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Abstract

Herzog and Srinivasan have conjectured that for any homogeneous k-algebra, the degree is
bounded above by a function of the maximal degrees of the syzygies. Combining the syzygy
quadrangle decomposition of Peeva and Sturmfels and a delicate case analysis, we prove that
this conjectured bound holds for codimension 2 lattice ideals.
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1. Introduction

Let R=k[x1; : : : ; xn] be a polynomial ring in n variables over a ?eld k, let deg(xi)=1,
and let I ⊂ R be a homogeneous ideal. If the Hilbert polynomial of R=I is

∑m
i=0 aiti,

then the degree of the ideal I , written deg(I), is simply amm!.
In this section we brieBy describe the progress to date on bounding the degree of an

ideal. In particular, we recall several conjectures which were made about the degree
and discuss what is known about the conjectures. In Section 2 we de?ne codimension 2
lattice ideals and explain Peeva and Sturmfels’ decomposition of the resolution of any
such ideal. Finally, in Section 3 we use the decomposition and a careful case analysis
of the possible syzygies to prove that the conjectured bound on the degree holds for
codimension 2 lattice ideals.
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A resolution is called pure if at each step there is only a single degree. That is, the
resolution looks like

0 → R(−dp)bp → R(−dp−1)bp−1 → · · · → R(−d2)b2 → R(−d1)b1 → R:

Huneke and Miller proved the following formula for the degree of a Cohen–Macaulay
algebra with a pure resolution [5].

Theorem 1 (Huneke and Miller). Let R=I be a Cohen–Macaulay algebra with a pure
resolution as displayed above. Then deg(I) = (

∏p
i=1 di)=p!.

One might hope that when the resolution is not pure that it is possible to write a
similar closed formula for the degree in terms of the degrees of the syzygies. This
does not appear to be the case, however, Huneke and Srinivasan made a conjecture
using similar formulas to bound the degree [4].

Conjecture 2 (Huneke and Srinivasan). Let R=I be a Cohen–Macaulay algebra with
resolution of the form

0 →
⊕
j∈Jp

R(−dp;j) → · · · →
⊕
j∈J2

R(−d2; j) →
⊕
j∈J1

R(−d1; j) → R:

Let mi = min {di;j ∈ Ji} be the minimum degree shift at the ith step and let Mi =
max {di;j ∈ Ji} be the maximum degree shift at the ith step. Then

∏p
i=1 mi

p!
6 deg(I)6

∏p
i=1 Mi

p!
:

Notice that since R=I is Cohen–Macaulay, p is the codimension of I .
Due to work by Herzog and Srinivasan [4], Conjecture 2 is known to be true for

the following types of ideals.

– complete intersections
– perfect ideals with quasipure resolutions (di;j6di+1; j for all i; j)
– perfect ideals of codimension 2
– Gorenstein ideals of codimension 3 generated by 5 elements (the upper bound

holds for all codimension 3 Gorenstein ideals)
– perfect stable monomial ideals (as de?ned by Eliahou and Kervaire [3])
– perfect squarefree strongly stable monomial ideals (see Aramova et al. [1])

Generalizing even further, one might want to omit the Cohen–Macaulay restriction.
Consider I = (x2; xy) ⊂ k[x; y]. Then deg(I) = 1, m1 = 2 and m2 = 3, but (2)(3)=2!¿ 1.
So we know that the lower bound does not hold for non-Cohen–Macaulay algebras
and therefore we consider just the upper bound in the non-Cohen–Macaulay case.

Conjecture 3 (Herzog and Srinivasan). Let I be a homogeneous ideal of codimension
d and Mi as de6ned above, then deg(I)6 (

∏d
i=1 Mi)=d!.
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Herzog and Srinivasan showed that Conjecture 3 is true in three cases.

– stable monomial ideals (as de?ned by Eliahou and Kervaire [3])
– squarefree strongly stable monomial ideals (see Aramova et al. [1])
– ideals with a q-linear resolution (all the generators are in degree q and all the

syzygies are linear)

Prior to the result presented here, the above cases formed a complete list of all
known cases where the conjectures are true.

2. Codimension 2 lattice ideals

Lattice ideals are a slight generalization of toric ideals. Codimension 2 lattice ideals
were studied by Peeva and Sturmfels in their paper [6]. We brieBy describe here the
relevant results from their paper, namely, the construction of an explicit resolution of
any such ideal.

We begin by de?ning a lattice ideal. Let R = k[x1; : : : ; xn] be a polynomial ring and
for any nonnegative integer vector a = (a1; : : : ; an), let xa = xa1

1 · · · xan
n . For any lattice

L ⊂ Zn we de?ne

IL = (xa+ − xa− | a∈L);

where a+ is the positive part of the vector a and a− is the negative part of a. That
is, in the ith component, (a+)i = ai if ai¿ 0 and zero otherwise. We de?ne a− in
a similar manner. We consider only lattices with no nonnegative vectors in order to
ensure the lattice ideal is homogeneous with respect to some positive grading.

We may de?ne a multigrading on R, and also on IL, by the group Zn=L. We will
move back and forth between this grading and the standard grading. It should be clear
from context which one is meant.

