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Abstract This paper presents a Particle Swarm Optimization (PSO) technique and bacterial

foraging (BF) technique for determining the optimal parameters of (PID) controller for speed

control of a brushless DC motor (BLDC) where the (BLDC) motor is modeled in simulink in

Matlab. The proposed technique was more efficient in improving the step response characteristics

as well as reducing the steady-state error, rise time, settling time and maximum overshoot.
� 2013 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

There are mainly two types of DC motor used in the industry.
The first one is the conventional DC motor where the flux is
produced by the current through the field coil of the stationary

pole structure. The second type is the brushless DC motor
(BLDC motor) where the permanent magnet provides the
necessary air gap flux instead of the wire-wound field poles [1].

There are many modern control methodologies such as
nonlinear control, optimal control, variable structure control
and adaptive control have been widely proposed for speed
control of a brushless permanent magnet DC motor [2].

However, these approaches are either complex in theoretical
basics or difficult to implement [3]. PID controller with its
three terms functionality covering treatment for transient

and steady-state response offers the simplest and gets most
efficient solution to many real world control problems [4]. In
spite of the simple structure, optimally tuning gains of PID

controllers are quite difficult. Recently, the computational
intelligence has proposed bacterial foraging (BF) technique
and Particle Swarm Optimization (PSO) technique for the
same purpose.
2. Brushless DC motor

Permanent magnet DC motors use mechanical commutators

and brushes to achieve the commutation. The stator of BLDC
motor is the coil, and the rotor is the permanent magnet. The
stator develops the magnetic field to rotate the rotor. Hall

effect sensor detects the rotor position as the commutating
signals. Therefore, BLDC motors use permanent magnets

https://core.ac.uk/display/82037623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asej.2013.09.013&domain=pdf
mailto:hibrahim_eg@yahoo.com
mailto:fathy@yahoo.com
mailto:anas_o_shomer@hotmail.com
http://dx.doi.org/10.1016/j.asej.2013.09.013
http://www.sciencedirect.com/science/journal/20904479
http://dx.doi.org/10.1016/j.asej.2013.09.013


392 H.E.A. Ibrahim et al.
instead of coil in the armature and so do not need brushes. In
this paper a three-phase and two-pole BLDC motor is studied.
The speed of the BLDC motor is controlled by means of a

three-phase and half-bridge pulse width modulation (PWM)
inverter. Fig. 1 shows torque/speed characteristics with refer-
ence speed is 100 rpm, and this kind of motor not only has

the advantages of DC motor such as better velocity capability
and no mechanical commutator but also has the advantages of
AC motor such as simple structure, higher reliability and free
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Figure 3 Three-phase c
maintenance. In addition, brushless DC motor has the follow-
ing advantages: smaller volume, high torque, and simple sys-
tem structure. So it is widely applied in areas which needs

high performance drive [5].
Fig. 2 shows line to line voltage vab with respect to time, the

characteristics equations of a BLDC motor are described by

Eqs. (1)–(4) [2] and Fig. 3 shows the three-phase currents of
the stator.
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Figure 4 Three-phase full-bridge power circuit for BLDC motor drive.
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Figure 5 Transfer function of PID controller.
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mappðtÞ ¼ L
diðtÞ
dt
þ R � iðtÞ þ memf ð1Þ

memf ¼ kb � xðtÞ ð2Þ
TðtÞ ¼ kt � iðtÞ ð3Þ

TðtÞ ¼ J
dxðtÞ
dt
þD � xðtÞ ð4Þ

where vapp(t) is the applied voltage, xðtÞ is the motor speed, L
is the inductance of the stator, i(t) is the current of the circuit,
R is resistance of the stator, vemf is the back electromotive
force, T is the torque of motor, D is the viscous coefficient, J

is the moment of inertia, kt is the motor torque constant, kb
is the back electromotive force constant, and Fig. 4 shows
the equivalent circuit of three-phase full-bridge power circuit

for (BLDC) motor drive.
The motor used in simulation process has the next param-

eter values as follows:

– Volt: 24 V (DC)
– Power: 52 W

– Nominal speed: 200 rpm
– Nominal current: 4.2 A
– No. of poles (p) = 4
– R (phase stator resistance): 0.6 X
– km (the amplitude of flux linkage): 0.105 Wb.Turn
– L (self-inductance of each coil)
– M (mutual inductance between any two coils)

– (L �M): 0.0015
– D (viscous coefficient): zero
– T (Max. torque): 8 N m

3. PID controller

PID controller has been used widely for processes and motion
control system in industry. The transfer function of PID
R (s)  +      
C (s)

- 

PSO        

BF 

PID  

Figure 6 The optim
controller is shown in Fig. 5. The control system performs
poorly in characteristics and even it becomes unstable, if im-

proper values of the controller tuning constants and used. So
it becomes necessary to tune the controller parameters to
achieve good control performance with the proper choice of

tuning constants [6].
where:

E(s) is error input signal,M(s) is manipulated output signal.
Kp is proportional gain, Ki is integral gain and Kd is deriv-
ative gain.

These parameters Kp, Ki and Kd are chosen to meet
prescribed performance criteria, classically specified in
terms of rise and settling times, overshoot, and steady-state

error. In this paper PSO and BF techniques used to find
the optimal values of parameters Kp, Ki and Kd of (PID)
controller for BLDC motor speed control system. Fig. 6

shows the block diagram of optimal PID control for the
BLDC motor.

4. Particle Swarm Optimization (PSO)

To search the optimal PID controller, the PSO algorithm is
applied. Here the potential solutions called particles, where it

is metaphor of fish in fish schools or bird in bird flocks. These
particles are randomly initialized and fly through multi-
dimensional space. During the flying, these particles update
its velocity and position based on the experience of its own

and the whole population [7,8].
                               PWM  BLDC 
Motor 

al PID control.
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The updating procedure will drive the particle swarm to
move toward region with better fitness function and every par-
ticle is gathered around the point with the best fitness func-

tions. In the proposed PSO method each particle contains
three members kp, ki and kd. It means that the search space
has three dimensions and particles must fly in a three dimen-

sional space.
According to the background of PSO and simulation of

swarm of bird, Kennedy and Eberhart developed a PSO con-

cept. Namely, PSO is basically developed through simulation
of bird flocking in three-dimensional space. The positive of
each agent is represented by xyz axes position and also the
velocity is expressed by vx (the velocity of x-axis, vy (the

velocity of y-axis) and vz (the velocity of z-axis). Modification
of the agent position is realized by the position and velocity
information.

Bird flocking optimizes certain fitness function. Each agent
has known its best value so far (pbest) and its xyz position.
This information is analogy of personal experiences of each

agent. Moreover, each agent knows the best value so far in
the group (gbest) among pbests. This information is analogy
of knowledge of how the other agents around them have per-

formed. Namely, each agent tries to modify its position using
the following information:

– the current positions (x,y,z)

– the current velocities (vx,vy,vz)
– the distance between the current positions and pbest
– the distance between the current position and gbest.

This modification can be represented by the concept of
velocity. Velocity of each agent can be modified by the follow-

ing equations [9]:

mkþ1i ¼ w� mki þ C1rand1 � ðpbesti � ski Þ þ C2rand2

� ðgbest� ski Þ ð5Þ

where:

� pbest: particle best position of agent i

� gbest: global particle best position of the group
� vk

i : velocity of agent i at iteration k, w: weighting function
� Cj: correction factor, rand: random number between 0 and 1
� rand: random number between 0 and 1

� sk
i : current position of agent i at iteration k.

The following weighting function is usually utilized in (6):

w ¼ wmax �
wmax � wmin

itermax

� iter ð6Þ

where:

� wmax: final weight, wmin: initial weight
� itermax: maximum iteration number, iter: current iteration
number.

