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1. Introduction

A class of many methods [1–10] has been proposed to describe
a wide variety of linear and non-linear dynamical equations.
Among these dynamical equations there is that of the hyperbolic
telegraph equation (HT) [11–13]. Because of its importance to
the field of engineering and many physical systems, a great deal
of approximate schemas and numerical calculations have appeared
in recent years to calculate the hyperbolic and parabolic equations
for numerous physical situations [14–20].

The first part of this paper serves to introduce the use of a (1,1)-
GDQ method [21–28] in order to explore the structure of the solu-
tions of the hyperbolic telegraph equation. In our description, the
solutions are evaluated in a polynomial form. Based on the proper-
ties of the Lagrange’s polynomial, this method improves of a con-
siderable manner the efficiency and accuracy of results compared
with the other usual methods much argued in the literature.

The remainder of this paper is organized as follows. In ‘‘The
GDQ method formulation’’, we present the theoretical bases which
underlie the formulation of the GDQ method in connection with
the problems of interest. In ‘‘Illustrative examples’’, some applica-
tions are proposed to concretize the method and conclusion and
trends for future work are made in ‘‘Conclusion’’.

https://core.ac.uk/display/82037933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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2. The GDQ method formulation

In this section our effort is concentrated essentially on the con-
nection of the (1+1) GDQ method to some important physical prob-
lems in which the hyperbolic telegraph equation is considered

hw ¼ gðx; tÞ; x 2 ½A;B�; t P 0; ð1Þ

where the linear differential operator h is defined by:

h ¼ a
@

@t
þ @2

@t2 �
@2

@x2 þ b; ð2Þ

in which a and b are free parameters.
The term [hw] can be expressed as a constant coefficient eigen-

function combination at all discrete points in the domain of vari-
ables x and t as

½hw�ik ¼
XM

j¼1

skjwðxi; tjÞ þ
XN

j¼1

vijwðxj; tkÞ

for i ¼ 1; . . . ;N and k ¼ 1; . . . ;M; ð3Þ
the relation (3) can be rewritten as

½hw�ik ¼ ðskk þ viiÞwðxi; tkÞ þ
XM

j¼1;j–k

skjwðxi; tjÞ þ
XN

j¼1;j–i

vijwðxj; tkÞ

¼ gðxi; tkÞ; for i ¼ 1; . . . ;N and k ¼ 1; . . . ;M; ð4Þ

where {xj}, 1 6 j 6 N and {tj} , 1 6 j 6M are the sequences of the x
and t-variables called the collocation points, and the function
w(x,t) is a family of polynomials and specifically taken as the La-
grange interpolated polynomial as

wðx; tÞ ¼
XM

j¼1

XN

i¼1

wðxi; tjÞPN;iðxÞPM;jðtÞ; ð5Þ

and

Pl;kðzÞ ¼
GlðzÞ

ðz� zkÞGð1Þl ðzkÞ
; k ¼ 1; . . . ; l; ð6Þ

where GlðzÞ ¼
Ql

j¼1ðz� zjÞ and Gð1Þl ðziÞ ¼ @GNðziÞ
@z ¼

Ql
j¼1;j–iðzi � zjÞ

Using the different derivatives of w(x, t) at xi and tk from (5), it
follows that from the properties of Pl,k(z), we can establish the un-
known weighting coefficients sij and vij as

skj ¼ aað1Þkj þ að2Þkj ;

for k ¼ 1; . . . ;M and j ¼ 1 . . . ;M and

skk ¼ �
XM

j¼1;j–k

skj;

8>>>>><
>>>>>:

ð7Þ

and

vij ¼ �bð2Þij ; for j – i and

vii ¼ b�
XN

j¼1;j–i

vij; for i ¼ 1; . . . ;N:

8>><
>>:

ð8Þ

The superscripts 1 and 2 in parentheses do not indicate powers,
but merely identify the derivatives of the Lagrange’s polynomial
with which the quantities aðnÞkj and bð2Þij are associated.

aðnÞkj ¼
dnPjðtkÞ

dtn ; n ¼ 1;2; ð9Þ

bðnÞij ¼
dnPjðxiÞ

dxn ; n ¼ 1;2: ð10Þ
2.1. Optimization of weighting coefficients

Moreover, it is readily to obtain from relations (6), (8) and (10),
the coefficients skj and vij in a reduced form
skj ¼ að1Þkj aþ 2 að1Þkk � 1
ðtk�tjÞ

� �h i

for j–k; j ¼ 1 . . . ;M and k ¼ 1; . . . ;M; and

skk ¼ �
XM

j¼1;j–k

skj for k ¼ 1; . . . ;M

8>>>>><
>>>>>:

