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Abstract

In his works [Discrete Comput. Geom. 12 (1994) 223–236; Amer. Math. Monthly 102 (1995)
530] David Robbins proposed several interrelated conjectures on the area of the polygons in
in a circle as an algebraic function of its sides. Most recently, these conjectures have been est
in the course of several independent investigations. In this note we give an informal outline o
developments.
 2004 Published by Elsevier Inc.

1. Introduction

Let a1, a2, . . . , an be the side lengths of a convex polygon inscribed in a circle. W
is the area S= S(a1, a2, . . . , an) of the polygon as a function of the sides? This ques
goes back to Heron of Alexandria (the casen = 3) and Brahmagupta (the casen = 4). It
seems, David Robbins was the first to address this question in full generality and s
the way of phrasing the answer [8,9]. We start with the general remarks on the pr
(largely due to Robbins) and then outline recent developments in an informal essay

Following Robbins, we call polygons inscribed in a circle thecyclic polygons. We de-
note the vertices byA1,A2, . . . ,An and the center byO.

First, observe that S(a1, a2, . . . , an) is well defined, that is there exists at most one cy
polygon with the given (ordered list of) side lengths. Indeed, start with a large en
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circle and placen + 1 verticesA0,A1, . . . ,An at distance|Ai − Ai+1| = ai . Continuously
decreasing the radius we obtain a unique convex polygon withA0 = An, as desired.

Second, observe that S is a symmetric function inai . Indeed, this follows from the fac
that we can interchange triangles[OAi−1Ai] and[OAiAi+1]. The details are straightfo
ward.

Our final observation is the fact that S is an algebraic function of the side lengtai .
First, notice that it is polynomial in the coordinates of verticesAi = (xi, yi):

S= 1

2

∣∣∣∣x1 x2
y1 y2

∣∣∣∣ + 1

2

∣∣∣∣x2 x3
y2 y3

∣∣∣∣ + · · · + 1

2

∣∣∣∣xn x1
yn y1

∣∣∣∣ . (◦)

Here each summand is equal to the (signed) area of the triangle[0AiAi+1], and it is easy
to see that they add up to the area of the polygon (0 denotes the origin).

Now, move the polygon in such way thatA1 = (0,0) and A2 = (a1,0). There are
2(n − 2) free variables for the remaining vertex coordinates and 2 variables for the c
nates of the centerO. Together these give 2n − 2 variables. Similarly, the remaining sid
lengths given − 1 equations, the equality of the distance to the origin give anothern − 1
equations, which total 2n − 2 equations. One can show that these equations are
braically independent so all free coordinates are in fact the algebraic functions of th
lengthsai . Thus, from the formula(◦), so is the area S.

Note that depending on the orientation of the polygon, the (signed) area S given(◦)

is either positive or negative. Also, in the quadratic equations for the distances

(xi − xi+1)
2 + (yi − yi+1)

2 = a2
i

only the squared edge lengths appear. Thus, for eachn there exist a minimal polynomia
equationPn(S2, a2

1, . . . , a2
n) = 0 which has the squared area as its root. Changing the

variable, we obtainαn(16S2, a2
1, . . . , a2

n) = 0, which Robbins called thegeneralized Heron
polynomials.

As we mentioned above, polynomialsα3, α4 were well known. In his work [8,9], Rob
bins calculatedα5, α6 and made a number of conjectures on the general form of pol
mials αn. By now, his conjectures have largely been established in a series of rece
velopment. Before we move on to outline their solutions, let us mention that Varfolom
unaware of Robbins’ work, recently rediscovered some of his results and indepen
made a number of advances on the subject [12,13].

As the reader will see, we do not include any technical details, nor do we present
mal survey. Instead, give the reader a quick introduction to the subject and its basic
aiming to ease the entrance barrier and to simplify navigation through recent develop

2. The first coefficient

Based on small examples, David Robbins conjectured that the polynomialsαn aremonic
in variablez = 16S2 (“monic” means that the highest coefficient is equal to one). T

seemingly random observation is in fact very interesting and is strongly related to Sabitov’s
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theory and the proof of the bellows conjecture. This connection was independently d
ered by Connelly [3] and Varfolomeev [12], who gave two different proofs. Let us
elaborate on Sabitov’s work.

The story goes back to Connelly’s celebrated discovery of flexible (nonconvex) po
dra and hisbellows conjecture1 as to whether the volume remains invariant under flex
(continuous face-preserving deformations). We refer to [2] for background and refer
Later both Connelly and Sabitov conjectured that in fact the volume is integral over th
generated by squares of polyhedra’s edge lengths. This immediately implies the con
since nonzero polynomials have only finitely many roots, and thus allow only a fini
of possible volume values.

