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Abstract

We investigate the different energy regimes in the conjecturedSL(2,Z) invariant four graviton scattering amplitude th
incorporates D-instanton contributions in 10d type IIB superstring theory. We show that the infinite product overSL(2,Z)

rotations is convergent in the whole complex planes, t . For high energiesα′s � 1, fixed scattering angle, and very we
coupling gs � 1/(α′s), the four-graviton amplitude exhibits the usual exponential suppression. As the energy app
1/gs , the suppression gradually diminishes until there appears a strong amplification near a new pole coming
exchange of a(p, q) string. At energiesα′s � 1/

√
gs , the pure D-instanton contribution to the scattering amplitud

found to produce a factorAD-inst
4

∼= exp(cg3/2
s e

− 2π
gs s3). At energies 1/

√
gs � α′s � 1/gs , the D-instanton factor become

AD-inst
4

∼= exp(2e
− 2π

gs
+πgss

2
), α′ = 4. At higher energiesα′s � 1/gs the D-instanton contribution becomes very importa

and one finds an oscillatory behavior which alternates suppression and amplification. This suggests that non-pertur
fects can lead to a high-energy behavior which is significantly different from the perturbative string behavior.
 2005 Elsevier B.V. Open access under CC BY license.
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1. Introduction

A problem of interest is understanding what a
the concrete effects that non-perturbative correcti
can have in superstring theory, in particular, h
they affect the high-energy behavior of string a
plitudes. In ten-dimensional type IIB superstring th
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ory, the source of non-perturbative corrections are
D-instantons.

Computing the contribution of multiply-charge
D-instantons directly is complicated. However, co
bining different pieces of information, Green and G
perle[1] conjectured the exact modular function th
multiplies theR4 term in the type IIB effective action
which exactly incorporates the infinite set of multipl
charged D-instanton corrections.

One of the constraints on the effective action u
by Green and Gutperle is preciselySL(2,Z) invari-
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ance. TheSL(2,Z) symmetry of type IIB superstrin
theory requires that the effective action must be inv
ant underSL(2,Z) transformations to all orders in th
α′ expansion. In particular, this implies that gravit
scattering amplitudes must beSL(2,Z) invariant, since
there is a direct correspondence between the term
the effective action and the momentum expansion
the scattering amplitude.

In [2,3] an SL(2,Z) invariant four graviton ampli-
tude was constructed by applying a simpleSL(2,Z)

symmetrization of the tree-level string theory fo
graviton amplitude. The construction follows esse
tially the same rule used by Green and Gutperle
symmetrize theR4 term. It was conjectured that th
scattering amplitude incorporates the full series
D-instanton corrections with the different D-instant
numbers. This symmetric amplitude satisfies a num
of consistency conditions. In particular, corrections
perturbative origin appear with an integer power ofg2

s .
This is non-trivial and does not hold for any sym
metrization. It is also consistent with the conjectu
that high derivative terms in the type II effective acti
of the formH 4k−4R4 should not receive perturbativ
contributions beyond genusk [4]. By construction, it
reproduces the exactR4 term proposed in[1], and it
can be viewed as a tree-level amplitude that acco
for the exchange of(p, q) string states[5].

These(p, q) string states have a simple eleve
dimensional origin[6]. Type IIB superstring theory
is obtained from M-theory by compactification on
2-torus and taking the zero area limit at fixed to
moduli. In this limit, most membrane states get
infinite mass, except a certain set of states that re
sent the(p, q) strings of uncompactified 10d type II
string theory. These states are precisely the states
contribute as simple poles in theSL(2,Z) invariant
amplitude of[2,3].

In this work we investigate the properties of t
SL(2,Z) invariant amplitude. In particular, we facto
ize the pure D-instanton contribution and study
high energy limit.

