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a b s t r a c t

Most well-known transcendental functions usually take transcen-
dental values at algebraic points belonging to their domains, the
algebraic exceptions forming the so-called exceptional set. For in-
stance, the exceptional set of the function ez−

√
2 is the set {

√
2}, as

follows from the Hermite–Lindemann theorem. In this paper, we
shall use interpolation formulae to prove that any subset of Q is
the exceptional set of uncountably many hypertranscendental en-
tire functions with order of growth as small as we wish. Moreover
these functions are algebraically independent over C.

© 2011 Elsevier GmbH. All rights reserved.

1. Introduction: a brief survey on transcendental numbers

We say that a complex number α is algebraic if there exists a nonzero polynomial P ∈ Q[x] with
P(α) = 0. If no such polynomial exists, α is transcendental. The set of algebraic numbers forms a field
denoted by Q.

Eulerwas probably the first person to define transcendental numbers in themodern sense (see [4]).
But transcendental number theory began in 1844 with Liouville’s proof [10] that if an algebraic
numberα has degreen > 1, then there exists a constantC > 0 such that |α−p/q| > Cq−n, for all p/q ∈

Q\{0}. Using this result, Liouville gave the first explicit examples of transcendental numbers, e.g., the
‘‘Liouville number’’

∑
n≥0 10

−n!. There are several classical theorems on transcendental numbers. Let
us state three of them to make this text self-contained.

In 1872 [6] proved that e is transcendental, and in 1884 [9] extended Hermite’s method to prove
that π is also transcendental. In fact, Lindemann proved a more general result.

Theorem 1 (Hermite–Lindemann). The number eα is transcendental for any nonzero algebraic number α.
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As a consequence, the numbers e
√
2 and ei are transcendental (i =

√
−1), as are log 2 and π , since

elog 2 = 2 and eπ i
= −1 are algebraic.

At the 1900 International Congress of Mathematicians in Paris, as the seventh in his famous list
of 23 problems, Hilbert gave a big push to transcendental number theory with his question of the
arithmetic nature of the power αβ of two algebraic numbers α and β . In 1934, Gelfond and Schneider,
independently, completely solved the problem (see [1, p. 9]).

Theorem 2 (Gelfond–Schneider). Assume that α and β are algebraic numbers, with α ≠ 0 or 1, and β
irrational. Then αβ is transcendental.

In particular, 2
√
2, (−1)

√
2, and eπ

= i−2i are all transcendental (we refer the reader to [18,13,7]
for recent results on the arithmetic nature of xy, with both x and y transcendental). Since the sum
of transcendental numbers can be algebraic (e.g., e + (−e)), one may ask about the nature of the
sum of transcendental numbers as in the Hermite–Lindemann theorem. For instance, is e + e

√
2

transcendental? This natural question leads to a beautiful generalization of the Hermite–Lindemann
theorem due to Lindemann and Weierstrass.

Theorem 3 (Lindemann–Weierstrass). Let α1, . . . , αn be algebraic numbers linearly independent over
Q. Then eα1 , . . . , eαn are algebraically independent over Q.

An algebraic function is a function f (x)which satisfies P(x, f (x)) = 0, where P(x, y) is a polynomial
with complex coefficients. For instance, functions that can be constructed using only a finite number
of elementary operations are examples of algebraic functions. A function which is not algebraic is,
by definition, a transcendental function, for example the trigonometric functions, the exponential
function, and their inverses. An interesting task is to study the arithmetic nature of a function at
algebraic points. For instance, it is a simple matter to show that an entire function, namely a function
which is analytic in C, is a transcendental function if and only if it is not a polynomial. Thus, one may
be interested in thinking only of the case of transcendental functions.

At the end of the XIXth century, after the proof by Hermite and Lindemann of the transcendence
of eα for all nonzero algebraic α, a question arose:

(∗)Does a transcendental analytic function usually take transcendental values at algebraic points?
In the example of the exponential function ez , the word ‘‘usually’’ means avoiding the exception

z = 0. After the Hermite–Lindemann theorem, it was expected that by evaluating a transcendental
function f at an algebraic point of its domain, we would find a transcendental number, but exceptions
can arise. All these exceptions (i.e., algebraic numbers at which the function assumes algebraic values)
form the so-called exceptional set, denoted by Sf . This set plays an important role in transcendental
number theory (see, e.g., [23] and references therein).