The bellows conjecture was established by Sabitov, who gave several consequen
proving expositions of his proof in a series of papers (see, e.g., [10,11]). Let�i denote
the edge lengths of the polytope with edge graph G, and letV denote its volume. Sabito
showed that there exists a nontrivial polynomial equationPG(V 2, �2

1, �
2
2, . . .) = 0. The dif-

ficult part in the proof is not computing this polynomial but checking that the lea
coefficient is not zero. In fact, after a change of variablesP̃G(144V 2, �2

1, �
2
2, . . .) = 0 all

coefficients become integral, and the polynomialP̃G is monic in(144V 2).
Unfortunately, Sabitov’s proof is based on elimination theory and is more tech

than enlightening. Sabitov’s approach was later modified in [4] where thetheory of places
is used to prove the bellows conjecture.

Note that when the polytope is a simplex the resulting polynomial equation ca
viewed as (a different) generalization of the Heron formula [10]. The striking similari
two problems led Varfolomeev to rediscovery of some of Robbins’ ideas and resul
used Sabitov’s methods to show that polynomialsαn are monic [12].

Connelly came to his proof [3] independently, after [6] advertised Robbins’ efforts
observed the similarity as well, and used the theory of places, to obtain a beautif
concise proof of this Robbins conjecture.

In the spirit of the bellows conjecture, both authors address the question as to
cyclic polytopes are flexible. The immediate implication of the above result is the fac
the (symplectic) area is unchanged under flexing. In fact, as was shown by Connelly
earlier [1], the area of flexible cyclic polygons is always zero. This was also redisco
by Varfolomeev [12] (see also [3]).

3. The degree

The most aesthetically pleasing conjecture of Robbins is his proposed formula f
degree of generalized Heron polynomials (in the variablez = 16S2):

degα2k+1 = ∆k, degα2k+2 = 2∆k, where∆k = 2k + 1

2

(
2k

k

)
− 22k−1. (�)

1 Bob Connelly declines to take credit for the bellows conjecture and wrote to me that it was communic
him by various people, all of whom refer yet again to other people. Therefore, the conjecture is a folklore

area, while Connelly deserves a great deal of credit for its advancement.
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Let us explain the origin of this formula for∆n. Observe that formula(◦) works not only
for (the usual) cyclic polygons, but also for those with self-intersections, still inscr
in a circle. Therefore, the minimal polynomialαn(z) has at least as many real roots
the number of different areas of these self-intersecting polygons. Then, Robbins s
that for nearly equal side lengthsa1, a2, . . . , an all self-intersecting cyclic polygons hav
different areas. A simple combinatorial argument gives the r.h.s. in(�) for the number
of different self-intersecting cyclic polygons, and implies the desired lower bound o
degree ofαn.

Robbins’ conjecture for the degree, the formula(�), was established in [5], and later b
a simpler but related argument in [7]. Both proofs first obtain the corresponding formu
the degree of polynomial equations on the radius of the circle, and then move to the
of αn. The study in [5] goes much deeper, as the authors establish formal connection
Sabitov’s theory, which we outline below.

It was observed by Sabitov that not only the volume, but other “polynomial invaria
of polytopes are roots of polynomial relations with coefficients being polynomial in
squared side lengths. It is a natural general question to compute the degree of these
polynomials. We should emphasize that here we discuss only convex polytopes, so
technical difficulties of Sabitov’s approach do not appear in this case. Now, for co
polytopes not only the volume, butall diagonals are the roots of polynomial equations
thus one can think of them as of an extension of the Cauchy rigidity theorem. Follo
this logic, in [5] we refined a known algebraic proof of the Cauchy rigidity theorem
added an argument from algebraic geometry. We obtained a general upper bound
degree of minimal polynomial relations for all polynomial invariants of convex polyto
including the volume, (squared) diagonal lengths, etc. In this special case the upper
we obtain forPG is in terms ofcomplex realizations of the graph G (realizations inC3) and
in the worst case gives 2m, wherem is the number of edges in G (= the number of edge
in the polytope).

Now, after we learned from [6] about Robbins’ conjectures, we discovered a fo
connection between our work (Sabitov’s theory) and that of Robbins. Consider a bipy
with (large enough) equal length edges leaving north or south poles, and the edge
a1, a2, . . . , an in the middle. Clearly, the middle edges form the desired cyclic polygon
in fact different (real) realizations of this bipyramid produce different (self-intersec
cyclic polygons. Also, themain (north to south pole)diagonal is related by Pythagora
theorem to the radius. It may seem like our main upper bound is directly applicable
case to obtain the degree of the minimal polynomial relation for the radius. The prob
that the number of complex realizations is a difficult quantity to compute in most cas
fact, our logic moves backwards and is more convoluted.