ð11Þ

and

vij ¼ �2bð1Þij bð1Þii � 1
ðxi�xjÞ

� �

for j–i; j ¼ 1 . . . ;N and i ¼ 1; . . . ;N; and

vii ¼ b�
XN

j¼1;j–i

vij for i ¼ 1; . . . ;N

8>>>>><
>>>>>:

ð12Þ

and the fundamental terms að1Þik and bð1Þik in the relations (11) and
(12) are given respectively as follows

að1Þik ¼
Gð1ÞM ðtiÞ

ðti�tkÞG
ð1Þ
M ðtkÞ

; for i–k; i ¼ 1; . . . ;M and k ¼ 1; . . . ;M; and

að1Þii ¼ �
XM

j¼1;j–i

að1Þij

8>>><
>>>:

ð13Þ

and

bð1Þik ¼
Gð1Þ

N
ðxiÞ

ðxi�xkÞG
ð1Þ
N
ðxkÞ

; for i–k; i ¼ 1; . . . ;N and k ¼ 1; . . . ;N; and

bð1Þii ¼ �
XN

j¼1;j–i

bð1Þij

8>>><
>>>:

ð14Þ

So, the coefficients að1Þij and bð1Þij are known through the relations
(13) and (14). Technically, the other coefficients sij and vij are com-
puted via (11) and (12) by using systematically the results ob-
tained from (13) and (14). Having found the weighting
coefficients sij and vij, one can accurately solve the following ma-
trix equation and therefore the original problem (1)

½c�W ¼ G ð15Þ

in the above expression, [c] is a N �M matrix with elements sij and
vij, W is a column vector with components (w(x1, t1), w(x1, t2), -
. . .,w(xN, tM)), and G is a column vector with components (g(x1, t1),
g(x1, t2), . . .,g(xN, tM)).

At this stage, we have to solve this linear system of equations
that arises from the main relation (4). Once the linear system
(15) is solved and the components w(xi,tj) are known, the corre-
sponding solution w(x, t) of Eq. (1) is then determined completely.

A more complete description will be given later on with two
specific examples.

2.2. Simulation algorithm

The system of algebraic Eq. (15) is an explicit prescription that
gives the solution in O(N �M) operations. Eq. (15) must also be
understood as a vector equation. We have to solve the N �M set
of linear algebraic equations. Hence, we summarize the main steps
for this algorithm as,

Step 1: Input the xi and tj adequate interpolation points, and
construct the interpolation polynomials PN,k(x) and PM,l(t) with
(6). The interpolation points can be evaluated as xi = iDx, 1 6 i 6 N,
and at tj = jDt, 1 6 j 6M where Dx and D t are the space and time
steps respectively.

Step 2: Calculate the sij and vkl elements by relations (11) and
(12), for i = 1, . . . ,M , j = 1, . . . ,M and k = 1, . . . ,N , l = 1, . . . ,N , to-
gether with (13) and (14). To simulate the weighting coefficients,
a specific code is also written in Mathematica to generate the



Table 1
Absolute error at times t = 5. and t = 10. for w(x, t).

x Absolute error, t = 5. Absolute error, t = 10.

0. 1.46795 � 10�10 2.23556 � 10�10

0.0669873 1.60378 � 10�10 1.97907 � 10�10

0.5 2.01696 � 10�10 1.16964 � 10�10

0.933013 1.66925 � 10�10 1.76694 � 10�10

1. 1.54341 � 10�10 1.98916 � 10�10

Table 2
Absolute error at times t = 1.5 and t = 2.25 for w(x, t).

x Absolute error, t = 1.5 Absolute error, t = 2.25

0.785398 8.32667 � 10�16 3.19189 � 10�16

1.5708 1.19349 � 10�15 5.13478 � 10�16

2.35619 1.38778 � 10�16 2.08167 � 10�16

3.14159 1.10891 � 10�15 1.70925 � 10�16

3.92699 5.27356 � 10�16 1.94289 � 10�16

4.71239 6.66134 � 10�16 5.55112 � 10�17

5.49779 1.11022 � 10�16 8.32667 � 10�17
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Fig. 2. Representation of the estimated solution w(x, t) for the second example.
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matrix elements sij and vkl at any order, once the set of interpola-
tion points is given.

Step 3: We evaluate the algebraic system (15).
Step 4: Once the function values at all grid points are obtained,

it is then easy to determine the function values in the overall do-
main in terms of polynomial approximation, such that
wðx; tÞ ¼

PM
j¼1

PN
i¼1wðxi; tjÞPN;iðxÞPM;jðtÞ.

2.3. Some remarks

(1) The trouble with the standard Lagrangian polynomial tech-
nique is that we do not know which degree of polynomial
to use. If the degree is too low the interpolating polynomial
does not give good estimates of function. If the degree is too
high, undesirable oscillations in polynomial values can
occur. For this, we can adopt a strategy on choice of points
used in construction of interpolating polynomials.

