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1. Introduction

In this paper we will consider real and complex vector bundles which are modules over bundles of quaternion algebras.
Our interest in such bundles began when we were working on the account [5] of obstruction theory on 8-manifolds. In
the last sections of that paper we examined necessary and sufficient conditions for an 8-dimensional real vector bundle
over an 8-manifold to have an almost quaternionic structure (which means that its structure group admits a reduction
to Sp(1)×Z2 Sp(2)). For this we needed some facts concerning bundles of quaternion algebras and K -theory of their modules.
In the present paper we establish not only these facts and their generalizations (Theorems 3.1 and 5.8, Proposition 5.3), but
we make a systematic study of algebraic and topological properties of modules over quaternion bundles.

Following classical ring theory we study Morita equivalence of bundles of quaternion algebras. For a given bundle of
quaternion algebras we compute the Grothendieck group of left modules as a classical K O-group. For modules over a bundle
of quaternion algebras we define characteristic classes and show that they behave as well as the Chern classes for complex
vector bundles. We also characterize those complex vector bundles which are bundles over quaternion algebras. In the final
section we examine bundles of complexified quaternion algebras and their Morita equivalence.

Topologically, our results extend the results obtained by Atiyah and Rees in [2] on complex quaternionic vector bundles
and their K -theory and by Marchiafava and Romani [13–15] concerning characteristic classes. Geometrically, there are close
connections to quaternionic geometry. The tangent bundles of Kaehler and almost hyper-Kaehler manifolds are modules over
bundles of quaternion algebras (see Remark 1.6). The characteristic classes have been used in [18] to compute, in particular,
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the index of Salamon’s elliptic complex of a quaternionic manifold. A possible application in algebraic geometry is outlined
in Remark 6.9.

All bundles will be considered over a compact Hausdorff space X . Since the structure group of a bundle of quaternion
algebras has to be Aut(H) = SO(3), every such bundle of quaternion algebras over X is of the form R ⊕ α where R is a
trivial real line bundle and α is an oriented 3-dimensional orthogonal vector bundle over X .

Definition 1.1. Let α be an oriented 3-dimensional vector bundle over X with a positive-definite inner product. We write Hα

for the bundle of quaternion algebras R1 ⊕ α with the multiplication given in terms of the inner product 〈−,−〉 and vector
product × by

(s, u) · (t, v) = (
st − 〈u, v〉, sv + tu + u × v

)
.

Alternatively, thinking of the group of automorphisms Aut(H) of H = R1 ⊕ Ri ⊕ Rj ⊕ Rk as the special orthogonal group
SO(3) of R3 = im H, we have

Hα = P ×Aut(H) H and α = P ×SO(3) R3,

where P → X is the principal SO(3) = Aut(H)-bundle given by α.

It is clear that different inner products on α define isomorphic bundles of quaternion algebras. Conjugation − : H → H

gives an isomorphism from H to the opposite algebra Ho compatible with the action of Aut(H). Hence Hα and Ho
α are

isomorphic as bundles of algebras. Notice that − : α → α (that is, −1) is an orientation-reversing isomorphism.

Definition 1.2. Let ξ be a real vector bundle over X . We say that ξ is an Hα-bundle if it has a left Hα-module structure,
that is, a bundle map Hα ⊗R ξ → ξ that restricts to a module structure in each fibre.

Remark 1.3. An Hα-bundle ξ has a canonical orientation. To orient the fibre ξx at x ∈ X we choose a basis e1, . . . , en as
Hαx -vector space and choose an oriented orthonormal basis i, j,k of αx . Then e1, ie1, je1, ke1, . . . , en , ien , jen , ken orients ξx .
In particular, the orientation of Hα is determined by the orientation of α.

Remark 1.4. If ξ has an Hα-structure, we may (using a partition of unity to glue together local metrics) choose a positive-
definite real inner product on ξ such that the structure homomorphism

ρ : Hα → EndR(ξ)

is a ∗-homomorphism, that is, ρ(r)∗ = ρ(r) for r ∈ Hα .

Given a 4n-dimensional real inner product space V with a left H-module structure compatible, as above, with the inner
product, we write O(V ) and Sp(V ) for the orthogonal and symplectic groups of V and define

TSp(V ) = {
g ∈ O(V )

∣∣ g(rv) = κ(r)g(v) for some κ ∈ Aut(H) and all v ∈ V , r ∈ H
}
.

(The ‘T’ is intended to indicate ‘twisted’.) It is evidently a subgroup of the special orthogonal group SO(V ) and we have an
extension

1 → Sp(V ) → TSp(V ) → Aut(H) → 1.

Since automorphisms of H are inner, we may equivalently describe TSp(V ) as the subgroup Sp(1) · Sp(V ) = (Sp(1) ×
Sp(V ))/{±(1,1)} of orthogonal maps of the form v 	→ a · g(v), where a ∈ Sp(1) ⊆ H and g ∈ Sp(V ). The group TSp(V )

acts (orthogonally) on H and on V .

Lemma 1.5. Let ξ be a 4n-dimensional orthogonal real vector bundle. Then ξ admits an Hα-structure for some α if and only if the
structure group of ξ reduces from O(Hn) to TSp(Hn).

Proof. If the structure group of ξ reduces from O(Hn) to TSp(Hn), there is a principal TSp(Hn)-bundle P → X such that
ξ = P ×TSp(Hn) Hn . Then we have an oriented orthogonal 3-dimensional vector bundle α = P ×TSp(Hn) im H, with an asso-
ciated quaternion algebra Hα = P ×TSp(Hn) H having an obvious left action on ξ . The real vector space Hn has a canonical
orientation as a left H-module. Then the choice of a TSp(Hn)-principal bundle gives orientations to the bundles ξ and α
such that the orientation of ξ is canonical with respect to Hα-structure.

If ξ admits an Hα-structure for some α, then the bundle of frames

Fr(ξ) = {
f ∈ Hom

(
Hn, ξ

) ∣∣ f is a real isometry, f (rv) = ρ(r) f (v)

for some ρ ∈ Iso(H,Hα) and all v ∈ Hn, r ∈ H
}
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is a principal TSp(Hn)-bundle. As above, ξ = Fr(ξ) ×TSp(Hn) Hn and Hα = Fr(ξ) ×TSp(Hn) H. Hence the structure group of ξ

reduces from O(Hn) to TSp(Hn). �
Remark 1.6. In quaternionic geometry [16,17] a smooth 4n-manifold M is said to be almost quaternionic if its tangent
bundle is associated to a principal GL(n,H) · Sp(1)-bundle. After a choice of compatible metric this principal bundle reduces
to a principal TSp(n)-bundle P . The sphere bundle S(α) of the vector bundle α = P ×TSp(n) im H is called the twistor space
of M .

Considering H as a 2-dimensional complex vector space with multiplication by complex numbers from the right and
with the standard left action of Sp(1), denote by S2

C
H the second symmetric power with the induced action of Sp(1). One

can show that α ⊗ C is isomorphic to the complex vector bundle S2 H = P ×TSp(n) S2H. The isomorphism is induced by the
Sp(1)-invariant homomorphism of real representations ϕ : im H → S2H, ϕ(u) = j ⊗ u − 1 ⊗ uj. Formally, S2 H is the second
symmetric power of a vector bundle H . Such a bundle H exists globally if w2(α) = 0. Then α is associated to a principal
Spin(3) = SU(2)-bundle Q , H = Q ×SU(2) H, and the twistor space is the complex projective bundle CP (H) [16].

As a specific example we have the quaternionic projective space HP (Hn+1) where α is the Lie algebra bundle.