The conjecture of[1] has withstood different test
and has been generalized in different directions[7–
19]. The idea of organizing type IIB perturbation th
ory in SL(2,Z) invariant way was also suggested
[20,21]. Scattering amplitudes at high energies inc
porating higher genus effects were investigated by[22]
and[23].
t

2. SL(2,Z) invariant amplitude

The four-graviton scattering amplitude for 10
type IIB superstring introduced in[2,3] is given by
the following formula:

(2.1)A4 = κ2KA
sl(2)
4 (s, t),

A
sl(2)
4 (s, t)

(2.2)

= 1

stu

∏
(p,q)′

�(1− spq)�(1− tpq)�(1− upq)

�(1+ spq)�(1+ tpq)�(1+ upq)
,

spq = α′s
4|p + qτ | , tpq = α′t

4|p + qτ | ,

(2.3)upq = α′u
4|p + qτ | , spq + tpq + upq = 0,

wherep andq are relatively prime,τ = C(0) + ig−1
s is

the usual coupling of type IIB superstring theory, a
K is the same kinematical factor depending on the m
menta and polarization of the external states appea
in the tree-level Virasoro amplitude (see, e.g.,[24])

K = ζAA′
1 ζBB ′

2 ζCC′
3 ζDD′

4 KABCD(ki)KA′B ′C′D′(ki),

KABCD = −1

4
stηACηBD + · · · .

The scattering amplitude(2.2)can also be written as

(2.4)A
sl(2)
4 (s, t) = 1

stu
eδ(s,t),

with

δ(s, t) = 2
∞∑

k=1

ζ(2k + 1)g
k+1/2
s Ek+1/2(τ )

2k + 1

× (
s̄2k+1 + t̄ 2k+1 + ū2k+1),

s̄ = 1

4
α′s, t̄ = 1

4
α′t,

(2.5)ū = 1

4
α′u, s̄ + t̄ + ū = 0,

and Er(τ) is the non-holomorphic Eisenstein serie
given by(Rer > 1)

(2.6)Er(τ) =
∑

(p,q)′

τ r
2

|p + qτ |2r
.
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For very small couplinggs � 1, the terms withq �= 0
are negligible in the sum(2.5), so that g

k+1/2
s ×

Ek+1/2(τ ) → 1. One recovers the tree-level fou
graviton Virasoro amplitude,

A4(s, t) = κ2KA0
4(s, t),

(2.7)A0
4(s, t) = 1

stu
eδ0(s,t),

(2.8)

δ0(s, t) = 2
∞∑

k=1

ζ(2k + 1)

2k + 1

(
s̄2k+1 + t̄ 2k+1 + ū2k+1).

This gives

(2.9)A0
4(s, t) = 1

stu

�(1− s̄)�(1− t̄ )�(1− ū)

�(1+ s̄)�(1+ t̄ )�(1+ ū)
.

The scattering amplitudeAsl(2)
4 adds to the Virasoro

amplitude perturbative and non-perturbative contri
tions. They are seen explicitly by expanding the Eis
stein functions at largeτ2 = g−1

s [25],

Er(τ) = τ r
2 + γrτ

1−r
2

+ 4τ
1/2
2 πr

ζ(2r)�(r)

∞∑
n,w=1

(
w

n

)r−1/2

× cos(2πwnτ1)Kr−1/2(2πwnτ2),

(2.10)γr =
√

π�(r − 1/2)ζ(2r − 1)

�(r)ζ(2r)
.

Using the asymptotic expansion for the Bessel fu
tion Kr−1/2,

Kr−1/2(2πwnτ2)

= 1√
4wnτ2

e−2πwnτ2

(2.11)×
∞∑

m=0

1

(4πwnτ2)m

�(r + m)

�(r − m)m! ,

we see that theEk+1/2(τ ) terms in the amplitude ar
of the form

g
k+1/2
s Ek+1/2(τ )

(2.12)= 1+ γk+1/2g
2k
s + O

(
e−2π/gs

)
.

Note that the non-perturbative contributions a

O(e
− 2πm

gs ), wherem = wn is an integer number. Th
coefficient 2πm is crucial in order to have a one-to
one correspondence between these terms and inst
 n

contributions. It is a remarkable fact that the pro
uct overSL(2,Z) rotations automatically generates t
full series of D-instanton contributions.