First, we use an ad hoc combinatorial argument to compute explicitly the minimal
nomial relation for the radius and its degree. The corresponding polynomial relation
out to have a nice closed formula amenable to direct calculation. Then we use th
tionship described above to obtain the polynomial relation for the main diagonal, an
bound the number of complex realizations, which we show is equal to the number o
realizations (self-intersecting cyclic polygons). Finally, we apply our upper bound
rem to obtain the upper bound on the degree ofαn, the minimal polynomial for the area o

cyclic polygons. With Robbins’ matching lower bound we obtain the result.



694 I. Pak / Advances in Applied Mathematics 34 (2005) 690–696

lay a

cyclic

bins
d later
e of
nt to
s use
in the
e of a

s in
gons,
small

. As a
iately

o
lready
an ask
nice
le to

-
nclear
or ex-
xplicit

very
rmulas
It is interesting to note that we never actually obtain any useful formula forαn. In fact,
the only polynomial invariant that stands out in this case is the radius—all others p
supporting role. For example, instead of the area we could be proving formula(�) for the
degree of the minimal polynomial relation on the sum or squares of all diagonals in a
polygon.

Let us say a few words on the proof in [7, §5]. This work started out by David Rob
and Julie Roskies just a few month before Robbins’ premature death, and continue
with the help of Miller Maley. Their proof of the degree formula starts with the us
Möbius formulas for the radius of the cyclic polygon, which are essentially equivale
our formulas. Rather than utilize the general theory we develop in [5], the author
a simplified algebraic geometry argument adjusted in this particular case to obta
result. Basically, their argument is the same as our argument for the special cas
bipyramid.

Finally, let us note that Varfolomeev also studies explicit formulas for the radiu
cyclic polygons [12]. He also guesses the answer in terms of self-intersecting poly
but never obtains a general formula nor even calculates their number beyond few
cases.

4. Explicit formulas

One more Robbins’ conjecture concerns the form of polynomials ofα2k−1 versus that
of α2k . Roughly speaking, he claimed that given the formula forα2k−1 one can easily
obtain the formula forα2k as a product of the formula forα2k−1 and its variation. This
conjecture was established by Varfolomeev [12] by a direct argument (see also [7])
corollary, calculations of Robbins et al. for cyclic pentagons and heptagons immed
translate to give the formulas for cyclic hexagon and octagons [7,8].

It was Robbins’ wish to obtain a concise formula forα7 and although he did not live t
finish the project, such a formula was recently obtained in [7]. Of course, Robbins a
showed that some kind of formula exists, but given the large number of terms one c
if there is a way to simplify it. In view of our earlier impression (see above) that a
formula may exist only for the radius, we find it amazing that the authors were ab
obtain a concise formula for the area.

Let us mention that already the Robbins’ formula forα5 is very interesting as it ex
presses the area as a discriminant of a certain “mystery cubic” [9]. It remains u
where this cubic comes from and what is its role in the grand scheme of things. F
ample, Varfolomeev [12] does not notice this formula and uses rather elaborate e
formulas forα5.

Now, in [7] the authors obtain a closed formula forα7 in terms of a resultant of two
concise, but not generalizable polynomials. The resulting formula is nice but again
mysterious. It remains open whether this work can be extended to obtain concise fo

for αn, wheren � 9.
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5. Final remarks and open problems

From the point of view of Sabitov’s theory and our paper [5], it would be natura
ask for the minimal degree polynomial relations for the volume or the diagonal leng
various families of convex polytopes. As noted in [5], even for relatively small polyt
this problem is computationally intractable and new ideas are needed even to obt
exact asymptotic behavior. At the moment, the precise formulas that we found for r
bipyramids are clearly beyond reach in most cases.

An interesting twist on cyclic polygons was proposed in [7] where the authors d
what they call “semicyclic polygons”, where one side is forced to be a diameter a
length is not specified. It seems that much of the work extends to this case with
difficulty. We propose to consider an equivalent model of the centrally symmetric c
polygons with given edge lengths. This version has the advantage of being poss
generalize to cyclic polygons withZ/kZ cyclic symmetry. It would be interesting to s
if the analysis extends to this case. In general, one can consider general polytopes
given symmetry group. Developing the corresponding “equivariant Sabitov theory” s
like a fruitful direction.

When it comes to the area and generalized Heron polynomialsαn, it is probably too
much to ask for a concise general formula. Still, we remain optimistic of other res
venues. In his latest work [13], Varfolomeev calculated the Galois group ofα5 and showed
that it is the full group of permutationsS7 (he did this also for the radius). There seem to
no immediate implications of this result except perhaps the impossibility of “construc
of the cyclic pentagon with a ruler and a compass, given the generic lengths of edge
construction of a regular pentagon is well known). In any case, it would be nice to e
these calculations for generalαn.

Finally, further connections to rigidity theory are waiting to be explored. We refe
final remarks in [3] for directions and motivation. Also, an intriguing construction
finitely generated infinite-dimensional Lie algebra was announced in [13] and promi
be the subject of the future investigations. We are anxious to see how this theory
develops.
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