For any Hα-vector bundle ξ one can form the associated projective bundle, which we denote by Hα P (ξ).

2. Quaternionic line bundles and Morita equivalence

Since TSp(H) = SO(4), every oriented 4-dimensional real vector bundle μ has an Hα-structure for some α. In this section
we describe all such structures and their properties and define the notion of Morita equivalence of bundles of quaternion
algebras.

Recall the double covers

Sp(1) × Sp(1) → SO(4) = SO(H)
(ρ+,ρ−)−−−−−→ SO(3) × SO(3)

given by mapping (a,b) ∈ Sp(1) × Sp(1) to the map g : v 	→ avb in SO(H) and g to (ρ+(g),ρ−(g)) = (ρ(a),ρ(b)), where
ρ : Sp(1) → SO(3) maps a to v 	→ ava (the adjoint representation).

This leads to a complete description of the twisted quaternionic line bundles.

Proposition 2.1. Let μ be an oriented 4-dimensional orthogonal vector bundle over X. Write α = ρ+(μ) and β = ρ−(μ). Then μ is
an Hα-line bundle and a right Hβ -line bundle, and there is a canonical isomorphism (of bundles of algebras)

Hα ⊗R Ho
β = EndR(μ).

Conversely, if α is an oriented orthogonal 3-dimensional vector bundle and μ is an orthogonal Hα-line bundle, then μ acquires an
orientation under which ρ+(μ) is identified with α and β = ρ−(μ) is characterized by an isomorphism (of bundles of algebras)

Ho
β = EndHα (μ).

Moreover, we have

w2(α) = w2(β) = w2(μ).

Proof. Let μ be an oriented 4-dimensional orthogonal vector bundle. There is a principal SO(H) = TSp(1)-bundle P such
that μ = P ×SO(H) H. From the definition, Hα = P ×ρ+ H and Hβ = P ×ρ− H, where ρ+ and ρ− determine the respective
actions of TSp(1) on H. Then μ is a left Hα-line and a right Hβ -line. Next

EndR(μ) = P ×SO(H) EndR(H),

where the action of SO(H) on EndR(H) is (a,b) · f : v 	→ af (avb)b. Similarly,

Hα ⊗R Ho
β = P ×ρ+⊗ρ−

(
H ⊗R Ho),

where ρ+ ⊗ ρ− acts on H ⊗ Ho by (a,b) · (h1 ⊗ h2) = ah1a ⊗ bh2b. Since the isomorphism of algebras H ⊗R Ho → EndR(H)

given by h1 ⊗ h2 	→ (v 	→ h1 vh2) is invariant under the actions of SO(H) described above, we get Hα ⊗ Ho
β = EndR(μ).

Conversely, suppose that μ is an orthogonal Hα-line. On μ consider the canonical orientation given by the Hα-structure.
As in the proof of Lemma 1.5 we can construct a principal TSp(1)-bundle P such that μ = P ×TSp(1) H and Hα = P ×ρ+ H.
(This gives μ the canonical orientation with respect to Hα .) Hence α = ρ+(μ).

Further, we have the monomorphism of algebras Ho
β ↪→ Hα ⊗R Ho

β = EndR(μ). Its image is EndHα (μ). Consequently,
Ho

β = EndHα (μ).
Without loss of generality we can assume that X is a finite CW-complex. Every 4-dimensional real vector bundle μ over

the 3-skeleton of X has a section. If it is an Hα-line and a right Hβ -line, then over the 3-skeleton μ = Hα = R ⊕ α and
μ = Ho

β = R ⊕ β . Consequently, w2(μ) = w2(α) = w2(β). �
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Lemma 2.2. The vector bundles α and β defined in the previous proposition are isomorphic to the bundles of eigenspaces of the Hodge
star operator on Λ2μ corresponding to the eigenvalues 1 and −1, respectively, and consequently

α ⊕ β = Λ2μ.

Proof. On H consider the real inner product 〈u, v〉 = Re(uv). The inner product enables us to define the isomorphism of
real vector spaces H ⊗ H ∼= EndR(H) : h1 ⊗ h2 	→ (v 	→ 〈h1, v〉h2). Under this isomorphism the space Λ2H maps onto the
subspace of all skew-symmetric endomorphisms on H. Since the left multiplication Lh and the right multiplication Rh by
a pure imaginary quaternion h are skew-symmetric endomorphisms of H, we get two inclusions Λ+ : im H → Λ2H and
Λ− : im H → Λ2H which are isometries (up to a multiple). It is easy to show that

Λ+(h) = 1 ∧ h + i ∧ hi + j ∧ hj + k ∧ hk, Λ−(h) = 1 ∧ h + i ∧ ih + j ∧ jh + k ∧ kh.

Put ω = 1 ∧ i ∧ j ∧ k. Then one can check that

Λ+(h1) ∧ Λ+(h2) = 8〈h1,h2〉ω, Λ−(h1) ∧ Λ−(h2) = −8〈h1,h2〉ω, Λ+(h1) ∧ Λ−(h2) = 0,

which means that Λ+(im H) and Λ−(im H) correspond to the perpendicular eigenspaces for eigenvalues 1 and −1, respec-
tively, of the Hodge star operator. Hence we get an isomorphism Λ+(im H) ⊕ Λ−(im H) = Λ2H.

We have associated vector bundles Λ2μ = P ×SO(H) Λ2H, α = ρ+(μ) = P ×ρ+ im H, β = ρ−(μ) = P ×ρ− im H. Since the
inclusions Λ+ , Λ− are invariant with respect to actions of SO(H) given on im H by ρ+ and ρ− , respectively, we may define
Λ+ : α → Λ2μ, Λ− : β → Λ2μ. The considerations above imply that Λ+(α) ⊕ Λ−(β) = Λ2μ. �
Corollary 2.3. Every 4-dimensional oriented orthogonal vector bundle μ is a (left) module over just two (up to orientation preserving
isomorphism) quaternion algebras, namely Hα and Hβ where α = ρ+(μ) and β = ρ−(μ). The orientation of μ is canonical with
respect to the Hα-structure and is not canonical with respect to the Hβ -structure. If −μ is the same vector bundle with opposite
orientation then

ρ+(−μ) = ρ−(μ), ρ−(−μ) = ρ+(μ).

Proof. An orientation of μ is determined by the choice of the SO(H)-principal bundle P such that μ = P ×SO(H) H and by
the standard orientation of H. The standard orientation of im H gives an orientation to α = P ×ρ+ im H and β = P ×ρ− im H.
Hence μ has the canonical orientation as an Hα-module which coincides with the canonical orientation of μ as a right Hβ -
module (given by the multiplication by i, j, k from the right). Using the previous proposition there are no other (up to
orientation preserving isomorphisms) left and right quaternion structures on μ with compatible orientations. Since the left
action of Hβ is given by the right action of Hβ and by the orientation reversing conjugation − : Hβ → Hβ , the orientation
of μ is not canonical with respect to the left Hβ -structure. This implies the formulas. �
Lemma 2.4. The first Pontryagin classes of α and β are

p1(α) = p1(μ) + 2e(μ), p1(β) = p1(μ) − 2e(μ).

Proof. Let H be the Hopf Hα-line bundle over the quaternionic projective bundle Hα P (H∞
α ). Since any Hα-line bundle μ

is a summand of a trivial Hα-bundle over X , there is a section s : X → Hα P (H∞
α ) such that μ = s∗(H). So it is enough

to check the formulas for the bundle H . By the Leray–Hirsch theorem, H∗(Hα P (H∞
α )) = H∗(X)[e], where e is the Euler

class of H . Further, the pullback of H to the sphere bundle S(H∞
α ) is Hα . So we have p1(H) = p1(Hα) + ae, where a ∈ Z.