The codimension of IL is the minimal number of generators of the lattice L. When
IL has codimension 2, Peeva and Sturmfels constructed a resolution for IL in the
following way.

Let c be a multidegree and let xa be a monomial of degree c. Then there is a corre-
spondence between monomials of degree c and vectors u∈Z2 such that Bu6 a. The
monomial xa−Bu corresponds to the vector u. De?ne the polytope Pa =conv({u∈Z2 |
Bu6 a}). Notice that Pa and Pb are lattice translates of each other if and only if
a − b∈L. So, we generally write Pc instead of Pa.

Peeva and Sturmfels showed that each multidegree in which there is a minimal
syzygy corresponds to a primitive polytope. In particular, ?rst syzygies correspond to
line segments, second syzygies correspond to triangles and third syzygies correspond to
quadrangles. Further, the syzygy triangles consist of three syzygy line segments and the
syzygy quadrangles consist of four syzygy triangles. For details on this correspondence,
see Peeva and Sturmfels paper [6]. A resolution of the ideal generated by the binomials
corresponding to the four segments is found by the following method.

Let Pc be a polytope corresponding to a syzygy quadrangle. We start by writing
the two generators of IL corresponding to the sides of the quadrangle as � = �′ − �′′
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and � = �′ − �′′. Then we determine vectors p, r, s, and t by taking the greatest
common divisors of a term of � and a term of �. For example, choose p such that
xp = gcd(�′; �′). We set the remaining factors to be xu+ , xu− , xv+ , and xv− and so we
have � = xu+xpxt − xu−xrxs and � = xv+xpxs − xv−xrxt.

A diagonal vector of the quadrangle is a sum or diMerence of the two edge vectors.
Hence we can derive representations for the generators which correspond to the diag-
onals from the generators for � and � by taking the sum or diMerence of the exponent
vectors of the binomials � and �. This procedure gives �=xu+xv+x2p−xu−xv−x2r and
� = xu+xv−x2t − xu−xv+x2s. Notice that in order to generate an ideal of codimension
2, the four generators of the ideal IL cannot share a common factor.

Putting all of this into a sequence, the resolution of the four generators derived from
Pc has the form

0 → R




−xs

xt

xr

−xp




−−−−−→ R4




xv+xp xv−xr −xv−xt −xv+xs

xu−xr xu+xp xu−xs xu+xt

−xt −xs 0 0
0 0 xp xr




−−−−−−−−−−−−−−−−−−−−−−−−→ R4 (� � � �)−−−−−−−−−−−−→ R;

where

� = xu+xtxp − xu−xsxr; � = xv+xsxp − xv−xtxr;

� = xu+xv+x2p − xu−xv−x2r and � = xu+xv−x2t − xu−xv+x2s:

The resolutions corresponding to the syzygy quadrangles may then be used to build
a resolution for R=IL.

Theorem 4 (Peeva and Sturmfels). If R=IL is not Cohen–Macaulay, then the sum of
the complexes corresponding to syzygy quadrangles is a minimal free resolution of
R=IL.

3. Bounding the degree for codimension 2 lattice ideals

Using the decomposition of the resolution in terms of the syzygy quadrangles given
in the previous section, we can now show that Conjecture 3 is true for codimension 2
lattice ideals.

Theorem 5. If IL is a homogeneous codimension 2 lattice ideal, then Conjecture 2
holds. That is, for a homogeneous codimension 2 lattice ideal IL, if M1 is the maximal
degree of the generators of IL and M2 is the maximal degree of the syzygies on the
generators, then

deg(IL)6
M1M2

2
:

In order to prove this theorem, we ?rst prove a special case.
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Lemma 6. Let IL be a lattice ideal and let J be an ideal whose four generators are
associated to a single syzygy quadrangle of IL. Then Theorem 5 holds for J .

Proof. Let J be the ideal whose four generators are associated to a single syzygy
quadrangle of IL. Using the resolution described in the previous section, we can write
down the Hilbert series for R=J . That is,

HR=J (y) =
f(y)

(1 − y)n
where f(y) =

n∑
i=1

∑
j∈Ji

(−1)iydi; j :

Canceling powers of (1 − y), we obtain

HR=J (y) =
g(y)

(1 − y)n−2 :

So deg(J ) = g(1) = 1
2f

′′(1).
For any vector v = |v|= (v1; v2; : : : ; vn), let v = v1 + v2 + · · ·+ vn. Using this notation

and our knowledge of the di;j from the resolution, we can write deg(J ) in terms of
u+, u−, v+, v−, p, r, s, and t.

Since � and � are homogeneous polynomials, there are relations between the eight
variables u+, u−, v+, v−, p, r, s, and t which arise because the degrees of the terms in
the binomials are equal. Using these relations, we can eliminate u− and v− and write
deg(J ) in terms of the other six variables, u+, v+, p, r, s, and t. So,

deg(J ) = u+v+ + u+p + v+p + p2 − pr + u+s + ps + v+t + pt:

Now, what are the possibilities for M1 and M2? M1 could be deg(�), deg(�), deg(�),
or deg(�) and M2 could be deg(�)+s, deg(�)+t, deg(�)+p, or deg(�)+r. We proceed
by investigating these cases.

