction we intend to investigate is turning the
present proofs from static to interactive events. The literature and the state
of the art mathematical software [6,24,19] show that more research is needed
regarding the correspondence of vernacular with formal mathematics. Along
this lines, OpenMath needs to be combined with a query language that takes
care of the control issues involved in communication among processes. The
buttons in the interface of the Java applet partly serve this purpose. It is clear
that for a sophisticated integrated environment a more advanced and sound
mechanism has to be considered.

5 Conclusion

We have presented the latest version of the OpenMath standard. We have also
demonstrated by means of a Pure Type System on a substantial sublanguage
(called Strong OpenMath) of OpenMath, that OpenMath is suitable for com-
municating a wide range of mathematics. In fact, in this manner, OpenMath
can convey proof objects for formal proof checkers as well as mathematical
expressions used in computer algebra systems. Thus, OpenMath can play a
universal role as interface between these two kinds of mathematical computer
system and enhance the complementary fuctionalities of several frameworks
already present in the literature.
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