Restricting H to a point in X we get Hopf bundle over HP∞ and determine that a = −2. �
Definition 2.5. Two bundles Hα and Hβ are said to be Morita equivalent if there is a 4-dimensional real vector bundle μ
and an isomorphism of bundles of algebras

Hα ⊗R Ho
β

∼= EndR(μ).

Such an isomorphism defines a morphism in the following category M(X). The objects of M(X) are the oriented 3-
dimensional vector bundles over X . A morphism β → α is represented by an isomorphism Hα ⊗R Ho

β → EndR(μ), two such
isomorphisms Hα ⊗ Ho

β → EndR(μ) and Hα ⊗ Ho
β → EndR(μ′) being regarded as the same if μ and μ′ are isomorphic

as Hα ⊗ Ho
β -modules. The identity α → α is given by μ = Hα . Composition is the tensor product: Hα ⊗ Ho

β → EndR(μ)

and Hβ ⊗ Ho
γ → EndR(ν) compose to Hα ⊗ Ho

γ → EndR(μ ⊗Hβ
ν). The category M(X) is a groupoid with the inverse

of Hα ⊗ Ho
β → EndR(μ) given by the dual Hβ ⊗ Ho

α → EndR(μ∗) (or by Hβ ⊗ Ho
α → EndR(μ), using the isomorphisms

Hα → Ho
α and Hβ → Ho and the inner product on μ).
β
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Morita equivalence is usually defined as an equivalence of categories of left modules. In our case both definitions are
equivalent (in Proposition 2.6 we prove one direction) and we have chosen the one which is more suited to our purposes.

Proposition 2.6. An isomorphism Hα ⊗ Ho
β

∼= EndR(μ) determines an equivalence from the category of Hβ -modules to the category
of Hα-modules given by η 	→ μ ⊗Hβ

η.

Proof. This is a consequence of the fact that M(X) is a groupoid. �
There is a topological criterion for Morita equivalence:

Theorem 2.7. Two bundles Hα and Hβ are Morita equivalent if and only if w2(α) = w2(β).

Proof. The commutative diagram

SO(4)

(ρ+,ρ−)
Λ2

SU(4)
∼= Spin(6)

SO(3) × SO(3) SO(6)

implies that the double cover Spin(6) → SO(6) pulls back, under the inclusion of SO(3) × SO(3) in SO(6), to (ρ+,ρ−) :
SO(4) → SO(3) × SO(3). Hence the obstruction to lifting from SO(3) × SO(3) to SO(4) is given by the sum of the second
Stiefel–Whitney classes. �
Remark 2.8. In [9] the orthogonal Brauer group of a space X was defined as the quotient of the monoid of all bundles of
simple central R-algebras over X (with a multiplication induced by the tensor product) by the submonoid of all bundles of
the form EndR(μ) where μ is a real vector bundle over X . The inverse is given by the opposite algebra. Two bundles Hα

and Hβ are Morita equivalent if and only if they determine the same element of the Brauer group BrO(X). There is a group
isomorphism

BrO(X) → H0(X;Z/2) ⊕ H2(X;Z/2),

in which Hα corresponds to (1, w2(α)).

If α and β are Morita equivalent, we can describe all the morphisms from α to β in M(X) from the knowledge of one
of them.

Proposition 2.9. Given an isomorphism Hα ⊗ Ho
β

∼= EndR(μ) and a real line bundle δ we use the isomorphism EndR(μ) →
EndR(δ ⊗ μ) defined by the tensor product with the identity on δ to get Hα ⊗ Ho

β
∼= EndR(δ ⊗ μ). This defines a bijection from

H1(X;Z/2) to HomM(X)(β,α). In particular, the automorphism group AutM(X)(α) is isomorphic to H1(X;Z/2).

Proof. Isomorphisms Hα ⊗ Ho
β

∼= EndR(μ) and Hα ⊗ Ho
β

∼= EndR(μ′) determine an isomorphism f : EndR(μ) → EndR(μ′).

Since every automorphism of EndR(R4) is inner, we can define δ as the line bundle with the fibre at x generated by an
isomorphism g : μx → μ′

x such that fx(a) = gag−1. Then the map g ⊗ v 	→ g(v) gives an isomorphism δ ⊗ μ → μ′ . �
Corollary 2.10. For a given 4-dimensional oriented orthogonal vector bundle μ the bundles α = ρ+(μ) and β = ρ−(μ) are isomor-
phic if and only if μ has a 1-dimensional (not necessarily trivial) summand.

With respect to the canonical orientations of α and β given by μ, this isomorphism can only be orientation reversing.
The existence of a 1-dimensional summand is equivalent to the existence of an orientation reversing involution of μ.

Proof of Corollary 2.10. If Hα ⊗ Ho
α

∼= EndR(μ), then by the previous proposition μ ∼= δ ⊗ Hα for some δ which is thus a
subbundle of μ. Conversely, if an Hα-bundle μ has a subbundle δ, then the multiplication gives an isomorphism μ → δ⊗Hα

which means that ρ+(μ) = ρ+(Hα) = ρ−(Hα) = ρ−(μ). �
In Section 4 we will need

Lemma 2.11. Let α, β , γ be oriented 3-dimensional vector bundles. Suppose that Hα ⊗ Ho
β

∼= End(μ), Hβ ⊗ Ho
γ

∼= End(ν) so that
Hα ⊗ Ho

γ
∼= End(μ ⊗Hβ

ν). Give μ, ν and μ ⊗Hβ
ν the canonical orientations. Then the Euler class of μ ⊗Hβ

ν is
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e(μ ⊗Hβ
ν) = e(μ) + e(ν).

In other words, the Euler class gives a functor from M(X) to the group H4(X;Z).

Proof. As in the proof of Lemma 2.4 we use fibrewise classifying spaces. Let PHβ(H∞
β ) be the right quaternion projective

bundle with the Hopf bundle H1 (a right Hβ -line bundle) and let Hβ P (H∞
β ) be the left quaternion projective bundle with

the left Hopf bundle H2. Then there are sections s1 : X → PHβ(H∞
β ) and s2 : X → Hβ P (H∞

β ) such that μ = s∗
1(H1) and ν =

s∗
2(H2). So it is enough to look at the fibre product PHβ(H∞

β )×X Hβ P (H∞
β ) and to show that e(H1 ⊗Hβ

H2) = e(H1)+e(H2).
Now H∗(PHβ(H∞

β ) ×X Hβ P (H∞
β )) = H∗(X)[e1, e2], where ei = e(Hi). But e(H1 ⊗ H2) = ae1 + be2 with a,b ∈ Z: it does

not involve any element of H∗(X) since the restriction of H1 ⊗Hβ
H2 to X is Hβ with the Euler class equal to zero. So one

can calculate by restricting to the two factors PHβ(H∞
β ) and Hβ P (H∞

β ) (using the inclusion of X as PHβ(H1
β) or Hβ P (H1

β)).
The class restricts to e1 and to e2. Hence a = b = 1. �
3. K -theory

We define K Sp0
α(X) to be the Grothendieck group of (left) Hα-bundles over the compact Hausdorff space X . The aim of

this section is to compute K Sp0
α(X) as a classical K O-group. Let Xα stand for the Thom space of α.