(2) The difficulty in the applications of quadrature method is
how to find of manner accurate and efficient the weighting
coefficients involved in the strategy of interpolation tech-
niques. It can be seen that (11)–(14) are very simple alge-
braic expressions for sij and vkl. Note also that, the choice
of grid coordinates is not restricted and can be taken freely.

(3) If we know a priori that the function is smooth, a low-degree
polynomial should work satisfactorily.

3. Illustrative examples

To illustrate how this method works, and see whether it is ro-
bust, a good test may be made by examining two examples. To
be more precise and for the benefit of comparison, we use there-
fore the problems with known analytical solutions.

3.1. First test example

More interesting is the case of the hyperbolic telegraph equa-
tion of the form Eq. (1) with the following parameters: a = 1,
b = 1, A = 0, B = 1 and the right hand side function is g(x, t) = x2 + -
t � 1. The exact solution is written as [11]

wðx; tÞ ¼ x2 þ t: ð16Þ

The space-time graph of approximated solution w(x, t) is given in
Fig. 1.

The accuracy of the w(x, t) estimation was evaluated using the
absolute error. On the other hand, good agreement was found in
the solution w(x, t). The results were essentially the same. The
accuracy of this work has been examined using the absolute error
as
0
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Fig. 1. Representation of the estimated solution w(x, t) for the first example.
Absolute error ¼ kEstimated� Analyticalk ð17Þ

We report in Table 1, the absolute errors at times t = 5. and
t = 10.

3.2. Second test example

Another example that has analytically known solutions and
provides a further application of the method presented in this
work is the hyperbolic telegraph Eq. (1) with the following data
[15]: a = 8, b = 4, A = 0, B = 2p, t 2 [0,3] and g(x, t) = (2 � a + b) sin(x)
exp(�t). The exact solution is given by:

wðx; tÞ ¼ sinðxÞ expð�tÞ ð18Þ

Following a similar fashion to that used for the first example,
this case, may be numerically tested by using the results of Sec-
tion 2. The absolute errors at times t = 1.5 and t = 2.25 are shown
in Table 2.

The plot of the space-time graph of estimated solution w(x, t) is
given in Fig. 2. All the computations were performed by using
Mathematica.
4. Conclusion

In this work a (1+1)-GDQ method is investigated that deter-
mines the structures of the hyperbolic telegraph equation in
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(1+1) dimensions. A family of compactly supported orthogonal
polynomial is constructed to find the appropriate solutions.

We obtained, that the numerical examples given in this work
have shown the efficiency of this procedure. Moreover, the present
method provides a reliable technique that requires less work if
compared with the difficulties arising from computational aspect.
In view of its simplicity and elegance with which it may be imple-
mented, this method is also more desirable to work with and the
corresponding solutions are commonly in good agreement with ex-
act results.

Alternatively, this method can be always qualitatively extended
to multi-dimensional problems and coupled systems where the
above developments are always applicable. So, would be interest-
ing, to show the application of this method by examining the case
where the solution cannot be handled analytically with the usual
techniques. This direction of inquiry is under consideration and
is envisioned for a sequel to this paper.

Acknowledgments

The authors want to thank Prof. Hans and Dr S. Brend for inter-
esting discussions and for their valuable comments. AZ would like
to thank the M.E.R.S (Ministère de l’Enseignement et de la Recher-
che Scientifique) for financial support: PNR contract No. 30/15/
2011.

References

[1] Mohyud-Din ST, Yildirim A, Sariaydin S. Numerical soliton solution of the
Kaup-Kupershmidt equation. Int J Numer Methods Heat Fluid Flow, Emerald
2011;21(3):272–81.

[2] Mohyud-Din ST, Yildirim A, Demirli G. Analytical solution of wave system in
with coupling controllers. Int J Numer Methods Heat Fluid Flow, Emerald
2011;21(2):198–205.

[3] Mohyud-Din ST, Noor MA. Homotopy perturbation method for solving partial
differential equations. Zeitschrift fr Naturforschung A – A J Phys Sci
2009;64a:157–70.

[4] Mohyud-Din ST, Yildirim A, Sariaydin S. Numerical soliton solutions of the
improved Boussinesq equation. Int J Numer Methods Heat Fluid Flow
2011;21(7):822–7.

[5] Abdusalam HA. Analytic and approximate solutions for Nagumo telegraph
reaction diffusion equation. Appl Math Comput 2004;157:515–22.

[6] Amaratunga K, Wiliams JR, Qian S, Weiss J. Wavelet –Galerkin solution for one-
dimensional partial differential equations. Int J Numer Methods Eng
1994;37:705–2716.