In 1886, Weierstrass found a positive answer for the question (∗), when he gave an example of
a transcendental entire function which takes rational values at all rational points. Later, [19] proved
that for each countable subset Σ ⊆ C and each dense subset T ⊆ C, there is a transcendental entire
function f such that f (Σ) ⊆ T . Another construction due to [20] produces an entire function f whose
derivatives f (t), for t = 0, 1, 2, . . . , all map Q into Q and so Sf (t) = Q. Two years later, G. Faber refined
this result by showing the existence of a transcendental entire function such that f (t)(Q) ⊆ Q(i), for
all t ≥ 0. A more elegant discussion on this subject can be found in [11,23].

In this paper,wewere able to generalize these two results, Stäckel’s and Faber’s. Beforewe state our
main theorem, we need a couple of definitions. A set of functions f1, . . . , fm is said to be algebraically
independent over a field K if there is no nonzero polynomial P , with coefficients in K , such that
P(f1(z), . . . , fm(z)) is the zero function. Otherwise, they are called algebraically dependent over K . In
1949,Morduhai and Boltovskoi introduced the term hypotranscendental function f by saying that there
exists n ≥ 0 such that the functions z, f (z), . . . , f (n)(z) are algebraically dependent overQ. Otherwise,
the function is called hypertranscendental, or transcendentally transcendental; see [15].

Definition 1 (Order). Let f be an entire function and R > 0; the order of growth of f is defined to be

lim
R→∞

sup
log log |f |R

log R
, where |f |R = sup

|z|=R
|f (z)|.
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By definition, it follows that a function f that satisfies |f |R ≤ eR
ρ
for some ρ > 0 and for all

R sufficiently large has order ≤ρ. Surprisingly, there exists a straightforward relation between the
order of a function and its integer values; Chudnovsky [3] proved that if f has order ρ, then the set

{z ∈ C : f (t)(z) ∈ Z for all t ≥ 0}

has cardinality at most ρ. For more see [3, Chapter 9].
Let us state our main result:

Theorem 4. Let A be a countable subset of C and let ρ be a positive real number. For any integer s ≥ 0
and any α ∈ A, let Eα,s be a dense subset in C. Then there exists a set F of entire functions with the
following properties:

(a) For any f ∈ F , any α ∈ A and any integer s ≥ 0, f (s)(α) ∈ Eα,s.
(b) Any function f ∈ F has order at most ρ;

If F (s) denotes the set of sth derivatives of functions in F , that is, F (s)
= {f (s)

: f ∈ F }, then:

(c) For any integer m ≥ 1, any distinct functions f1, . . . , fm ∈


s≥0 F (s) and any nonzero polynomial
P ∈ C[X0, X1, . . . , Xm], the entire function P(z, f1(z), . . . , fm(z)) is not the zero function.

(d) The set F has the power of the continuum.

Note that the property (c) ensures that the functions in F are hypertranscendental.
One basic problem in the theory of transcendental numbers is to determine Sf , or at least to find

properties of this set. It is almost unnecessary to stress that this is not an easy problem. The question of
the possible exceptional sets was partially solved in 1965, when Mahler [12] proved that if A is closed
relative to Q, that is if α ∈ A then all its algebraic conjugates lie also in A, then it is the exceptional
set of some transcendental function. Since the exceptional sets of a function and its derivative can be
different, in thisworkwe consider amore general definition (includingmultiplicity): Let f be an entire
function.We define the exceptional set with multiplicity of f to be the set of pairs (α, t) ∈ Q×(N∪{0})
such that f (t)(α) ∈ Q. We denote it byMf .

In this paper we solve completely the problem of the possible exceptional sets with multiplicity of
a hypertranscendental function.

Theorem 5. If A × N ⊆ Q × N0, then there is an uncountable set FA,N of hypertranscendental entire
functions such that

Mf = A × N, (1.1)

for all f ∈ FA,N . Moreover the set

{f (t)(α) : (α, t) ∉ A × N and f ∈ FA,N} (1.2)

is algebraically independent over C.