Theorem 3.1. There is an isomorphism

K Sp0
α(X) → K O0(Hα) = K̃ O−1(Xα

)

given by mapping the class [ξ ] to the element represented in K O-theory with compact supports by the linear map

x 	→ vx : π∗ξ → π∗ξ

over v ∈ Hα , where π : Hα → X is the projection.

Remark 3.2. The K -groups give a functor α 	→ K Sp0
α(X) from M(X) to the category of abelian groups arising from the

functor μ⊗Hβ
described in Proposition 2.6. So a Morita equivalence Hα ⊗ Ho

β → EndR(μ) determines an isomorphism

K Sp0
β(X) → K Sp0

α(X), which translates into the Bott isomorphism

K O0(Hβ) → K O0(Hα)

given by an associated spin structure for the virtual real vector bundle Hα − Hβ = α − β .

We shall derive Theorem 3.1 from the following two propositions. The first is the Karoubi–Segal periodicity theorem as
given in [6, Theorem 6.1]. See also [1, Theorem 3.3] and [12, pages 193–194]. In the statement L is the representation R

of Z/2 with the action of the generator as multiplication by −1.

Proposition 3.3. Let ζ be a real vector bundle over X. Then there is an isomorphism from the Grothendieck group K OC(ζ )(X) of graded
C(ζ )-modules, over the Clifford algebra C(ζ ) of a positive-definite inner product on ζ , to the Z/2-equivariant K O-group of the total
space of the Z/2-equivariant vector bundle L ⊗ ζ :

K OC(ζ )(X) → K O0
Z/2(L ⊗ ζ ),

given by mapping the class of a graded (left) C(ζ )-module μ = μ0 ⊕ μ1 to the element represented by the linear map

x 	→ vx : π∗μ0 → L ⊗ π∗μ1

over v ∈ L ⊗ ζ , where π : ζ → X is the projection.

Suppose that an orthogonal vector bundle ζ has dimension 4k and is oriented. Then we may define a central invo-
lution ωx ∈ C0(ζx) by ωx = e1 · · · e4k , where e1, . . . , e4k is any positively oriented orthonormal basis of the fibre ζx at
x ∈ X . Then any graded C(ζ )-module μ = μ0 ⊕ μ1 splits as a direct sum of two graded submodules μ+ = μ+

0 ⊕ μ+
1

and μ− = μ−
0 ⊕ μ−

1 such that ωx acts as identity in the fibres of μ+
0 and μ−

1 , and as multiplication by −1 in the fibres
of μ−

0 and μ+
1 . We will say that μ is positive if μ = μ+ , and negative, if μ = μ− . Then the Grothendieck group of graded

C(ζ )-modules splits as a sum of the Grothendieck groups of positive and negative modules K O+
C(ζ )(X) ⊕ K O−

C(ζ )(X). The

periodicity theorem ([6, Proposition 6.3] or [7, Proposition 3.1]) gives an isomorphism between K O0
Z/2(L ⊗ ζ ) and K O0

Z/2(ζ ).
This, combined with the Karoubi–Segal theorem, establishes
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Proposition 3.4. Let ζ be an oriented real vector bundle over X with dimension a multiple of 4. Then there is an isomorphism from the
Grothendieck group of positive C(ζ )-modules to the K O-theory of the total space of ζ

K O+
C(ζ )(X) → K O0(ζ ),

given by mapping the positive C(ζ )-module μ to the linear map

x 	→ vx : π∗μ0 → π∗μ1

over v ∈ ζ .

Proof of Theorem 3.1. We apply the previous proposition with ζ = R⊕α. It will be convenient to name the generator of the
first summand and write ζ = Re ⊕ α. We show that positive graded C(ζ )-modules correspond to (ungraded) Hα-modules.

Indeed, let μ = μ0 ⊕μ1 be a positive graded C(Re ⊕α)-module. Put ξ = μ0. The inclusion of Hα = R1⊕α in C0(Re ⊕α)

as R1 ⊕ eωα gives ξ an Hα-structure. Now C0(Re ⊕ α) = Hα ⊕ Hαω, which, as a ring, is the product Hα × Hα (with the
factors corresponding to the idempotents (1 ± ω)/2). In the opposite direction, given an Hα-bundle ξ , put μ0 = ξ . The
inclusion Hα ⊆ C0(Re ⊕ α) described above and the action of ω as the identity give μ0 the structure of a C0(ζ )-module,
which extends uniquely to a positive graded C(ζ )-module μ. �
4. Characteristic classes

In this section we introduce characteristic classes for Hα-bundles, then describe their properties and relation to the
Stiefel–Whitney, Euler and Pontryagin characteristic classes.

Given an Hα-module ξ of dimension n over X , we have an associated projective bundle Hα P (ξ) over X and a Hopf Hα-
line bundle H (which we endow with the canonical orientation). The following proposition constructs characteristic classes
dα

i (ξ).

Theorem 4.1. For every Hα-bundle ξ of dimension n there are uniquely determined classes dα
i (ξ) ∈ H4i(X;Z), 1 � i � n such that

the integral cohomology ring of Hα P (ξ) is given by

H∗(Hα P (ξ);Z
) = H∗(X)[t]/(tn − dα

1 (ξ)tn−1 + · · · + (−1)ndα
n (ξ)

)
,

where t = e(H) ∈ H4(Hα P (ξ);Z) is the Euler class of the Hopf bundle H.

Proof. This follows at once from the Leray–Hirsch theorem, because the cohomology is freely generated as an H∗(X;Z)-
module by 1, t, . . . , tn−1. �

To derive the properties of the characteristic classes dα
i we will use a splitting principle for Hα-bundles, which follows

from Proposition 4.1 by induction, see [13].

Proposition 4.2. For each Hα-bundle ξ over X let p : F (ξ) → X be the bundle whose fibre at x is the flag manifold of orthogonal
splittings of ξx as a sum L1 ⊕ L2 ⊕ · · · ⊕ Ln of Hαx -lines. Then p∗(ξ) splits as a direct sum of Hα-line bundles and p∗ : H∗(X;Z) →
H∗(F (ξ);Z) is injective.

To shorten our notation put dα(ξ) = 1 +dα
1 (ξ)+dα

2 (ξ)+· · ·+dα
n (ξ). We also write dα

0 (ξ) = 1. The classes dα(ξ) have the
properties that one would expect and determine the other characteristic classes of ξ as a real vector bundle.

Theorem 4.3.

(a) The classes dα are multiplicative, i.e. dα(ξ ⊕ ξ ′) = dα(ξ)dα(ξ ′) for Hα-vector bundles ξ and ξ ′ .
(b) If ξ is an Hα-bundle of dimension n with the canonical orientation, then its Euler class is e(ξ) = dα

n (ξ).
(c) The Stiefel–Whitney classes of ξ are

1 + w1(ξ) + w2(ξ) + · · · + w4n(ξ) =
n∑

i=0

(
1 + w2(α) + w3(α)

)n−i
dα

i (ξ).

In particular, w2(ξ) = nw2(α).
(d) The Chern classes of the complexification of ξ (and so the Pontryagin classes pi(ξ) = (−1)ic2i(C ⊗ ξ)) are given by

4n∑
ck(C ⊗ ξ) =

n∑
qn−i,n− j(α)dα

i (ξ)dα
j (ξ),
k=0 i, j=0
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where the classes qi, j(α) are determined by the generating function

∑

i, j�0

qi, j(α)sit j = (1 − s)(1 − t) + (e(α)2 − p1(α))st

((1 − s)2 + (e(α)2 − p1(α))s2)((1 − t)2 + (e(α)2 − p1(α))t2)
.

