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0. Introduction

Any student of classical Riemannian Geometry is introduced to the notions of geodesics,
exponential maps, Jacobi fields and conjugate points. They also learn about the cut locus and
how geodesics stop minimizing when they pass through cut or conjugate points. They learn
how to construct continuous families about geodesics whose endpoints are not conjugate using
the Inverse Function Theorem and how Klingenberg used this approach to prove theorems about
long homotopies and the existence of geodesics. Naturally when they study spaces with sectional
curvature bounds, they first learn the Rauch comparison theorem and its implications. Everything
is proven using geometric analysis and the fact that the space is smooth (see for instance [10]).

On geodesic spaces things are not so simple. There is no exponential map in general and
geodesics need not extend. Even if they do extend, there need not be a unique extension. Fami-
lies of geodesics need not have Jacobi fields describing their infinitesimal behavior. There is not
enough smoothness to apply the Inverse Function Theorem to prove the existence of families
of geodesics. Rinow extended the notion of a conjugate point to geodesic spaces with exten-
sible geodesics and unique local geodesics in his book [18]. His notion is equivalent to what
we describe as a one-sided conjugate point: a point q along a geodesic y emanating from p
is one-sided conjugate to p if there are points q; converging to q and distinct geodesics oj, T;
joining p to q; converging to y. The same notion was applied in the setting of CBA(x) spaces
by Alexander and Bishop [1] and for exponential length spaces by the second author [20].

To enable our extension of these notions to geodesic spaces, we need to make a more precise
definition of the convergence of the geodesics (see Definition 1.4). This in turn requires spaces
that are locally uniformly minimizing, i.e., spaces with neighborhoods such that all geodesics of
sufficiently small length are minimizing. We do not require local uniqueness of geodesics as in
the above cited work. The various definitions are given in Section 1.

By a theorem of Warner [22] we see that the notion of a one-sided conjugate point is indeed
equivalent to the usual notion in the Riemannian setting. However, the notion of one-sided con-
jugate point is not the only notion of conjugate point that is equivalent to the standard notion on
a Riemannian manifold. While it was effective in proving the earlier results in [1] and [20], the
fact that p does not vary restricts its applications significantly. It cannot, for example, be used to
extend the work of Klingenberg. Jacobi fields on Riemannian manifolds are infinitesimal repre-
sentations of families of geodesics without requiring a common basepoint and in Klingenberg’s
work he allows both ends of the geodesics to vary. This leads us naturally to the notion of a
symmetric conjugate point (Definition 2.3). The definition is similar to one-sided conjugate ex-
cept now we have sequences p;, ¢; converging to p, g respectively and pairs of distinct geodesics
joining them converging to y as before. Nevertheless, in order to prove the long homotopy lemma
we need an even stronger notion of conjugate point to prove the existence of continuous families
of geodesics (Definitions 3.1 and 3.3). This is developed in Sections 3 and 4 and leads to the
notion of unreachable conjugate point (Definition 4.1). While the notion of unreachable con-
jugate point is needed to prove the existence of continuous families it is not equivalent to the
Riemannian notion (see Example 4.7).

In Section 5 we define ultimate conjugate points as those that are either symmetric conjugate
or unreachable conjugate (Definition 5.1). We prove this concept is an extension of the Rieman-
nian notion (Theorem 5.3). In fact a geodesic whose endpoints are not ultimate conjugate has a
unique family of geodesics about it (Proposition 5.4). It should be noted that Rinow was able to
prove the existence of a fixed basepoint continuous family away from one-sided conjugate points
in his book by essentially constructing a global exponential map [18]. Alexander and Bishop were
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able to prove the existence of continuous families under curvature bounds (see Theorem 11.1).
Here we do not require the space to have curvature bounds or an exponential map.

In Section 6 we extend Klingenberg’s Long Homotopy Lemma to geodesic spaces. That is
we prove: If a closed, contractible, nontrivial geodesic has length less than twice the ultimate
conjugate radius, then any null homotopy H (s,t) of the closed geodesic must pass through a
curve ¢y = H(-, 1y) of length at least twice the ultimate conjugate radius (see Definition 6.1
and Theorem 6.2). To prove this we first construct fans of geodesics running along curves (see
Definition 6.3, Lemma 6.4, Fig. 1). We carefully control the lengths of the geodesics in the
fans (Lemma 6.5, Fig. 2, Corollary 6.6) and then apply these fans to fill in two-dimensional
homotopies (Lemma 6.7).