[7] Daubechies I. Ten lectures on wavelets. Philadelphia: SIAM; 1992.
[8] Glowiniski R, Lawton WM, Ravachol M, Tenenbaum E. Wavelet solutions of

linear and nonlinear elliptic, parabolic, and hyperbolic problems in one space
dimension. Comput Methods Appl Sci Eng 1990:5–120.
[9] Ho SL, Yang SY. Wavelet–Galerkin method for solving parabolic equations in
finite domains. Finite Element Anal Des 2001;37:023–1037.

[10] Mohanty RK, Jain MK, George K. On the use of high order difference methods
for the system of one space second order non-linear hyperbolic equations with
variable coefficients. J Comput Appl Math 1996;72:421–31.

[11] El-Azab MS, El-Gamel M. A numerical algorithm for the solution of telegraph
equations. Appl Math Comput 2007;190:757–64.

[12] Dehghan M, Shokri A. A numerical method for solving the hyperbolic telegraph
equation. Numer Methods Partial Differ Equat 2008;24:1080–93.

[13] Mohebbi A, Dehghan M. High order compact solution of the one-space-
dimensional linear hyperbolic equation. Numer Methods Partial Differ Equat
2008;24:1222–35.

[14] Saadatmandi A, Dehghan M. Numerical solution of the one-dimensional wave
equation with an integral condition. Numer Methods Partial Differ Equat
2007;23:282–92.

[15] Gao F, Chi C. Unconditionally stable difference schemes for a one-space-
dimensional linear hyperbolic equation. Appl Math Comput 2007;187:1272–6.

[16] Aloy R, Casaban MC, Caudillo-Mata LA, Jodar L. Computing the variable
coefficient telegraph equation using a discrete eigenfunctions method.
Comput Math Appl 2007;54:448–58.

[17] Mohanty RK, Jain MK. An unconditionally stable alternating direction implicit
scheme for the two space dimensional linear hyperbolic equation. Numer
Methods Partial Differ Equat 2001;17:684–8.

[18] Mohanty RK, Jain MK, Arora U. An unconditionally stable ADI method for the
linear hyperbolic equation in three space dimensions. Int J Comput Math
2002;79:133–42.

[19] Guo BY. The state of art in spectral methods. Hong Kong: City University of
Hong Kong; 1996.

[20] Braun M, Sofianos SA, Papageorgiou DG, Lagaris IE. An efficient Chebyshev–
Lanczos method for obtaining eigensolutions of the Schrödinger equation on a
grid. J Comput Phys 1996;126(315).

[21] Shu C, Richards BE. High resolution of natural convection in a square cavity by
generalized differential quadrature. Proc 3rd Int Conf Adv Numer Methods
Eng: Theory Appl 1990;11:978–85.

[22] Shu C, Richards BE. Application of generalized differential quadrature to solve
two-dimensional incompressible Navier–Stokes equations. Int J Numer
Methods Fluids 1992;15:791–8.

[23] Zerarka A, Hassouni S, Saidi H, Boumedjane Y. Energy spectra of the
Schrödinger equation and the differential quadrature method. Commun
Nonlinear Sci Numer Simulat 2005;10.

[24] Zerarka A, Khelil N, Saidi H. A generalised integral quadratic method:
improvement of the solution for one dimensional Volterra integral equation
using particle swarm optimisation. Int J Simulat Process Model 2006;2(1/2).

[25] Zerarka A, Saidi H, Hassouni S, Bensalah N. Evaluation of the bound states of a
quantum system via the differential quadrature method: extended to coupled
differential equations. Appl Math Comput 2006;182:665–71.

[26] Saidi H, Khelil N, Hassouni S, Zerarka A. Energy spectra of the Schrödinger
equation and the differential quadrature method: Improvement of the solution
using particle swarm optimization. Appl Math Comput 2006;182:559–66.

[27] Boumedjane Y, Saidi H, Hassouni S, Zerarka A. Some first excited energy levels
for the generalized Killingbeck potential with the differential quadratic
method. Appl Math Comput 2007;194:43–249.

[28] Zerarka A, Soukeur A, Khelil N. The particle swarm optimization against the
Runge’s phenomenon: Application to the generalized integral quadrature
method. Int J Comput Math Sci 2009;3(7).


	Integration of the hyperbolic telegraph equation in (1+1) dimensions via the generalized differential quadrature method
	1 Introduction
	2 The GDQ method formulation
	2.1 Optimization of weighting coefficients
	2.2 Simulation algorithm
	2.3 Some remarks

	3 Illustrative examples
	3.1 First test example
	3.2 Second test example

	4 Conclusion
	Acknowledgments
	References


