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Abstract

We investigate the different energy regimes in the conject@®4®, Z) invariant four graviton scattering amplitude that
incorporates D-instanton contributions in 10d type IIB superstring theory. We show that the infinite produgt @&et)
rotations is convergent in the whole complex plane. For high energies’s > 1, fixed scattering angle, and very weak
coupling g <« 1/(c’s), the four-graviton amplitude exhibits the usual exponential suppression. As the energy approaches
1/gs, the suppression gradually diminishes until there appears a strong amplification near a new pole coming from the
exchange of &p, q) string. At energieax’v < 1/\/g_s, the pure D-instanton contribution to the scattering amplitude is

found to produce a factoAD -inst ~ eX[Xch Tes s3) At energies 1./g; < o's < 1/gs, the D-instanton factor becomes

AD -inst ~ = exp2e” s o tmgas? ), @’ = 4. At higher energieg’s > 1/gs the D-instanton contribution becomes very important,

and one finds an oscillatory behavior which alternates suppression and amplification. This suggests that non-perturbative ef-
fects can lead to a high-energy behavior which is significantly different from the perturbative string behavior.

0 2005 Elsevier B.V. Open access under CC BY license,

1. Introduction ory, the source of non-perturbative corrections are the
D-instantons.
Computing the contribution of multiply-charged
A problem of interest is understanding what are p.jnstantons directly is complicated. However, com-
the concrete effects that non-perturbative corrections bining different pieces of information, Green and Gut-
can have in superstring theory, in particular, how perle[1] conjectured the exact modular function that
they affect the high-energy behavior of string am- multiplies ther? term in the type IIB effective action,
plitudes. In ten-dimensional type IIB superstring the- \yhich exactly incorporates the infinite set of multiply-
charged D-instanton corrections.
One of the constraints on the effective action used
E-mail address: jrusso@ecm.ub.€$.G. Russo). by Green and Gutperle is preciseBL(2, Z) invari-

0370-2693 [1 2005 Elsevier B.V. Open access under CC BY license
doi:10.1016/j.physletb.2005.01.087


https://core.ac.uk/display/82037756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:jrusso@ecm.ub.es
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

J.G. Russo / Physics Letters B 610 (2005) 152-158

ance. TheSL(2, Z) symmetry of type IIB superstring

theory requires that the effective action must be invari-

ant underdL(2, Z) transformations to all orders in the
a’ expansion. In particular, this implies that graviton
scattering amplitudes must 8Be(2, Z) invariant, since
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2. SL(2,Z) invariant amplitude

The four-graviton scattering amplitude for 10d
type IIB superstring introduced if2,3] is given by
the following formula:

there is a direct correspondence between the terms in

the effective action and the momentum expansion of A, =«?K A5 @ (s, 1),

the scattering amplitude.

In [2,3] an (2, Z) invariant four graviton ampli-
tude was constructed by applying a sim8e(2, Z2)
symmetrization of the tree-level string theory four
graviton amplitude. The construction follows essen-

tially the same rule used by Green and Gutperle to

symmetrize theR* term. It was conjectured that this

scattering amplitude incorporates the full series of

D-instanton corrections with the different D-instanton

numbers. This symmetric amplitude satisfies a number “r¢ = 4p+qr|

of consistency conditions. In particular, corrections of
perturbative origin appear with an integer poweg@.f
This is non-trivial and does not hold for any sym-
metrization. It is also consistent with the conjecture
that high derivative terms in the type Il effective action
of the form H*~4R* should not receive perturbative
contributions beyond genus[4]. By construction, it
reproduces the exad®* term proposed iff1], and it

can be viewed as a tree-level amplitude that accounts

for the exchange ofp, ¢) string state$5].