We begin by using the fact that the syzygies are homogeneous to describe some
relations on the exponents.

v+ + p + deg(�) = u− + r + deg(�) = t + deg(�);

v− + r + deg(�) = u+ + p + deg(�) = s + deg(�);

v− + t + deg(�) = u− + s + deg(�) = p + deg(�);

v+ + s + deg(�) = u+ + t + deg(�) = r + deg(�):

From these equalities, we can distill the inequalities deg(�) + deg(�)¿ 2 deg(�)
and deg(�) + deg(�)¿ 2 deg(�). Hence M1 = deg(�) or deg(�). Since � and � are
interchangeable, we can assume M1 = deg(�).

This leaves us with four cases to check corresponding to the four possible values
of M2. In each case we consider the expression for M1M2 − 2 deg(J ). We expand the
expression in terms of u+, u−, v+, v−, p, r, s and t and then eliminate two of the
variables using the equations arising from the homogeneity conditions. The choice of
which variables to eliminate is not obvious, but there is always a nice choice which
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makes it easier to show that the expression is nonnegative. Then, in each case, we can
show that the expression is nonnegative by using the inequalities that arise from the
choices of M1 and M2. Which inequalities were necessary and how to use them were
not obvious at ?rst glance so a computer program PORTA [2] was used to help reduce
the inequalities. Once it was clear what we should look for, it was easy to do these
by hand.

Consider the case where M2 = deg(�) + t. If we eliminate u− and v+, the expression
for M1M2 − deg(J ) can be rewritten as

u2
+ + v2

− + u+(p − s) + v−(r − s) + u+(t − r) + u+t + v−(t − p) + v−t + 2t2.
The choices of M1 and M2 in this case imply that p¿ s, r¿ s, t¿ r, and t¿p.

It is clear, therefore, that the above expression is nonnegative.
The other three cases look similar although diMerent eliminations and inequalities

are used for each case.
So, for every possible choice of M1 and M2, the expression M1M2 − 2 deg(J ) is

nonnegative. Therefore all ideals J arising from a syzygy quadrangle satisfy the bound
of Conjecture 3.

Proof of Theorem 5. If R=IL is Cohen–Macaulay, then we know from Herzog and
Srinivasan’s paper [4] that it satis?es the bound. So, let us assume R=IL is not Cohen–
Macaulay. We may construct a resolution for R=IL via its syzygy quadrangles.

Let J be an ideal whose four generators are associated to a single syzygy quadrangle
of IL. Since, according to Theorem 4, the syzygies from this resolution are also syzy-
gies of R=L, we know that M1(J )6M1(IL) and M2(J )6M2(IL). Together these
imply that

M1(J )M2(J )
2

6
M1(IL)M2(IL)

2
:

On the other hand, since J ⊂ IL, we have that deg(IL)6 deg(J ).
By Lemma 6, we know that the bound holds for J . That is

deg(J )6
M1(J )M2(J )

2
:

Hence,

deg(IL)6 deg(J )6
M1(J )M2(J )

2
6

M1(IL)M2(IL)
2

:

4. Further thoughts

We have shown that the conjecture of Herzog and Srinivasan is true for codimension
two lattice ideals. For non-Cohen–Macaulay codimension 2 lattice ideals, this bound
cannot be tight, that is, we cannot force the expression M1M2 − 2 deg(J ) to be zero.
Suppose we try to force the expression to be zero, then the squared variables would
have to be zero. In the case where M2 = deg(�) + t for instance, it would force u+,
v−, and t to be zero. So M2 = deg � which forces p = r = s = t = 0. Hence IL is
Cohen–Macaulay and we have a contradiction. The other cases are similar.
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Although we cannot ?nd an ideal where equality holds, one way to try to make the
above expression small, that is, to make M1M2 close to 2 deg(J ), is to choose an ideal
where p= r = s= t. Doing this also forces u+ =u− and v+ = v−. Hence the expression
M1M2 − 2 deg(J ) = u2

+ + v2
+ + u+p + u−p + 2p2 for all choices of M1 and M2. If we

then let u+ =v+ =0 and p=1, we get some ideal of degree 2 with M1 =2 and M2 =3.
For example, in four variables the lattice generated by (1;−1;−1; 1) and (1;−1; 1;−1)
gives the ideal (ad− bc; ac− bd; a2 − b2; c2 −d2) which has this form. Thus the bound
is quite close to being tight. On the other hand, if we do not require u+ = v+ = 0, the
expression M1M2 − 2 deg(J ) increases like (deg(�))2 as u+, u−, or p increases.

The general form of a resolution for codimension 3 or higher lattice ideals is un-
known. These higher codimension lattice ideals do not seem to lend themselves to
the same sort of decomposition as in codimension 2, so extending the method we
used here to prove the bound for codimension 3 does not seem promising. The case
of non-Cohen–Macaulay ideals of codimension 2 other than lattice ideals is also still
open.
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