Using the above equation, a certain velocity, which gradu-
ally gets close to pbest and gbest can be calculated. The current

position (searching point in the solution space) can be modified
by the following equation:

Skþ1
i ¼ Sk

i þ Vkþ1
i ð7Þ
5. Bacterial Foraging Optimization

To tackle complex search problems of the real world, scientists
have been drawing inspiration from nature and natural crea-

tures for years. Optimization is at the heart of many natural
processes like Darwinian evolution, group behavior of social
insects, and the foraging strategy of other microbial creatures.

Natural selection tends to eliminate species with poor foraging
strategies and favor the propagation of genes of species with
successful foraging behavior since they are more likely to enjoy
reproductive success.

Since a foraging organism or animal takes necessary action
to maximize the energy intake per unit time spent for foraging,
considering all the constraints presented by its own physiology

such as sensing and cognitive capabilities, environment (e.g.,
density of prey, risks from predators, physical characteristics
of the search space), the natural foraging strategy can lead

to optimization and essentially this idea can be applied to solve
real world optimization problems. Based on this concept, Pas-
sino proposed an optimization technique known as the Bacte-

rial Foraging Optimization Algorithm (BFOA) [10].
Recently, search and optimal foraging of bacteria have

been used for solving optimization problems. To perform
social foraging, an animal needs communication capabilities

and over a period of time it gains advantages that can ex-
ploit the sensing capabilities of the group. This helps the
group to predate on a larger prey, or alternatively, individ-

uals could obtain better protection from predators while in
a group [11].

The common type of bacteria is Escherichia coli (E. coli)

[11]. Its behavior and movement come from a set of six rigid
spinning (100–200 r.p.s) flagella, each driven as a biological
motor. An E. coli bacterium alternates through running and

tumbling, the chemotactic actions of the bacteria are modeled
as follows:

– In a neutral medium, if the bacterium alternatively tumbles

and runs, its action could be similar to search.
– If swimming up a nutrient gradient (or out of noxious sub-
stances) or if the bacterium swims longer (climb up nutrient

gradient or down noxious gradient), its behavior seeks
increasingly favorable environments.

– If swimming down a nutrient gradient (or up noxious

substance gradient), then search action is like avoiding
unfavorable environments.

Therefore, it follows that the bacterium can climb up

nutrient hills and at the same time avoids noxious sub-
stances. The sensors it needs for optimal resolution are
receptor proteins which are very sensitive and possess high

gain. That is, a small change in the concentration of nutri-
ents can cause a significant change in behavior. This is prob-
ably the best-understood sensory and decision-making

system in biology [11].Mutations in E. coli affect the repro-
ductive efficiency at different temperatures, and occur at a
rate of about 10�7 per gene per generation. E. coli occasion-

ally engages in a conjugation that affects the characteristics
of the population. There are many types of taxis that are
used in bacteria such as, aerotaxis (attracted to oxygen),
phototaxis (light), thermotaxis (temperature), magnetotaxis

(magnetic lines of flux) and some bacteria can change their
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shape and number of flagella (based on the medium) to
reconfigure in order to ensure efficient foraging in a variety
of media. Bacteria could form intricate stable spatio-tempo-

ral patterns in certain semisolid nutrient substances and they
can survive through a medium if placed together initially at
its center. Moreover, under certain conditions, they will se-

crete cell-to-cell attractant signals so that they will group
and protect each other, the bacterial foraging system consists
of four principal mechanisms, namely chemotaxis, swarming,

reproduction, and elimination dispersal [10]. Below each of
these processes will be described by.
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Figure 7 Step responseof the closed loop systemwithPSO-PIDcontroll
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Figure 8 Effect of torque variation

Table 1 PSO-PID controller.

PSO (PID) controller Kp Ki Kd Peak time (tp) Rise time (t

With 6.6397 1 0.0028 0.0051 0.0030

Without 1 0 0 0.0055 0.0030
hiðjþ 1; k; lÞ ¼ hiðj; k; lÞ þ cðiÞ DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTðiÞDðiÞ

q ð8Þ

where hi(j, k, l) represents ith bacterium at jth chemotactic,
kth reproductive and lth elimination-dispersal step. c(i) is

the size of the step taken in the random direction specified
by the tumble (run length unit), where D indicates a vector
in the random direction whose elements lie in [�1,1], DT is
the transpose of D.