These(p, q) string states have a simple eleven-
dimensional origin[6]. Type 1IB superstring theory
is obtained from M-theory by compactification on a
2-torus and taking the zero area limit at fixed torus
moduli. In this limit, most membrane states get an

2.1)
AY@ (s, 1)

1
:EH

(r.q)

T(L—5p )T (L~ tp)T(L— upy)
FCA+sp) T A+ 1,)T A+ upg)’

(2.2)
a's . o't
S = -, = -,
P4 4lp +qr| P Ap +qr|
o'u
Spg +tpg +up; =0, (2.3)

wherep andq are relatively primer = C© +ig-tis

the usual coupling of type 1IB superstring theory, and
K is the same kinematical factor depending on the mo-
menta and polarization of the external states appearing
in the tree-level Virasoro amplitude (see, e[84])

K=MePPe5C PP Kapep ki) Kaperp (i),
1
Kapcp = —ZS“?ACHBD +--e.

The scattering amplitud@.2) can also be written as

infinite mass, except a certain set of states that repre-With

sent the(p, g) strings of uncompactified 10d type IIB

string theory. These states are precisely the states thag (s, r) = ZZ

contribute as simple poles in tH& (2, Z) invariant
amplitude of2,3].

In this work we investigate the properties of the
9 (2, Z) invariant amplitude. In particular, we factor-
ize the pure D-instanton contribution and study the
high energy limit.

The conjecture ofl] has withstood different tests
and has been generalized in different directiphs
19]. The idea of organizing type 1B perturbation the-
ory in 9.(2, Z) invariant way was also suggested by
[20,21] Scattering amplitudes at high energies incor-
porating higher genus effects were investigate 2y
and[23].

1
AZI(Z) (s,1) = — P00, (2.4)
stu
k+1/2
X, ¢ 2k + DM PE 100
port 2k+1
x (§2F 4 7R g,
1 _
E = —(x/S, = _a/t’
4 4
— 1 / = z 7
M:Zau, S+1t4+u=0, (2.5)

and E, (t) is the non-holomorphic Eisenstein series,
given by(Rer > 1)

E(@)=)

(p.q)

.
i

2 (2.6)
lp+qt|¥
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For very small coupling; <« 1, the terms withy # 0
are negligible in the sum(2.5), so that g% x
Ery1/2(t) — 1. One recovers the tree-level four-
graviton Virasoro amplitude,

Aq(s, 1) =K?K AY(s, 1),

AY(s, 1) = ——%l:D,

— @2.7)

So(s, 1) = 22 ;(zzkk—:-ll) :2k+1 + t2k+1 + u2k+1)
(2.8)

This gives

AYs, 1) = 1 T1-5Hrad-nra—a 29

stuTA+5FA+DHT A+a)

The scattering amplltude”(z) adds to the Virasoro

amplitude perturbative and non-perturbative contribu-
tions. They are seen explicitly by expanding the Eisen-
stein functions at large, = g; [25],

4r21/27rr

o] w r—1/2
+ WZ<‘)

x co2rwnt1)K,—1/2(2rwnty),
VAT —1/2)¢(2r — 1)
= T(r¢(2r) '

Using the asymptotic expansion for the Bessel func-
tion Ky—1/2,

E ()=t +y1"

(2.10)

K, _1/2(2mwntp)
1

— e—Zﬂwnrg
JAwnto
> 1 C(r +m)

(2.11)

P

— (4mwnt)" I'(r — m)m!’

we see that thé 1,2(r) terms in the amplitude are
of the form

k+1/2
gs+/ E11/2(7)

=1+ pipr28% + O (e72/%). (2.12)
Note that the non-perturbative contributions are

_2mm . .
O(e & ), wherem = wn is an integer number. The
coefficient Zrm is crucial in order to have a one-to-

one correspondence between these terms and instantorMé —
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contributions. It is a remarkable fact that the prod-
uct overS (2, Z) rotations automatically generates the
full series of D-instanton contributions.

We summarize the main properties/oj](z)

(1) It is SL(2, Z) invariant. This is explicit in the
Einstein framegw = gBl/ZgW, so thatsgp = gé/zs,
tg = gB/zt, Up = gB/Zu, andsg, tg, ug remain fixed
underSL(2, Z) transformations.