Proof. (a) The proof is the same as in the case of the Stiefel–Whitney and Chern classes.
(b) If μ is an Hα-line, then dα

1 (μ) = e(μ) by definition. Now using the multiplicativity and the splitting principle, we
get dα

n (ξ) = e(ξ).
(c) There is a quotient map π : RP (ξ) → Hα P (ξ) from the real projective bundle to the Hα-projective bundle. The Hopf

Hα-bundle H lifts to the tensor product Hα ⊗ HR with the real Hopf bundle HR . So

π∗(t) = x4 + x2 w2(α) + xw3(α),

where x = w1(HR). Comparing our definition of dα with the corresponding definition of the Stiefel–Whitney classes (or
using the splitting principle), we get our formula.

(d) For an Hα-line bundle μ we have

c1(C ⊗ μ) = 0, c2(C ⊗ μ) = 2e(μ) − p1(α), c3(C ⊗ μ) = e(α)2, c4(C ⊗ μ) = e(μ)2.

From the splitting principle and multiplicativity, we can express the total Chern class of C ⊗ ξ as

n∏

j=1

(
y2

j + 2ay j + b
)
,

where dα
i (ξ) is the i-th elementary symmetric polynomial in y1, y2, . . . , yn , a = 1 and b = 1 + e(α)2 − p1(α). The stated

formula is obtained by computing in the polynomial ring Z[a,b][y1, u2, . . . , yn] on formal variables a, b, y j by embedding
Z[a,b] as a subring of the polynomial ring Q[r, s], where a = r + s and b = rs. �
Corollary 4.4. If n is even and ξ admits an Hα-structure for some α, then ξ is spin. If n is odd and ξ admits an Hα-structure, then
w2(ξ) = w2(α). �

Now we examine the relation between the characteristic classes and Morita equivalence.

Proposition 4.5. Let Hα ⊗ Ho
β

∼= EndR(μ) and let η be an Hβ -bundle. Then the characteristic classes of the Hα-bundle ξ = μ⊗Hβ
η

are
n∑

i=0

dα
i (ξ) =

n∑

i=0

(
1 + e(μ)

)n−i
dβ

i (η).

Proof. For an Hβ -line bundle η this is Lemma 2.11. Applying multiplicativity (or by using the equivalence between Hα P (ξ)

and Hα P (η) under which the Hopf bundles correspond by tensoring with μ), we get the formula. �
Using the Gysin exact sequence as in [3] or in [4] one can describe the cohomology rings of B TSp(n). Denote by ρ2

the reduction mod 2 and by � the corresponding Bockstein homomorphism. Let α and ξ be the associated vector bundles
with fibres im H and Hn , respectively, to the classifying TSp(n)-principal bundle E TSp(n) over B TSp(n). Put w2 = w2(α),
p1 = p1(α) and di = dα

i (ξ).

Theorem 4.6. The cohomology rings of B TSp(n) are given by

H∗(B TSp(n);Z/2
) = Z/2

[
w2, Sq1 w2,ρ2d1,ρ2d2, . . . , ρ2dn

]
,

H∗(B TSp(n);Z
) = Z[�w2, p1,d1,d2, . . . ,dn]/(2�w2).

The cohomology ring with Z/2 coefficients was described in [14] and [15].

5. Complex quaternionic bundles

In this section we will deal with bundles of quaternion algebras which admit as a subbundle a bundle of fields of complex
numbers. Modules over them are complex vector bundles where the complex structure extends to a quaternionic structure.
We will characterize bundles of quaternion algebras which are Morita equivalent to such bundles of algebras (Theorem 5.8).
At the end we will derive a relation between the Chern classes and the classes dα

i introduced above (Theorem 5.10).
We start with the description of bundles of fields of complex numbers. See [8].
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Definition 5.1. A principal Aut(C) = O(1)-bundle over X determines an orthogonal real line bundle δ and a bundle of
complex algebras Cδ = R ⊕ δ. An element of the fibre δx with length 1 is a square-root of −1. We say that a real vector
bundle ξ over X is a Cδ-bundle if it has a Cδ-module structure.

If ξ has a Cδ-structure, then as in Remark 1.4 there is a real inner product g on ξ such that the structure map Cδ →
End(ξ) is a ∗-homomorphism, i.e. g(au, v) = g(u,av). Let i be an element of δx of the length 1 and put f (u, v) = −ig(iu, v).
The real bilinear form f : ξ × ξ → δ is non-singular skew-symmetric and 〈u, v〉 = g(u, v) + f (u, v) is a Cδ-inner product
which is Cδ-linear in the first variable and Cδ-conjugate-linear in the second.

Conversely, if a 2n-dimensional real vector bundle ξ is equipped with a non-singular skew-symmetric real bilinear form
ξ × ξ → δ, one can prove that there is a Cδ-structure on ξ . (See [8, Remark 5.5] or the proof of the similar Proposition 5.3
below.)

Given a 2n-dimensional vector space V with a complex structure, we can choose a compatible real inner product on it.
It enables us to introduce a subgroup

TU(V ) = {
g ∈ O(V )

∣∣ g(rv) = κ(r)g(v) for some κ ∈ Aut(C) and all v ∈ V
}

of O(V ). Thus, TU(V ) consists of the C-linear and the conjugate-linear isometries.
As in the case of quaternionic structures, a 2n-dimensional orthogonal real vector bundle ξ admits a Cδ-structure for

some δ if and only if its structure group O(Cn) can be reduced to TU(Cn).
Any 2-dimensional real vector bundle λ has a canonical structure as a Cδ-line bundle, where δ = detλ. Moreover, Cδ-line

bundles over X are classified by their Euler class in the cohomology group H2(X;Z(δ)) with integral coefficients twisted
by δ. This also follows from the fact that TU(C) = O(2).

An n-dimensional Cδ-bundle has twisted Chern classes cδ
j(ξ) ∈ H2 j(X;Z(δ⊗ j)) defined in the same way as the classes dα

j

for an Hα-bundle. And these determine the Stiefel–Whitney classes of ξ : in particular, w1(ξ) = nw1(δ) and e(ξ) = cδ
n(ξ).

As in Section 3 one can show that the Grothendieck group K 0
δ (X) of Cδ-vector bundles is isomorphic to K OC(R⊕δ)(X)

and, hence, to K O0
Z/2(L ⊗ Cδ), and then define K Oi

δ(X) = K Oi
Z/2(L ⊗ Cδ) for i ∈ Z. See [8].

We now consider the situation in which a bundle of quaternions Hα admits a bundle of fields Cδ as a subalgebra.

Proposition 5.2. Let α be an SO(3)-bundle. Then Hα admits a subbundle of the form Cδ if and only if α = δ ⊕ λ, where λ is a 2-
dimensional orthogonal real vector bundle and δ = Λ2λ (or, in other words, if the structure group of α can be reduced to the subgroup
O(2) ⊂ SO(3)).

Proof. On Hα consider a real inner product in which the multiplication by a given element from Hα is a ∗-homomorphism.
If Hα admits a Cδ as a sub-algebra then the bundle λ perpendicular to Cδ is a Cδ-line bundle. Hence δ = Λ2λ and α =
δ ⊕ λ. �

We will denote the bundle of quaternions HΛ2λ⊕λ determined by an O(2)-bundle λ by simply Hλ . The following propo-
sitions give two necessary and sufficient conditions for a vector bundle to have Hλ-structure.

Proposition 5.3. Fix a Cδ-line bundle λ. Let ξ be a Cδ-vector bundle. Then there is a natural correspondence, up to homotopy, between
Hλ-structures on ξ and non-singular skew-symmetric Cδ-bilinear forms ξ ⊗Cδ

ξ → λ.