2. Preliminary results

Some notation: throughout the paperwewrite L(P) for the sumof absolute values of coefficients of
a polynomial P , well-known as the length of P ,N0 denotes the setN∪{0} and [a, b] = {a, a+1, . . . , b},
where a < b are integers.

Before upsetting the reader with plenty of technical lemmas, we start with a brief overview of our
strategy for proving Theorem 1. We hope that this makes the following lemmas a little more natural.
In Theorem 1, we wish to find functions with certain prescribed properties. Well, such a function will
be taken as f (z) =

∑
∞

n=0 anPn(z), where the polynomials Pn will be appropriately chosen. First of
all, we need ensure that f is an entire function, and has a prescribed growth order; for that the ak’s
will be chosen as centers of balls with radii depending on Pk and of the required order. Secondly, the
sequence (Pn)n≥0 will be made explicit and it must be a key property—namely, for a certain sequence
(sn)n≥0 (to be made explicit and depending on an enumeration of Q = {α1, . . .}) the set of the indices
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for which P (sn)
k (αn) ≠ 0 is bounded. This ensures that f (s)(α) is actually a finite sum. After that, since

f (s)(α) is a finite sum, we can proceed by induction for finding infinite possibilities for each ak, which
can be chosen in a infinite set, namely the intersection of a ball with a dense set. Finally, the possibility
of choosing ak in an infinite set together with the property of the P (s)

k ’s guarantees the uncountability
of these possible functions.

Now, let us get to the work.

Lemma 1. Let P(z) ∈ C[z] be a polynomial and d ≥ deg(P) (in the case of P ≡ 0, d can be taken as any
non-negative real number); then

|P(z)| ≤ L(P)max{1, |z|}d, for all z ∈ C. (2.1)

Proof. Write

P(z) = a0 + a1z + · · · + adeg(P)zdeg(P).

The triangular inequality yields

|P(z)| ≤ |a0| + |a1||z| + · · · + |adeg(P)||zdeg(P)
|.

Since |z|k ≤ max{1, |z|}deg(P), for all k ∈ [0, deg(P)] and z ∈ C, we get

|P(z)| ≤ (|a0| + · · · + |adeg(P)|)max{1, |z|}deg(P)

≤ L(P)max{1, |z|}d. �

Lemma 2 (Analyticity). Let (Pn(z))n≥0 ∈ C[z] be a sequence of nonzero polynomials, and let ρ be a
positive real number. Set m0 = 1 and by recurrence mk = max{⌈ deg(Pk)

ρ
⌉,mk−1 + 1} for k ≥ 1. If the

sequence (an)n≥0 ∈ C satisfies

|ak| ≤
1

L(Pk)mk!
(2.2)

for all k ≥ 0, then the series
∑

anPn(z) converges absolutely and uniformly on any compact sets; in
particular, this gives an entire function; moreover its sum f (z) has order at most ρ .

Proof. We define (Qn(z))n≥0 ∈ C[z] and (bn)n≥0 ∈ C as follows:

Qn(z) =


0, if n ≠ mk
Pk(z), if n = mk

and bmk = ak for k ≥ 0. Since 1 = m0 < m1 < m2 < · · ·, we have that the Qn’s and bn’s are well
defined and moreover

∑
∞

n=0 anPn(z) =
∑

∞

n=0 bnQn(z). Below, one can see the gaps of zeros in the
sequence (Qn)n≥0:

0, P0(z), 0, . . . , 0  
m1−m0−1

, P1(z), 0, . . . , 0  
m2−m1−1

, P2(z), 0, . . . .

Also, if Qn is nonzero, then n = mk for some k ≥ 0. Hence

deg(Qn) = deg(Qmk) = deg(Pk) ≤ mkρ = nρ.

Thus we get by Lemma 1

|Qn(z)| ≤ L(Qn)max{1, |z|}nρ,
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for all n ≥ 0. Let K ⊆ C be a compact set; then |z| ≤ R, for some R > 0 and any z ∈ K . Therefore, in
K , we havebmkQmk(z)

 ≤ |bmk ||L(Qmk)|max{1, |z|}mkρ

= |ak||L(Pk)|max{1, |z|}mkρ

≤
max{1, |z|}mkρ

mk!
.