(2) It adds perturbativg;f" and non-perturbative

O(e_%) corrections to the Virasoro amplitude.

(3) It has simple poles in the—t—u channels at
Spg =N, tpg =N, upg =n,n=0,1,2,...correspond-
ing to a tree-level exchange of particles with masses

1
~o'M?=n|p+qr|. (2.13)

4
(4) Itreproduces the exact (proportionalig,» (1))
R* term conjectured ifil], containing a one-loop cor-
rection and the full D-instanton contributions. It also
reproduces the exact(5) Es/2(t) VAR term conjec-
tured in[18] (moreover, iM17] there was a calculation
of a genus one term iM% R* which was found propor-
tional to Z (3)¢(2), which differs from the prediction
of the ASZ(Z) amplitude only by a factor of 2).
The spectrun@2.13)is the spectrum ofp, ¢) string
stated5]:
M?=47T,,(Ng + Np)
Nr=NrL.

2
= /1P Tati(Nr+ No), (2.14)

This spectrum corresponds to the zero winding sec-
tor of the spectrum studied if6,26] for the nine-
dimensional type 1IB string theory. Settingg =
C© =0, the full spectrum irD = 9 is given by

2 2
n
o2 (P2 + q_2> +
Rio 8s

2 [ 5. 4
+ —.[P°+ = (Nr + Ni),
o g?

Ng — Np = nwiy,

M§ =

(2.15)

where R1g is the radius of the compact tenth dimen-
sion. In the limitR19 — oo, one must set, as usual, the
winding numberwig to zero to have finite mass. The
term proportional to /1Rfo becomes the continuous
10d component of the momentumy, so thatM? =
p%o and one gets Eq2.14) It is important to



J.G. Russo / Physics Letters B 610 (2005) 152-158

note that a charged D string has mags= O(1/gs),
as seen fron{2.15) The neutral(p, ¢) strings of ten
dimensions have masses given(Byl4)of orderM =
0(1/./gs) for g # 0. This is why the product over
S.(2, Z) rotations produces polesats = O(1/g;).

The collection of state2.14) are the only quan-
tum states of M-theory compactified on a 2-torus that
remain of finite mass after taking the zero-area limit of
the torus that leads to ten-dimensional type IIB string
theory[3]. The scattering amplitudﬁfll(z) can thus be
viewed as a tree-level scattering amplitude where all
these states are exchanged.

The scattering amplitudaj’(z) does not describe
loop effects such as discontinuity cuts ($8¢.7] for
discussions). In particular, it should not be a good ap-
proximation of the full scattering amplitude gt =
0(1) anda’s large. It represents an improvement of
the Virasoro amplitude ag, <« 1 (or at the S-dual
situation, g, > 1), where D-instanton (and some per-
turbative) contributions have been incorporated.

The exchange ofp, ¢) string states is clear from
the pole structure of2.2). It becomes manifest by
writing

M,%m+s
Y. log 5 —
(m,n)#(0,0)

1
§==

mn

+ (=0 + (s —un), (2.16)
where
o' M2, = 4Am + nt|.

mn

This generalizes the analogous formula for the Vira-
soro amplitude, witldg written in the form

9]
do= Z a(m),

m=1

2

m

M2

m

_z+(s—>t)+(s—>u),

S(m) = Iog

o' M2 = 4m. (2.17)
Now the sum in(2.16) contains not only the terms
o' M2 = 4m, but all the termsM?2 , representing all
(p, q) string states.
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3. Convergence properties
The scattering amplitudﬂjf(z) is defined through
an infinite product(2.2) over a pair(p, g) of rela-
tively prime integers, i.e., integetg, ¢) having great-
est common divisor equal to one. An important issue
is what are the convergence properties of this product.
To study the convergence, we write

8(s, 1) = Z log

(p.9)
+ (s —=1)+ (s = u).