The cell-to-cell signaling in E. coli swarm may be repre-
sented by the following function:
.02 0.025 0.03 0.035 0.04

Second)

Solid line (Black) PSO

Dash line (Red) Kp = 1

er using ITSEbasedfitness functionandwithout PSO-PIDcontroller.
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3.42 mSec.

on the speed response using PSO.
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jccðh;pðj;k; lÞÞ¼
Xs
i¼1

jccðh;hiðj;k; lÞÞ

¼
Xs
i¼1
�dattractant exp �xattractant

Xp
m¼1
ðhm�hi

mÞ
2

 !" #

þ
Xs
i¼1

hreppelant exp �xreppelant

Xp
m¼1
ðhm�hi

mÞ
2

 !" #

ð9Þ

where jcc(h, p(j, k, l)) is the objective function value to be added
to the actual objective function (to be minimized) to present a
time-varying objective function, s is the total number of

bacteria, p is the number of variables to be optimized that
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Figure 9 Effect of torqu

Table 2 BF-PID controller.

BF (PID) controller Kp Ki Kd Peak time (tp) Rise time (

With 5.4936 0.9833 0.0034 0.0769 0.0030

Without 1 0 0 0.0055 0.0030
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Figure 10 Step response of the closed loop systemwith BF-PID control
are present in each bacterium, and h = [h1,h2 ,..., hp]
T is a

point in the p-dimensional search domain. dattractant,
xattractant, hrepellant, xrepellant are different coefficients that
should be chosen properly.

6. Simulation results

Table 1 and Fig. 7 show step response parameters of the closed

loop system with PSO–PID controller using ITSE based fitness
function and without PSO–PID controller. Figs. 8 and 9 show
the effect of torque variation from (1–4) N m on the speed
response at (t = 0.02) s. by using PSO–PID controller where

recovery time reaches the reference speed within (3.42 m s),
recovery time reaches the (4 N m) within (3.1 m s).where:
02 0.025 0.03 0.035 0.04

econd)

3.1 mSec.

e variation using PSO.

tr) Settling time (ts) Max. over shoot Mp % Steady-state error ess

0.0053 0 0.0561

0.0163 13.956 0.5248
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Figure 11 Effect of torque variation on the speed response using BF technique.
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Figure 12 Effect of torque variation using BF technique.
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Figure 13 Step response of the closed loop system with (PSO, BF) PID controller using ITSE based fitness function and without (PSO,

BF) PID controller.
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� No. of iterations = 100, Swarm size = 50, correction

factor = 2,
� Weighting factor = 1, ITSE (objective fitness function

used with PSO) =
R

te2dt.

Table 2 and Fig. 10 show step response parameters of the
closed loop system with BF–PID controller using ITSE based
fitness function and without BF–PID controller. Figs. 11 and

12 show the effect of torque variation from (1–4) N m on the
speed response at (t= 0.02) s. by using BF–PID controller
where recovery time reaches the reference speed within

(4.29 m s), recovery time reaches the (4 N m) within
(3.6 m s).where:

� p (Dimension of the search space) = 3, s (total number of
bacteria) = 50,
� Nc(number of chemotactic steps) = 5, Ns (swimming
length) = 4,

� Nre (number of reproduction steps) = 10,
� c(i) Size of the step = 8.0e�007,
� Ned (number of elimination-dispersal events) = 2

� ped (Elimination–dispersal probability) = 0.25.

Fig. 13 shows step response parameters of the closed loop

system with (PSO, BF) PID controller using ITSE based fitness
function and without (PSO, BF) PID controller.

7. Conclusion

In this work, a comparison study of using PSO and BFO meth-
ods for the tuning of PID controller for speed control of a

BLDC motor. Obtained through simulation of BLDC motor,
the simulation results show that the proposed controller can
perform an efficient search for the optimal gains of PID con-
troller. By comparing between PSO method and BF technique,

it shows that PSO method can improve the dynamic
performance of the system in a better way.
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