We summarize the main properties ofA
sl(2)
4 :

(1) It is SL(2,Z) invariant. This is explicit in the
Einstein frame,gE

µν = g
−1/2
B gµν , so thatsE = g

1/2
B s,

tE = g
1/2
B t , uE = g

1/2
B u, andsE, tE,uE remain fixed

underSL(2,Z) transformations.
(2) It adds perturbativeg2k

s and non-perturbative

O(e
− 2πm

gs ) corrections to the Virasoro amplitude.
(3) It has simple poles in thes–t–u channels a

spq = n, tpq = n, upq = n, n = 0,1,2, . . . correspond-
ing to a tree-level exchange of particles with masse

(2.13)
1

4
α′M2 = n|p + qτ |.
(4) It reproduces the exact (proportional toE3/2(τ ))

R4 term conjectured in[1], containing a one-loop cor
rection and the full D-instanton contributions. It al
reproduces the exactζ(5)E5/2(τ )∇4R4 term conjec-
tured in[18] (moreover, in[17] there was a calculatio
of a genus one term in∇6R4 which was found propor
tional to 2ζ(3)ζ(2), which differs from the prediction
of theA

sl(2)
4 amplitude only by a factor of 2).

The spectrum(2.13)is the spectrum of(p, q) string
states[5]:

M2 = 4πTpq(NR + NL)

(2.14)= 2

α′ |p + qτ |(NR + NL), NR = NL.

This spectrum corresponds to the zero winding s
tor of the spectrum studied in[6,26] for the nine-
dimensional type IIB string theory. Settingτ1 =
C(0) = 0, the full spectrum inD = 9 is given by

M2
9 = n2

R2
10

(
p2 + q2

g2
s

)
+ w10R10

α′2

+ 2

α′

√
p2 + q2

g2
s

(NR + NL),

(2.15)NR − NL = nw10,

whereR10 is the radius of the compact tenth dime
sion. In the limitR10 → ∞, one must set, as usual, th
winding numberw10 to zero to have finite mass. Th
term proportional to 1/R2

10 becomes the continuou
10d component of the momentump10, so thatM2 =
M2

9 − p2
10 and one gets Eq.(2.14). It is important to
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note that a charged D string has massM = O(1/gs),
as seen from(2.15). The neutral(p, q) strings of ten
dimensions have masses given by(2.14)of orderM =
O(1/

√
gs ) for q �= 0. This is why the product ove

SL(2,Z) rotations produces poles atα′s = O(1/gs).
The collection of states(2.14) are the only quan

tum states of M-theory compactified on a 2-torus t
remain of finite mass after taking the zero-area limi
the torus that leads to ten-dimensional type IIB str
theory[3]. The scattering amplitudeAsl(2)

4 can thus be
viewed as a tree-level scattering amplitude where
these states are exchanged.

The scattering amplitudeAsl(2)
4 does not describ

loop effects such as discontinuity cuts (see[3,17] for
discussions). In particular, it should not be a good
proximation of the full scattering amplitude atgs =
O(1) andα′s large. It represents an improvement
the Virasoro amplitude atgs � 1 (or at the S-dua
situation,gs � 1), where D-instanton (and some pe
turbative) contributions have been incorporated.

The exchange of(p, q) string states is clear from
the pole structure of(2.2). It becomes manifest b
writing

δ = 1

2

∑
(m,n) �=(0,0)

log
M2

mn + s

M2
mn − s

(2.16)+ (s → t) + (s → u),

where

α′M2
mn = 4|m + nτ |.

This generalizes the analogous formula for the V
soro amplitude, withδ0 written in the form

δ0 =
∞∑

m=1

δ(m),

δ(m) = log
M2

m + s

M2
m − s

+ (s → t) + (s → u),

(2.17)α′M2
m = 4m.

Now the sum in(2.16) contains not only the term
α′M2

m = 4m, but all the termsM2
mn, representing al

(p, q) string states.
3. Convergence properties

The scattering amplitudeAsl(2)
4 is defined through

an infinite product(2.2) over a pair(p, q) of rela-
tively prime integers, i.e., integers(p, q) having great-
est common divisor equal to one. An important iss
is what are the convergence properties of this prod

To study the convergence, we write

δ(s, t) =
∑

(p,q)′
log

�(1− spq)

�(1+ spq)

(3.1)+ (s → t) + (s → u).

We have to look at the behavior of terms with lar
p,q. For any givens, t, u, there are positive integer
(p0, q0) such that all terms withp > p0, q > q0 have
|p+qτ | � s, t, u andspq, tpq, upq small. These term
have the behavior

log
�(1− spq)�(1− tpq)�(1− upq)

�(1+ spq)�(1+ tpq)�(1+ upq)

(3.2)∼= 2ζ(3)

3|p + qτ |3
(
s̄3 + t̄ 3 + ū3),

where we have useds + t + u = 0. The sum overp,q

of |p + qτ |−3 is known to be convergent[25] (in par-
ticular, the full sum overp,q of |p + qτ |−3 defines
E3/2(τ ), see(2.6)). Therefore the sum in(3.1) is con-
vergent. Since we have made no assumption abouts, t ,
the series(3.1)has infinite radius of convergence.