We conclude that |bmkQmk(z)| ≤ Mk, for all z ∈ K , where Mk =
max{1,R}mkρ

mk!
. On the other hand,

∞−
k=0

Mk ≤

∞−
n=0

max{1, R}nρ

n!
= emax{1,R}ρ . (2.3)

Therefore f (z) =
∑

∞

k=0 bmkQmk(z) =
∑

∞

n=0 anPn(z) is an entire function (by the Weierstrass M-test).
From the inequality in (2.3), we deduce that f has order at most ρ. �

Now, let us enumerate the set A in Theorem 4 as {α1, α2, α3, . . .}. All integer numbers n ≥ 1 can be
written uniquely in the form n =

mn(mn+1)
2 +jn; formn ≥ 0 and 1 ≤ jn ≤ mn+1, define γn = αmn+2−jn .

Now, let us construct a sequence of polynomials as follows:

P0(z) = 1 and Pn(z) = (z − γ1) · · · (z − γn) for n ≥ 1.

Here we list the first few polynomials:

P0(z) = 1
P1(z) = (z − α1)

P2(z) = (z − α1)(z − α2)

P3(z) = (z − α1)
2(z − α2)

P4(z) = (z − α1)
2(z − α2)(z − α3)

P5(z) = (z − α1)
2(z − α2)

2(z − α3)

P6(z) = (z − α1)
3(z − α2)

2(z − α3)

P7(z) = (z − α1)
3(z − α2)

2(z − α3)(z − α4)

....

The pattern can be seen by following the arrows and picking up the corresponding term at each node
in Fig. 1.

With the same notation, we set sn = jn − 1.

Lemma 3 (Truncation). For n ≥ 1, we have P (sn)
n−1(γn) ≠ 0 and P (sn)

l (γn) = 0 when l ≥ n.

Proof. Let us partition the set of these polynomials into infinitely many disjoint sets, in the following
way:

D0 = {P0} and Dm = {Pdm , Pdm+1, . . . , Pdm+(m−1)}

where dm = m +
(m−1)(m−2)

2 , form > 0. Explicitly, the m polynomials in Dm are defined as

Pdm(z) = (z − α1)
m−1(z − α2)

m−2
· · · (z − αm−2)

2(z − αm−1)(z − αm)

and for j ∈ [1,m − 1],

Pdm+j(z) = Pdm(z)
j∏

t=1

(z − αt).
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Fig. 1. Building the Pn ’s.

Also, we may deduce that γdm+k = αm−k and sdm+k = k. Now, by construction of the polynomials,
it is enough to prove the lemma for k = n. Let us distinguish two cases. The first one is that where
Pn−1 and Pn are in Dm, for somem ≥ 2. Thus Pn−1 = Pdm+k and Pn = Pdm+k+1, for some k ∈ [0,m− 2].
Therefore we must prove that P (k+1)

dm+k (αm−k−1) ≠ 0 and P (k+1)
dm+k+1(αm−k−1) = 0. The result follows

because αm−k−1 is a zero of Pn−1 with multiplicity k+ 1, which means P (sn)
n−1(γn) ≠ 0 and, on the other

hand, αm−k−1 is a zero of Pn(z) with multiplicity k + 2, which implies P (sn)
n (γn) = 0.

The second case is that where Pn−1 ∈ Dm−1 and Pn ∈ Dm, for some m ≥ 1. In this case Pn(z) =

Pn−1(z)(z − αm), where

Pn−1(z) = (z − α1)
m−1

· · · (z − αm−2)
2(z − αm−1).

It is easy see that P (sn)
n−1(γn) = Pn−1(αm) ≠ 0 and P (sn)

n (γn) = Pn(αm) = 0. �

Lemma 4 (Identity). If
∑

∞

k=0 akPk(z) =
∑

∞

k=0 bkPk(z) for all z ∈ C, then ak = bk for each k ≥ 0.

Proof. It suffices to prove that if f (z) :=
∑

∞

k=0 akPk(z) = 0 for all z ∈ C, then (ak)k≥0 is identically 0.
Notice that a0 = f (α1) = 0. Assuming that a0, a1, . . . , an−1 are all 0, by Lemma 3, we have

0 =

∞−
k=0

akP
(sn+1)
k (αγn+1)

=

n−1−
k=0

akP
(sn+1)
k (γn+1) + anP

(sn+1)
n (αjn+1) +

∞−
k=n+1

akP
(sn+1)
k (αjn+1)

= anP
(sn+1)
n (γn+1).