Proof. We will carry out all the constructions in fibres at a given point x ∈ X . Suppose that ξ has an Hλ-structure. Then ξ

can be equipped with a real inner product from Remark 1.4 which is the first component of a Cδ-inner product as shown
in the remark following Definition 5.1. For every a ∈ λx the multiplication ϕa(v) = a · v defines a Cδ-conjugate linear map
ξ → ξ such that ϕ2

a (v) = −|a|2 v , where |a| is the norm given by the real inner product on Hλ . For the adjoint we get
ϕ∗

a = −ϕa . In the first place ∗ means the adjoint with respect to the real inner product, but this translates into the adjoint
for the Cδ-inner product. (For a conjugate-linear map ϕ , the adjoint is defined so that 〈ϕ(u), v〉 = 〈ϕ∗(v), u〉 = 〈u,ϕ∗(v)〉.)
So we can define a skew-symmetric bilinear form f : ξ ⊗Cδ

ξ → λ by
〈
f (u, v),a

〉 = 〈
u,ϕa(v)

〉

using the Cδ-inner product. f is non-singular since ϕa is non-singular for a �= 0.
Conversely, given f , we define a Cδ-conjugate linear map ψa : ξx → ξx by 〈u,ψa(v)〉 = 〈 f (u, v),a〉. Then ψ∗

a = −ψa and
ψa ◦ ψ∗

a is Cδ-linear and positive definite for a �= 0. So we can define

ϕa = |a|(ψaψ
∗
a

)−1/2
ψa

with ϕ2
a = −|a|2 and ϕ∗

a = −ϕa .
These two constructions define maps from Hλ-structures to non-singular skew-symmetric bilinear forms and back. Com-

posing in one direction we get the identity on Hλ-structures. In the other direction we get a homotopic form, through the
homotopy (|a|(ψaψ

∗
a )−1/2)t , 0 � t � 1. �
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Proposition 5.4. Let ξ be a 4n-dimensional orthogonal real vector bundle. Then ξ admits an Hλ-structure for some complex line
bundle λ if and only if the structure group of ξ can be reduced from SO(Hn) to TSp(Hn) ∩ U(Hn), and an Hλ-structure for some
Cδ-line bundle λ and some δ if and only if the structure group reduces to TSp(Hn) ∩ TU(Hn).

Proof. Use Lemma 1.5 and the analogous statement for Cδ-structures. �
It is advantageous to express the intersections of the groups as quotients of products.

Lemma 5.5. For any 4n-dimensional real vector space V with a left H-module structure

TSp(V ) ∩ U(V ) = U(1) · Sp(V ) = (
U(1) × Sp(V )

)
/(Z/2),

TSp(V ) ∩ TU(V ) = TU(1) · Sp(V ) = (
TU(1) × Sp(V )

)
/(Z/2).

Proof. Let us prove only the second formula. Consider an element of TSp(V ) given by an isomorphism v 	→ ag(v) where
a ∈ Sp(1) and g ∈ Sp(V ). This element lies in TU(V ) if and only if it is a C-linear or conjugate linear isometry. Since g is
C-linear, this means that for all z ∈ C either az = za or az = za. Hence a ∈ U(1) ∪ jU(1) = TU(1) ⊂ Sp(1). �

Now we return to the construction from the beginning of Section 2. A 2-dimensional complex bundle μ or, more
generally, a 2-dimensional Cδ-vector bundle has a natural orientation as a 4-dimensional real vector bundle. The double

cover SO(H)
(ρ+,ρ−)−−−−−→ SO(3) × SO(3) considered in Proposition 2.1 restricts to maps

U(2) = U(H) → SO(3) × SO(3), TU(2) = TU(H) → SO(3) × SO(3).

Since TSp(H) = SO(H), we can apply Lemma 5.5 to get

U(2) ∼= U(1) · Sp(1) = Spinc(3), TU(2) ∼= TU(1) · Sp(1).

Lemma 5.6. Let μ be a 2-dimensional Cδ-vector bundle. Then μ is an Hλ-line bundle, where λ = Λ2
Cδ

μ, and also an EndHλ
(μ)-line

bundle.

Proof. It follows from Proposition 5.3 that μ has an Hλ-structure. Then Ho
ρ−(μ) = EndHλ

(μ) by Proposition 2.1 and ρ−(μ)

is the bundle of skew-Hermitian endomorphisms of μ. �
The homomorphism ρ− restricted to TU(2) ∼= TU(1) · Sp(1) is the projection onto SO(3). We prove that the structure

group SO(3) of an oriented 3-dimensional real vector bundle β can be lifted to TU(2) if and only if there are a real line
bundle δ and an element l ∈ H2(X;Z(δ)) such that w2(β) = ρ2l + w2

1(δ).
The condition is necessary. According to Lemma 5.6 for a 2-dimensional Cδ-vector bundle μ with ρ−(μ) = β we have

ρ+(μ) = δ ⊕ λ and Proposition 2.1 implies that w2(β) = w2(ρ+(μ)) = ρ2e(λ) + w2
1(δ).

To show that the condition is sufficient take the Cδ-line bundle λ with the Euler class l. Then by Proposition 2.7 the
quaternion bundles Hλ and Hβ are Morita equivalent and the vector bundle μ from the definition of the equivalence has
the structure group TU(2). So we obtain

Lemma 5.7. Let β be an oriented 3-dimensional vector bundle with w2(β) = ρ2(l) + w2
1(δ) for an element l ∈ H2(X;Z(δ)) and a

real line bundle δ. Then there is a 2-dimensional Cδ-vector bundle μ such that detCδ
μ = λ, where e(λ) = l, and

Hβ = EndHλ
(μ)o.

For δ trivial, if β is a 3-dimensional Spinc real vector bundle, then Hβ is Morita equivalent to an Hλ for some complex
line bundle λ.

Applying Proposition 2.6 we obtain:

Theorem 5.8. Let η be a 4n-dimensional real vector bundle. Then η admits an Hβ -structure with w2(β) = ρ2(l) + w2
1(δ) for an

l ∈ H2(X;Z(δ)) and a real line bundle δ if and only if for the Cδ-line bundle λ with e(λ) = l there exist an Hλ-line bundle μ and an
n-dimensional Hλ-vector bundle ξ such that

η ∼= μ∗ ⊗Hλ
ξ = HomHλ

(μ, ξ).

The twisted quaternionic Hβ -structure is given by the action of the bundle EndHλ
(μ)o .

The following statement is a complement to Proposition 2.1.
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Lemma 5.9. Suppose that the oriented orthogonal 4-dimensional bundle μ is an orthogonal direct sum μ0 ⊕μ1 of two 2-dimensional
subbundles. Write δ = detμ0 = detμ1 , so that μ0 and μ1 become Cδ-bundles. Then ρ+(μ) = δ ⊕ (μ0 ⊗Cδ

μ1) and ρ−(μ) =
δ ⊕ (μ0 ⊗Cδ

μ1), where the conjugate is given by conjugation on Cδ .

Proof. The vector bundle μ = μ0 ⊕ μ1 has the structure group O(2) · O(2) = TU(1) · TU(1) ⊂ TU(2). So it follows from
Lemma 5.6 that ρ+(μ) is given by the projection onto the first factor TU(1) and is equal to δ ⊕ Λ2

Cδ
(μ0 ⊕ μ1) = δ ⊕

(μ0 ⊗Cδ
μ1).