We have also investigated the convergence num
ically, by explicit calculation of the infinite produc
in different sectors of the complex planess and t ,
for generic values of the couplingτ . As an additional
check, we have also computed the amplitude in
representation(2.16), obtaining the same (finite) nu
merical results.

Note that the series(2.5)defining the amplitude ha
a finite radius of convergence if we writeζ(2k + 1) =∑

m m−2k−1 and perform first the sum overk. The sum
overk is the series of a logarithm and it diverges wh
s, t or u meet the first pole. The same of course app
for the Virasoro amplitude written in the form(2.8).

4. Approach to the different scales

Let us assumegs � 1, and examine the differ
ent scales that appear as the center-of-mass ene
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increased from zero. We setC(0) = τ1 = 0, so that
τ = iτ2 = ig−1

s .

4.1. Region α′s � 1
gs

For α′s � 1, one hasAsl(2)
4 (s, t) → 1

stu
, and one

recovers the supergravity tree-level four graviton a
plitude.

In general, for anyα′s � 1
gs

, one hasAsl(2)
4 (s, t) →

A0
4(s, t), one recovers the Virasoro amplitude(2.9)

with its usual properties: simple poles ats̄ = n, t̄ = n,
ū = n, with n positive (recall that in the physical re
gion of elastic scatterings is positive, whilet, u are
negative). The high energy behavior is as follows:

(i) High α′s, fixed scattering angleϕ:

A
sl(2)
4 (s, t) → A0

4(s, t)
∼= 1

stu
e−α′a0s ,

a0 = 1

2

∣∣∣∣sin2 ϕ

2
logsin2 ϕ

2
+ cos2

ϕ

2
logcos2

ϕ

2

∣∣∣∣,
(4.1)t = −s sin2 ϕ

2
, u = −s cos2

ϕ

2
.

(ii) High α′s, fixed t :

A
sl(2)
4 (s, t) → A0

4(s, t)
∼= 1

stu
(−1)t s− α′

2 |t |

(4.2)× �(1− α′t
4 )

�(1+ α′t
4 )

.

It is useful to split the scattering amplitudeA
sl(2)
4 in

three factors:

A
sl(2)
4 (s, t) = A0

4 × A
pert
4 × AD-inst

4

(4.3)= 1

stu
eδ0+δpert+δD-inst.

Here A
pert
4 represents perturbative corrections to

Virasoro amplitude of the formg2k
s coming from

the term γrτ
1−r
2 in the expansion(2.10). The re-

maining factorAD-inst
4 represents the pure D-instant

contribution, terms proportional toe−2πwn/gs coming
Kr−1/2 in (2.10). They are given by

δpert= √
π

∞∑
k=1

(k − 1)!ζ(2k)

�(k + 3
2)

g2k
s

(4.4)× (
s̄2k+1 + t̄ 2k+1 + ū2k+1),
δD-inst = 4
√

π

∞∑
n,w,k=1

(
w

n

)k
πkgk

s

�(k + 3
2)

(4.5)

× Kk

(
2πwn

gs

)(
s̄2k+1 + t̄ 2k+1 + ū2k+1).

These series converge fors̄ < 1
gs

. In the region̄s � 1
gs

,
the leading behavior ofδpert is just given by the firs

term in the series(4.4), δpert∼= 2π2

9 (s̄3 + t̄ 3 + ū3).
Assuminggs � 1, one can use the asymptotic for

of the Bessel function(2.11). Then one obtains that i
this regionα′s � 1

gs
, the D-instanton contribution i

given by

δD-inst = 2s̄
√

πgse
− 2π

gs

∞∑
k=1

(πgs s̄
2)k

�(k + 3
2)

+ (s → t) + (s → u)

= 2 sign(s)e− 2π
gs eπgs s̄

2
Erf

(√
πgs s̄2

)
(4.6)+ (s → t) + (s → u),

where Erf is the error function. There are two regim
s̄ � 1/

√
gs , so thatπgs s̄

2 � 1, and 1/
√

gs � s̄ �
1/gs . In the first case, we get

δD-inst ∼= 8π

3
g3/2e

− 2π
gs

(
s̄3 + t̄ 3 + ū3),

(4.7)s̄ � 1√
gs

.