Since P (sn+1)
n (γn+1) ≠ 0, we have an = 0. Hence the proof will be completed by induction. �

Now we are able to prove our first theorem.

3. Proof of Theorem 1

We are going to construct the desired entire function by fixing the coefficients in the series∑
∞

k=0 akPk(z) recursively, where the sequence (Pk)k≥0 has been defined in Section 2.
First, with the same notation as in Lemma 2, the condition |ak| ≤ tk :=

1
L(Pk)mk!

will ensure∑
∞

k=0 akPk(z) to be entire with order at most ρ.
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Next,wewill fix the coefficients ak recursively. For n ≥ 1,wedefine En = Eγn,sn and let the numbers
βn := f (sn)(γn) =

∑
∞

k=0 akP
(sn)
k (γn). We are going to choose the value of ak such that βn ∈ Eγn,sn = En

for all n ≥ 1.
By Lemma 2, we know that P (sn)

l (γn) = 0 when l ≥ n, so βn is actually the finite sum∑n−1
k=0 akP

(sn)
k (γn). Notice that β1 = a0P

(0)
0 (α1) = a0 and E1 is dense, so we can choose a value for a0 in

an infinite set I0 such that 0 < |a0| ≤ t0 andβ1 ∈ E1. Now suppose that the values of {a0, a1, . . . , an−1}

are well fixed respectively in infinite sets Ik such that 0 < |ak| ≤ tk and βk ∈ Ek for 0 ≤ k ≤ n − 1. By
Lemma 3, we know that P (sn+1)

n (γn+1) ≠ 0; set

In :=


En − An

P (sn+1)
n (γn+1)


∩ B (0; tn) \ {0},

where An :=
∑n−1

k=0 akP
(sn+1)
k (γn+1). So we can pick a proper value of an in the infinite set In; thus

0 < |an| ≤ tn and βn =
∑n−1

k=0 akP
(sn+1)
k (γn+1) + anP

(sn+1)
n (γn+1) ∈ En.

So now by induction, all the ak are well chosen such that for all k ≥ 0 we have 0 < |ak| ≤ tk and
βk+1 ∈ Ek+1. Thus f is an entire function satisfying the conditions (a) and (b).

Let FA be the set of all entire functions satisfying the conditions (a) and (b). Set I = I0 × I1 × · · ·

and consider the function φ : I → FA given by φ(a0, a1, . . .) =
∑

∞

n=0 anPn(z). That φ is well
defined follows fromproof above; also Lemma4 implies thatφ is one-to-one.HenceFA is uncountable,
since I is.

There exists an uncountable set B := {ξ} ∪ {Tλ,s}λ∈Λ,s≥0 algebraically independent over Q
(for instance the transcendental basis of the field extension C/Q). Consider A′

= {ξ} ∪ A. Fix λ ∈ Λ;
set Eλ

ξ,s = {αTλ,s : α ∈ Q \ {0}} and Eλ
αn,s = Eα,s for all α ∈ A and s ≥ 0. By the all previous discussion,

there exists a set Fλ of entire functions satisfying the conditions (b) and (d), as well as the condition
(a) for the new set A′ (which is still countable). Next, for each λ ∈ Λ take a unique function fλ ∈ Fλ.
Set F = {fλ}λ∈Λ; we shall prove that this is our desired set. In fact, by construction, this set satisfies
the conditions (a), (b) and (d). To prove (c), take distinct functions f1, . . . , fm ∈


s≥0 F (s). Therefore

fj(z) = f
(sj)
λj

(z) for j = 1, . . . ,m and for some pairwise distinct pairs (λ1, s1), . . . , (λm, sm) ∈ Λ × N0.
It follows that fj(ξ) = γjTλj,sj for j = 1, . . . ,m and some γ ’s ∈ Q \ {0}. This yields that the numbers
ξ, f1(ξ), . . . , fm(ξ) are algebraically independent and then that (c) holds. �

Before going further, it is worth noting some interesting consequences of Theorem 4 which give
generalizations for classical results on this subject. The suitable choices of A, Eα,s are noted in
parentheses.