Since the orientation of μ0 ⊕ μ1 is opposite to that of μ,

ρ−(μ) = ρ+(μ0 ⊕ μ1) = δ ⊕ (μ0 ⊗Cδ
μ1). �

In the case that λ is a Cδ-line bundle, and α = δ ⊕ λ we can express the Chern classes cδ
i in terms of the classes dα

j .

Theorem 5.10. Let α = δ ⊕ λ, where λ is a Cδ-line bundle. Let ξ be an Hα-bundle of dimension n. Then

1 + cδ
1(ξ) + · · · + cδ

2n(ξ) =
n∑

i=0

(
1 + cδ

1(λ)
)n−i

dα
i (ξ).

In particular, cδ
1(ξ) = ncδ

1(λ).

Proof. We use the splitting principle for Hα-vector bundles and multiplicativity of the Chern classes cδ = 1 + cδ
1 + cδ

2 + · · ·
and the characteristic classes dα . Thus it is sufficient to carry out the proof only for n = 1. Let μ be an Hλ-line, where λ is a
Cδ-line. Then cδ

1(μ) = cδ
1(λ), since we may assume that X is a 3-dimensional CW-complex, over which μ = Cδ ⊕ λ. Further,

cδ
2(μ) = e(μ) = dα

1 (μ). Consequently,

1 + cδ
1(μ) + cδ

2(μ) = 1 + cδ
1(λ) + dα

1 (μ). �
Remark 5.11. Consider an SO(3)-bundle α and an Hα-bundle ξ over X . We can lift to the sphere bundle of α by
π : S(α) → X . Over S(α) we have a complex line bundle λ such that π∗α = R ⊕ λ. So π∗ξ is an Hλ-bundle. In par-
ticular, π∗ξ is complex and has Chern classes in H∗(S(α)). Since the Euler class of α is 2-torsion, we have a rational
splitting: H2i(S(α);Q) = H2i(X;Q) ⊕ H2(i−1)(X;Q). More precisely, H∗(S(α);Q) is an H∗(X;Q)-module with a generator
s ∈ H2(S(α);Q) subject to a relation s2 + as + b = 0 for some elements a ∈ H2(X;Q) and b ∈ H4(X;Q). If e(α) = 0, this is
true also over Z.

Now using Theorem 5.10 and naturality of the classes di , the Chern classes of π∗ξ are

1 + c1
(
π∗ξ

) + · · · + c2n
(
π∗ξ

) =
n∑

i=0

(
1 + c1(λ)

)n−1
π∗dα

i (ξ).

If X is an almost quaternionic smooth manifold as in Remark 1.6, then the tangent bundle of S(α) being isomorphic
to λ ⊕ π∗τ X has a complex structure, i.e. the twistor space S(α) is almost complex, which is well known in quaternionic
geometry.

6. Complexified quaternionic bundles

Given a real line bundle δ and an oriented 3-dimensional vector bundle α (with inner product) we may consider the
bundle of algebras Hα ⊗Cδ . It depends only on the 3-dimensional vector bundle δ⊗α. Indeed, it may be identified with the
(ungraded) Clifford algebra bundle C(α ⊗ δ) with the positive-definite quadratic form. Locally, if e1, e2, e3 is an orthonormal
basis of α ⊗ δ then the corresponding fibre of C(α ⊗ δ) is generated by e1, e2, e3 with e2

i = 1 and eie j = −e jei for i �= j, the
fibre of Cδ is R1 ⊕ R(e1e2e3), and the fibre of Hα is R1 ⊕ R(e1e2, e2e3, e1e3). The centre (formed in each fibre) is Cδ .

There is an R-algebra isomorphism H ⊗ C → EndC(H), that is M2(C), under which the group of automorphisms
AutR(H) × AutR(C) maps to the retract SU(2)/{±1} � AutR(C) of the full automorphism group GL(2)/C∗ � AutR(C)

of M2(C).
Consequently, we can describe bundles of algebras Hα ⊗ Cδ as just those R-algebra bundles with fibres of type H ⊗ C

which have the structure group AutR(H) × AutR(C) = SO(3) × O(1) = O(3).
Consider a 4-dimensional Cδ-vector bundle μ which is a left Hα ⊗ Cδ-bundle. This means that the fibre is isomorphic

to the complex vector space H ⊗ C with the obvious action of the algebra H ⊗ C. On μ we can choose a real inner
product such that the action Hα ⊗ Cδ → EndCδ

(μ) is a ∗-homomorphism. We will show that μ is associated to a principal
bundle with the structure group TSp(H) · TU(C) = SO(H) · TU(C) ⊂ TU(H ⊗ C). In traditional terminology this is the group
(SO(4) × TU(1))/{±1} = SO(4) · TU(1) ⊂ TU(4). Put
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Fr(μ) = {
f ∈ HomR(H ⊗ C,μ)

∣∣ f preserves the inner product, f (rv) = κ(r) f (v)

for some κ ∈ Iso(H,Hα) × Iso(C,Cδ) and all v ∈ H ⊗ C, r ∈ H ⊗ C
}
.

Then P = Fr(μ) is a principal bundle with the structure group TSp(H) · TU(C) such that μ = P ×TSp(H)·TU(C) (H ⊗ C) and
Hα ⊗ Cδ = P ×p (H ⊗ C), where p : TSp(H) · TU(C) → AutR(H) × AutR(C) is the projection. This proves

Proposition 6.1. A 4-dimensional Cδ-vector bundle has an Hα ⊗ Cδ-module structure if and only if its structure group TU(4) can be
reduced to SO(4) · TU(1).

Now we can proceed as in Section 2. In many of the arguments SO(4) · TU(1) plays the role taken there by SO(4).
Since TU(1) is a semidirect product of groups U(1) and Z/2, its elements can be described by pairs (c, s) ∈ U(1) × Z/2

having the action on C given by (c,1)z = cz and (c,−1)z = cz. Consider the covers

Sp(1) × Sp(1) × TU(1) → SO(4) · TU(1)
(ρ+,ρ−,ρ0)−−−−−−−→ SO(3) × SO(3) × TU(1)

given by mapping (a,b, (c, s)) ∈ Sp(1) × Sp(1) × TU(1) to the map g : H ⊗ C → H ⊗ C : v ⊗ z 	→ avb ⊗ (c, s)z and g
to (ρ+(g),ρ−(g),ρ0(g)) = (ρ(a),ρ(b), z 	→ (c2, s)z). Further, let τ : SO(4) · TU(1) → Aut(C) = Z/2 be the map τ (g) = s.

Proposition 6.2. Let μ be a 4-dimensional Cδ-vector bundle over X the structure group of which can be reduced to SO(4) · TU(1). Put
α = ρ+(μ), β = ρ−(μ), σ = ρ0(μ). Then Cδ = τ (μ), the vector bundle μ is a left Hα ⊗ Cδ-module and a right Hβ ⊗ Cδ-module,
σ is a Cδ-line bundle and there is a canonical isomorphism of bundles of Cδ-algebras

(Hα ⊗ Cδ) ⊗Cδ
(Hβ ⊗ Cδ)

o = (
Hα ⊗ Ho

β

) ⊗ Cδ
∼= EndCδ

(μ).

Moreover, there are canonical isomorphisms of vector bundles

(α ⊕ β) ⊗ σ ∼= Λ2
Cδ

μ and σ⊗2 ⊗Cδ
Λ4μ ∼= Cδ

where σ is the conjugate vector bundle to σ .
Conversely, if α is an oriented orthogonal 3-dimensional vector bundle and μ is an Hα ⊗ Cδ-bundle of dimension 4 over Cδ ,

then the real form of σ⊗2 ⊗Cδ
Λ4μ acquires an orientation under which ρ+(μ) is identified with α, τ (μ) is identified with Cδ and

β = ρ−(μ) is characterized by an isomorphism (of bundles of algebras)

(Hβ ⊗ Cδ)
o = EndHα⊗Cδ

(μ).