(1 —spg)
LA+ spg)

(3.1)

We have to look at the behavior of terms with large
p,q. For any givens, ¢, u, there are positive integers
(po, go) such that all terms witlp > po, g > go have
|p+qt|> s, t,uands,y, tpq. up, Small. These terms
have the behavior

T(L—5p) T (L — tp)T(L = upg)

F(A+sp)C A+ 1p)T (L +upg)

- 2®

~ 3p+gr®
where we have uset4-¢ +u = 0. The sum ovep, ¢
of | p +¢7|~2 is known to be convergefi25] (in par-
ticular, the full sum ovem, g of |p + gt|~2 defines
E32(1), see(2.6). Therefore the sum i(B.1)is con-
vergent. Since we have made no assumption about
the serieg3.1) has infinite radius of convergence.

We have also investigated the convergence numer-
ically, by explicit calculation of the infinite product
in different sectors of the complex planesand ¢,
for generic values of the coupling As an additional
check, we have also computed the amplitude in the
representatiorf2.16) obtaining the same (finite) nu-
merical results.

Note that the serig®.5)defining the amplitude has
a finite radius of convergence if we writg2k + 1) =
3, m~%~1and perform first the sum ovér The sum
overk is the series of a logarithm and it diverges when
s, t or u meet the first pole. The same of course applies
for the Virasoro amplitude written in the for(@.8).

(B +3+id), (3.2)

4. Approach to the different scales

Let us assume; <« 1, and examine the differ-
ent scales that appear as the center-of-mass energy is
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increased from zero. We sét@ = r; = 0, so that
T=iTp= igs_l.

4.1. Regiono’'s < g%

Fora's < 1, one hasﬁl(z)(s, 1) — ==, and one
recovers the supergravity tree-level four graviton am-
plitude.

In general, for any’s < gi one hasA @ (s, 1) —

Ag(s,t), one recovers the Virasoro amplitud2.9)

with its usual properties: simple polessatn, r = n,

i = n, with n positive (recall that in the physical re-

gion of elastic scattering is positive, whilez, u are

negative). The high energy behavior is as follows:
(i) High o's, fixed scattering angle:

1
AY P (s, 1) — AQ(s, 1) = —e 05,
stu

1
ao= > sinzglogsinzg+coszglogco§§ ,
t:—ssinzg, u:—sco§g. (4.1)
(i) High os, fixed:
1 o
Asl(2) ot A0 )= (=1 =5t
g (s, 1) = Au(s, 1) Sm( )'s
ra-— et
X ( ‘}z) (4.2)
I+ %)

Itis useful to split the scattering amplitudé‘l(z) in

three factors:
AP (s, 1) = A x AR ARt

— 1 e5o+5pert+5D-inst.
stu

(4.3)

Here Aﬁen represents perturbative corrections to the
Virasoro amplitude of the formg% coming from
the term yrrzl_’ in the expansion(2.10) The re-
maining factorAE'inSt represents the pure D-instanton
contribution, terms proportional & 27*"/¢ coming
K,_1/2in (2.10) They are given by

2 (k—DIC(2k) o
apert=ﬁ27 5
k=1 F(k—i—:—;)

X (§2k+1+lfzk+l+lz2k+l), (44)
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S w\* rrkgk
Sp-inst =4/ Z <;> l"(k——i—v:’))
2

n,w,k=1

« K (2” w”) (5241 4 2Ly G241,
8s
(4.5)

These series converge fox L. In the regiors « L,
the leading behavior afpert issjust given by the ‘%frst
term in the serieg4.4), Spert = 2L92(§3 +734+ i),

Assumingg; < 1, one can use the asymptotic form
of the Bessel functiof2.11) Then one obtains that in
this regiona’s « gi the D-instanton contribution is
given by

5 B i (552
D-inst = £5+/TT 8s€ &
ins| s ] Tk + %)

+ (G —=>1t)+(—u)

— 2sigris)e” & e85 Erf(\/@)

+ (=10 + (6 —un), (4.6)

where Erf is the error function. There are two regimes,
§ < 1/./8, so thatrgs2 < 1, and ¥/g; <5 <
1/gs. In the first case, we get