Corollary 1 (Generalization of the First Stäckel Theorem). For each countable subset Σ ⊆ C and each
dense subset T ⊆ C there is a hypertranscendental entire function f such that f (s)(Σ) ⊆ T for s ≥ 0.
(A = Σ, Eα,s = T .)

Corollary 2 (Generalization of the Second Stäckel Theorem). Let A ⊆ C be countable and dense inC; then
there is a hypertranscendental entire function f such that f (s)(A) ⊆ A, for s ≥ 0. (Eα,s = A.)

Corollary 3 (Generalization of Faber’s Theorem). There exists a hypertranscendental entire function such
that f (s)(Q) ⊆ Q(i), for s ≥ 0. (A = Q, Eα,s = Q(i).)

4. Applications to exceptional sets: proof of Theorem 2

4.1. An overview on exceptional sets

Weierstrass (see [11]) initiated the notion of investigating the set of algebraic numbers where a
given transcendental entire function f takes algebraic values. For an entire function f , we define the
exceptional set of f as follows:

Sf = {α ∈ Q : f (α) ∈ Q}.
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The study of exceptional sets started in 1886 with a letter fromWeierstrass to Strauss. This study was
later developed by Strauss, Stäckel, and Faber. Further results are due to van der Poorten, Gramain,
Surroca and others (see [5,21]).

Some exceptional sets:

Example 1. Any finite set {α1, . . . , αn} ⊆ Q is exceptional. In fact, if f1(z) = e(z−α1)···(z−αk), then the
Hermite–Lindemann theorem implies Sf1 = {α1, . . . , αk}.

Example 2. The empty set is also exceptional. Indeed, if f2(z) = ez + ez+1, the Lindemann–
Weierstrass theorem implies Sf2 = ∅.

Example 3. Some infinite sets are also known to be exceptional. For instance, if f3(z) = 2z, f4(z) =

eiπz , then Sf3 = Sf4 = Q, by the Gelfond–Schneider theorem.

We point out that is not knownwhether an elementary function1 with an exceptional set is in Z or
N. For obtaining such examples, we appeal to Schanuel’s conjecture, one of the main open problems
in transcendental number theory.

Conjecture 1 (Schanuel). If z1, . . . , zn are complex numbers linearly independent over Q, then among
the numbers {z1, . . . , zn, ez1 , . . . , ezn}, at least n are algebraically independent.

This conjecture was introduced in the 1960’s by Schanuel in a course given by [8]. Several classical
consequences of this conjecture, together with an elegant exposition of it, can be found in [17,
Chapter 10, Section 7G]. Very recent consequences can be found in [2,14,22].

Example 4. Assume that Schanuel’s conjecture is true. If f5(z) = sin(πz)ez, f6(z) = 23z and f7(z) =

222
z−1

, then Sf5 = Sf6 = Z and Sf7 = N.

Summarizing, the sets ∅, Q, Q (take Σ = T = Q in the first Stäckel theorem) and all finite sets
are exceptional. But, what are all the possible exceptional sets?

Before answering this question, observe that the exceptional sets of a function f and its derivative f ′

can be distinct. For instance, if f (z) = 2z , then Sf = Q. However, f ′(z) = 2z log 2 and thus Sf ′ ∩Sf = ∅

(since log 2 is transcendental). This motivates a more general definition where multiplicities are
included. Let f be an entire function. We define the exceptional set with multiplicity of f to be

Mf = {(α, t) ∈ Q × N0 : f (t)(α) ∈ Q}.

Example 5. If f (z) = ez +
∑

10−n!, g(z) = ez + ez+1 and h(z) = ez , then Mf = {0} × N, Mg = ∅

and Mh = {0} × N0.

A relation between Sf and Mf is given in the next result.

Proposition 1. If Mf = A × N, then Sf (t) = A for all t ∈ N.

Proof. If t ∈ N and α ∈ Q, then α ∈ Sf (t) , if and only if f (t)(α) ∈ Q. SinceMf = A×N and t ∈ N , then
f (t)(α) ∈ Q if and only if α ∈ A. �

In view of the previous proposition, we can restate our question: what are the possible subsets of
Q × N0 which are exceptional sets with multiplicity of a transcendental function?