Proof. The 4-dimensional C-vector space H ⊗ C is the complexification of the real vector space H. Now we can carry out
the proof by complexifying all the vector spaces im H, EndR(H), H ⊗ Ho, Λ2H, Λ4H and the homomorphisms used in the
proof of Proposition 2.1 and Lemma 2.2, by checking that these complexified homomorphisms are invariant with respect
to appropriate actions of SO(4) · TU(1) and by writing α, β , Cδ , σ , Λ2

Cδ
μ and Λ4

Cδ
as vector bundles associated to an

SO(4) · TU(1)-principal bundle determined by μ. The details are left to the reader. �
Remark 6.3. The isomorphism Λ4

Cδ
μ ∼= σ⊗2 implies that cδ

1(μ) = 2cδ
1(σ ), and from the isomorphism (α ⊕ β) ⊗ σ ∼= Λ2

Cδ
μ

we get 2cδ
2(μ) = −p1(α) − p1(β) + 3(cδ

1(σ ))2.

Proposition 6.4. Given 3-dimensional oriented vector bundles α, β and a Cδ-vector bundle σ , there is a 4-dimensional vector bun-
dle μ such that ρ+(μ) = α, ρ−(μ) = β and ρ0(μ) = σ if and only if w2(σ ) = w2(α) + w2(β).

Proof. The commutative diagram

SO(4) · TU(1)

(ρ+,ρ−,ρ0)

SU(4) · TU(1)
∼=
Λ2

C

Spin(6) · TU(1)

SO(3) × SO(3) × TU(1) SO(6) · TU(1)

implies that the double cover Spin(6) · TU(1) → SO(6) · TU(1) pulls back, under the homomorphism (a,b, c) 	→ (a + b) ⊗ c,
to (ρ+,ρ−,ρ0). Hence the obstruction to lifting from SO(3) × SO(3) × TU(1) to SO(4) · TU(1) is given by w2(σ ) = w2(α) +
w2(β). �
Definition 6.5. For each δ we define a Morita category Mδ(X) with objects the oriented 3-dimensional orthogonal vector
bundles α, β and morphisms β → α given by a Cδ-isomorphism of algebras

(Hα ⊗ Cδ) ⊗Cδ
(Hβ ⊗ Cδ)

o = (
Hα ⊗ Ho

β

) ⊗ Cδ → EndCδ
(μ),

where μ is a 4-dimensional Cδ-vector bundle, up to isomorphisms of μ.
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Given any Cδ-line bundle λ, we use the isomorphism EndCδ
(μ) = EndCδ

(λ ⊗Cδ
μ) to get an action of the Piccard group

Picδ(X) = H2(X;Z(δ)) on HomMδ (X)(β,α), and then, as in Proposition 2.9 we have AutMδ (X)(α) = Picδ(X).
Proposition 6.4 implies immediately

Theorem 6.6. There is a morphism from β to α in Mδ(X) if and only if e(α ⊗ δ) = e(β ⊗ δ).

Proof. Denote the Bockstein homomorphism corresponding to the exact sequence 0 → Z(δ) → Z(δ) → Z/2 → 0 by �δ .
A Cδ-line bundle σ such that w2(σ ) = w2(α) + w2(β) exists if and only if �δ w2(α) = �δ w2(β) and this is equivalent to
our condition, since e(α ⊗ δ) = �δ(w2(α) + w2

1(δ)). �
Proposition 6.7. Any isomorphism Hα ⊗ Ho

β ⊗ Cδ
∼= EndCδ

(μ) determines an equivalence from the category of Hβ ⊗ Cδ-modules to
the category of Hα ⊗ Cδ-modules given by

η 	→ μ ⊗Hβ⊗Cδ
η.

As a consequence we get

Corollary 6.8. Let e(α ⊗ δ) = 0. Then there is an Hα ⊗ Cδ-bundle ω of Cδ-dimension 2 such that any Hα ⊗ Cδ-bundle of Cδ-
dimension 2n is of the form ω ⊗Cδ

ζ for a Cδ-bundle ζ of dimension n.

Proof. Just as H ⊗ C = EndC(H), we have HCδ
⊗ Cδ = EndCδ

(HCδ
). Every HCδ

⊗ Cδ-bundle η is therefore of the form
HCδ

⊗Cδ
ζ , where ζ = HomHCδ

⊗Cδ
(HCδ

, η).
Since e((δ⊕Cδ)⊗δ) = 0 = e(α⊗δ), there is an isomorphism from δ⊕Cδ to α in Mδ(X) represented by a 4-dimensional

vector bundle μ. Now any Hα ⊗ Cδ-bundle is of the form

μ ⊗HCδ
⊗Cδ

(HCδ
⊗Cδ

ζ ) = (μ ⊗HCδ
⊗Cδ

HCδ
) ⊗Cδ

ζ.

Putting ω = μ ⊗HCδ
⊗Cδ

HCδ
, we get the assertion. �

Remark 6.9. Consider a compact Hausdorff space Y with an involution. Let E be a complex vector bundle over Y and let
J : ξ → ξ be a conjugate-linear map lifting the involution on Y such that J 2 = −1. The pair (E, J ) is variously called a
quaternionic or symplectic bundle over Y [11,19,10]. We relate this notion to complexified quaternionic bundles in our
sense.

Let CP (H) be the complex projective space modelled on the 2-dimensional complex vector space H with the involution
given by multiplication by j. Define X to be the quotient of Y × CP (H) by the free involution. Let δ be the real line
bundle over X given by the double covering p : Y × CP (H) → X . We associate with E a vector bundle η such that the
fibre over x ∈ X is ηx = E y ⊕ E y′ where p−1(x) = {y, y′}. This bundle has an H ⊗ Cδ-structure. The multiplication by j ∈ H

is given by j(u, v) = ( J v, J u). The Cδ-structure is defined as follows. Let t be the involution (−1,1) : E y ⊕ E y′ = ηx → ηx ,
and t′ = −t . Then ti = it and tj = −jt . So (it)i = i(it) and (it)j = j(it), and (it)2 = −1. So we can use it = −it′ to define the
Cδ-structure commuting with the H-multiplication.

In the same way the complex Hopf bundle H over CP (H) determines an H ⊗ Cδ-vector bundle ω over X of complex
dimension 2 (where ωx = H y ⊕ H y′ ). As in Corollary 6.8 there is a Cδ-bundle ζ = HomH⊗Cδ

(ω,η) over X such that η =
ω ⊗Cδ

ζ . Its lift to Y × CP (H) is E ⊗C H .

Remark 6.10. One can define a Brauer group BrUδ(X) of central simple Cδ-algebras and show that it is isomorphic
to Tor H3(X;Z(δ)). The class of Hα ⊗ Cδ = C(α ⊗ δ) is e(α ⊗ δ).

There is a complex K -theory of Hα ⊗ Cδ-vector bundles modelled on the real K -theory of Section 3.

Proposition 6.11. There is an isomorphism from the Grothendieck group of Hα ⊗ Cδ-modules over X to K 0
δ (Hα), the Kδ-theory with

compact supports, given by mapping the class [ξ ] to the element represented by the linear map

x 	→ vx : π∗ξ → π∗ξ
over x ∈ Hα , where π : Hα → X is the projection.
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