~ 87 35

2 - _
3D—inst=?g e s (534_;34_”3),

§ K ! 4.7)
N . .
Ves
This is a positive contribution in the physical region of
the Mandelstam parameters, but it is negligible com-
pared toSo anddpert. In the second case, we get

Op-inst =

)

_t 2 72 72
¢ 3s (eng_d _engst — oT8sU )

_ 1
L5 —.
8s

NG (4.8)

This is still tiny, since in this regiom g;52 < 27/g;.
4.2. Regiona's = O(g—{)

In this case one begins to see simple poles at=
Vm?+n?/g2 with n # 0. Sinceg, is small, there is
an accumulation of poles with =0, 1, 2, ... near the
pole atn = 1, atn = 2, etc. These poles are not seen in
a coarse grain plot of the amplitude, since they appear
at special points.
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Fig. 1. 8(s,t) as a function ofs = at fixed scattering angle
= 7 for gg = 0.01. The straight line igg(s, 7).

800
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300

100
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-200

-400

Fig. 2. The separate contributions@l(z) for gg = 0.01: (&) The
tree-level Virasoro pady is a straight line. (b) The perturbative part
Sperthas cusps and is positive, giving an amplification effect. (c) The
D-instanton parfp-inst is still negligible ats < 320.

Fig. 1 showsé (s, t) (the logarithm of the ampli-
tude, sed€2.4)) as a function o for larges, ¢, u and
fixed scattering angle = % and forg; = 0.01. One

can see that at the beginning there is the straight line

with negative slope as i(%.1), reproducing the usual
suppression of the Virasoro amplitude. Thé@, ¢)

becomes positive, producing an amplification of the

amplitude neas = 1/g, (seeFig. 2). As s is further

increased, the amplitude diminishes; then it is ampli-

fied again neaf = 3/g;.

The behavior can be understood as a combination

of the effects ofég and dpert, Since the D-instanton
contributionsp-inst is still negligible in this region for
gs = 0.01. Fig. 2 shows the two contributions sepa-
rately.

4.3. Regiona's > g%

To examine the behavior in this region, we again
consider the three contributios, Spert, Sp-inst S€pa-
rately.
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Fig. 3. The perturbative paspert computed at ultra high energies.
It grows linearly withs.

The perturbative par{4.4) can be resummed ex-
plicitly, with the result[3]:

o0 2 -
m - . 58
— 2
5pert— —42 7 — S arcsin P
m=1 S

(4.9

Its high energy behavior is shown kig. 3, which in-
dicates a behaviatpert = consts. More precisely, it is
bounded between two straight lines22s < Spert <
1.69. On the other hand, we have fraih.1).

+ (6 —=>1t)+(s—u).

(4.10)

The pure D-instanton pasb-inst can be computed
from 8p-inst = 6 — 80 — Spert, Wheres (s, 1) anddpercare
computed from the convergent surgg1) and (4.9).
Numerically, one finds thaip-inst OScillates between
negative and positive values, which are of the same
order of magnitude aso, dpert. This gives rise to a
behavior which alternates strong suppression and am-
plification of the amplitude asis increased.

The asymptotic behavior at very largas unclear
since numerical precision is worst at highlt is plau-
sible that at’s >> 1/g, there are higher genus correc-
tions not contained imzl(z) which become important.
Among the different types of corrections, there are
gravitational corrections corresponding to multiple ex-
change of gravitonR3,27] In the present case of high
energy and fixed scattering angle, the dominant genus
h contribution is knowrj22], though it is unclear how
to resum the full serie8].

We find remarkable that the product ov#&r(2, Z)
rotations produces a convergent, mathematically well
defined amplitude, and that the infinite D-instanton

80 = —daps.



158

J.G. Russo / Physics Letters B 610 (2005) 152-158

sum produces significant changes in the high energy [10] E. Kiritsis, B. Pioline, Nucl. Phys. B 508 (1997) 509, hep-

behavior. It would be interesting to understand how

to incorporate higher genus correctionsAlfﬁ(z) inan
9.(2, Z) invariant way.
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