1 A function built from a finite number of exponentials, logarithms, constants, one variable, and nth roots through
composition and combinations using the four elementary operations (+, −, ×, ÷). By allowing these functions (and constants)
to be complex numbers, trigonometric functions and their inverses become included in the elementary functions.
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How about the previous question where we replace transcendental functions by hypertranscen-
dental functions? Recall that by a hypertranscendental function, we mean a function which does
not satisfy any algebraic differential equations. Clearly, hypertranscendental functions are transcen-
dental. The exponential function ez gives an example of a transcendental function which is not
hypertranscendental and thewell-known zeta function (ζ (z)) and Gamma function (Γ (z)) are hyper-
transcendental; see [16].Moreover (see [16]), sums, products, differences, quotients and compositions
of hypotranscendental functions are again hypotranscendental; e.g., the function sin(ee

1/z
− 2π log z)

is hypotranscendental.
In view of that, we note that all the previous functions fi, with i ∈ [1, 7], are hypotranscendental.

Hence there arises a very much stronger question: what are the possible exceptional sets with
multiplicity of hypertranscendental functions?

All this mystery is finished by Theorem 5: every A × N ⊆ Q × N0 is the exceptional set with
multiplicity of uncountablymany hypertranscendental entire functions with order of growth as small
as we wish. In particular, when N = N0, A ⊆ Q, Theorem 5 and Proposition 1 yield:

Corollary 4. If A ⊆ Q, then there is an uncountable set, FA, of hypertranscendental entire functions such
that, if f ∈ FA, then

Sf (t) = A for t ≥ 0.

Moreover, the set

{f (n)(α) : α ∈ Q \ A, n ≥ 0 and f ∈ FA} (4.1)

is algebraically independent.

Thus, all that remains is to prove Theorem 5.

4.2. Proof of Theorem 5

Suppose that A, Q \ A, N and N0 \N are all infinite sets; thus we can enumerate Q = {α0, α1, . . .}
and N0 = {s0, s1, . . .} where A = {α2, α4, . . . , α2n, . . .} and N = {s2, s4, . . . , s2n, . . .}. Consider
{Tλ,m,l : λ ∈ Λ and (m, l) ∈ N0 × N0}, an uncountable set and algebraically independent, and set
Aλ,m,l = {γ Tλ,m,l : γ ∈ Q \ {0}}, a dense subset of C. For λ ∈ Λ, define

Eλ
αn,sk =


Q(i), se (n, k) ∈ (2Z)2

Aλ,n,k, se (n, k) ∉ (2Z)2.

Now by Theorem 4, there exists an uncountable setFλ of hypertranscendental entire functions f with
f (l2k)(α2m) ∈ Q(i) and f (l)(αm) ∈ Aλ,m,l, for each (αm, l) ∉ A×N . Therefore it is plain thatMf = A×N .
For all λ ∈ Λ, we take only one function fλ ∈ Fλ. Set FA,N = {fλ}λ∈Λ; so Mfλ = A × N for all
λ ∈ Λ. Also, for all pairwise distinct ternaries (λ1, αn1 , t1), . . . , (λk, αnk , tk) with (α, t)′s ∉ A×N and
λ′s ∈ Λ, the numbers f (t1)

λ1
(αn1), . . . , f

(tk)
λk

(αnk) lie respectively in Aλ1,n1,t1 , . . . , Aλk,nk,tk ; hence they
are algebraically independent.

For the case where A is finite, we can suppose that A = {α1, . . . , αm}. Take Eλ
αk,s2l = Q(i) for any

k ∈ [1,m] and any l ≥ 0; define Eλ
αk,l

= Aλ,k,l for each (αk, l) ∈ Q × N0 \ A × N . Then for this case we
proceed as in the proof above. The other possibilities are solved in the same way. �

Returning to the exceptional sets, we still have the following last corollary.

Corollary 5. Let P(z1, . . . , zn) be a non-constant polynomial with algebraic coefficients. If f1, . . . , fn ∈
s≥0 F

(s)
A , then

SP(f1,...,fn) = A. (4.2)

Proof. In the case A = Q the result follows easily. If there is an α ∈ Q \ A, then by (4.1) the numbers
f1(α), . . . , fn(α) are algebraically independent, and therefore P(f1, . . . , fn)(α) ∈ Q if and only ifα ∈ A.
In other words SP(f1,...,fn) = A. �
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