This is a positive contribution in the physical region
the Mandelstam parameters, but it is negligible co
pared toδ0 andδpert. In the second case, we get

δD-inst ∼= 2e
− 2π

gs
(
eπgs s̄

2 − eπgs t̄
2 − eπgs ū

2)
,

(4.8)
1√
gs

� s̄ � 1

gs

.

This is still tiny, since in this regionπgs s̄
2 � 2π/gs .

4.2. Region α′s = O( 1
gs

)

In this case one begins to see simple poles atα′s =√
m2 + n2/g2

s with n �= 0. Sincegs is small, there is
an accumulation of poles withm = 0,1,2, . . . near the
pole atn = 1, atn = 2, etc. These poles are not seen
a coarse grain plot of the amplitude, since they app
at special points.
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Fig. 1. δ(s, t) as a function ofs̄ = α′s
4 at fixed scattering angle

ϕ = π
2 for gs = 0.01. The straight line isδ0(s, t).

Fig. 2. The separate contributions toA
sl(2)
4 for gs = 0.01: (a) The

tree-level Virasoro partδ0 is a straight line. (b) The perturbative pa
δpert has cusps and is positive, giving an amplification effect. (c) T
D-instanton partδD-inst is still negligible ats̄ < 320.

Fig. 1 showsδ(s, t) (the logarithm of the ampli
tude, see(2.4)) as a function ofs for larges, t, u and
fixed scattering angleϕ = π

2 and forgs = 0.01. One
can see that at the beginning there is the straight
with negative slope as in(4.1), reproducing the usua
suppression of the Virasoro amplitude. Thenδ(s, t)

becomes positive, producing an amplification of
amplitude near̄s = 1/gs (seeFig. 2). As s is further
increased, the amplitude diminishes; then it is am
fied again near̄s = 3/gs .

The behavior can be understood as a combina
of the effects ofδ0 and δpert, since the D-instanton
contributionδD-inst is still negligible in this region for
gs = 0.01. Fig. 2 shows the two contributions sep
rately.

4.3. Region α′s � 1
gs

To examine the behavior in this region, we ag
consider the three contributionsδ0, δpert, δD-inst sepa-
rately.
Fig. 3. The perturbative partδpert computed at ultra high energie
It grows linearly withs.

The perturbative part(4.4) can be resummed ex
plicitly, with the result[3]:

δpert= −4
∞∑

m=1

√
m2

g2
s

− s̄2 arcsin
s̄gs

m

(4.9)+ (s → t) + (s → u).

Its high energy behavior is shown inFig. 3, which in-
dicates a behaviorδpert ∼= consts. More precisely, it is
bounded between two straight lines: 1.22s̄ < δpert <

1.69s̄. On the other hand, we have from(4.1):

(4.10)δ0 ∼= −α′a0s.

The pure D-instanton partδD-inst can be computed
from δD-inst = δ − δ0 − δpert, whereδ(s, t) andδpert are
computed from the convergent sums(3.1) and (4.9).
Numerically, one finds thatδD-inst oscillates between
negative and positive values, which are of the sa
order of magnitude asδ0, δpert. This gives rise to a
behavior which alternates strong suppression and
plification of the amplitude ass is increased.

The asymptotic behavior at very larges is unclear
since numerical precision is worst at highs. It is plau-
sible that atα′s � 1/gs there are higher genus corre
tions not contained inAsl(2)

4 which become important
Among the different types of corrections, there a
gravitational corrections corresponding to multiple e
change of gravitons[23,27]. In the present case of hig
energy and fixed scattering angle, the dominant ge
h contribution is known[22], though it is unclear how
to resum the full series[28].

We find remarkable that the product overSL(2,Z)

rotations produces a convergent, mathematically w
defined amplitude, and that the infinite D-instant
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sum produces significant changes in the high ene
behavior. It would be interesting to understand h
to incorporate higher genus corrections toA

sl(2)
4 in an

SL(2,Z) invariant way.
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