In Section 7 we review various notions which extend the concept of the injectivity radius of
a Riemannian manifold. Recall that on a Riemannian manifold geodesics stop minimizing when
they are no longer the unique geodesic back to their starting point. On a geodesic space, like a
graph, a geodesic may continue to be minimizing. To this end we offer various refined notions
of injectivity radius (and corresponding cut loci) all of which extend the Riemannian notion:
FirstInj, UniqInj, MinRad, SymlInj and UltInj. We establish various inequalities between them.
For example the unique injectivity radius (the notion in [7, p. 119] which is the supremum of the
distance between points where geodesics are unique) is less than or equal to the minimal radius
(which is defined in terms of geodesics being minimal). These radii and cut loci are related to
the variety of notions defined by Burago, Burago and Ivanov, Miller and Pak, Otsu and Shioya,
Plaut and Zamfirescu (cf. [8,14-16,23]).

In Section 8, we prove Klingenberg’s Injectivity Radius Estimate (Theorem 8.3): If a compact
length space, X, with minimal injectivity radius, MinRad(X) € (0, 0co) then either there is a
pair of ultimate conjugate points, p,q with d(p, q) < MinRad(X) or there is a closed geodesic
y:S 1 X with L(y) =2MinRad(X). It should be noted that the minimal radius of a flat disk
is infinity (Example 7.5) but that the minimal radius is finite in any compact space with at least
one extensible geodesic (Lemma 8.2), so Theorem 8.3 can be used for a large class of spaces.

Section 9 gives a brief review of some essential points about CBA (k) spaces including their
definition. Recall that the CBA (k) property is an extension to geodesic spaces of the Riemannian
notion of having sectional curvature bounded above by x (Theorem 9.3). We review work of
Gromov, Charney and Davis, Ballmann and Brin and Otsu and Shioya.

In Section 10 we prove two Rauch Comparison Theorems for CBA(x) spaces. The first is a
known comparison theorem related to us by Stephanie Alexander for one-sided conjugate points
and extended to symmetric conjugate points (Theorem 10.1). It states that on a CBA(x) space
all symmetric conjugate points are further than D, apart. To prove the theorem we describe the
notion of a bridge (see Definition 10.3, Fig. 7) which may be regarded as a coarse analog of
Jacobi field for length spaces. The second theorem in Section 10 extends the Jacobi field relative
comparison theorem which says, for example, that on a Riemannian manifold with sec < 1,
J(t)/sin(¢) is nondecreasing. Since our Relative Rauch Comparison Theorem (Theorem 10.5)
is stated with bridges and is not infinitesimal it has error terms depending on the height of the
bridges. As the height decreases to 0 we get the same control on our bridges as one has on Jacobi
fields in the Riemannian setting.

Section 11 concerns Theorem 11.1: On a CBA(k) space all ultimate conjugate points are
further than D, apart. To prove this one must show that any geodesic of length less than D,
in a CBA(«x) space has a continuous family around it. This is a result of Alexander and Bishop
stated within the proof of Theorem 3 in [1]. The proof is given in more detail in Ballmann’s
textbook on manifolds of nonpositive curvature (see Theorem 4.1 in [5]). A proof based on the
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Rauch Comparison Theorem is described in this section. We have not included our proof in the
published version of this paper but it is available on the arXiv preprint.

In Section 12 we apply the results in Section 11 to the work in the first half of the paper.
First we prove Theorem 12.1: On a locally compact CBA(k) space, any null homotopy of a
contractible closed geodesic of length < 2D, passes through a curve of length > 2D,.. We then
prove Corollary 12.3 of our Klingenberg Injectivity Radius Theorem: A compact CBA (k) length
space, X, with k > 0 such that MinRad(X) € (0, D) has a closed geodesic of length twice
the minimal radius. We relate this to the Charney—Davis proof of Gromov’s systole theorem. We
close with a discussion of possible applications of Theorem 6.2 (the generalized Long Homotopy
Lemma) to CBA(x) spaces with higher spherical rank. While Example 12.6 shows that one
cannot hope to conclude rigidity as in [19], one may still be able to prove some interesting
results for such spaces.

Open problems are suggested throughout the paper; see for instance Problems 2.5, 3.8, 4.5,
7.22, 12.2 and 12.5. Some of these are perhaps not too difficult and may be appropriate for
graduate students while others like Problems 12.2 and 12.5 may require significant work.

1. Geodesic spaces

In this section we review the concept of geodesic spaces and geodesics in such spaces. We
introduce a new kind of convergence of geodesics in such spaces which extends the concept of
convergence of geodesics in Riemannian manifolds and is stronger than sup norm convergence
(Definition 1.5 and Lemma 1.11). We then introduce the concept of a locally uniformly mini-
mizing length space (Definition 1.9) which includes Riemannian manifolds and CBA (k) spaces.
A review of CBA(«k) spaces is given in Section 9. We then prove the Geodesic Arzela—Ascoli
Theorem (Theorem 1.13) for compact length spaces which are locally uniformly minimizing.

Definition 1.1. A geodesic space, X, is a complete metric space such that any pair of points is
joined by a rectifiable curve whose length is the distance between the points. This curve is called
a minimizing geodesic and it is shorter than any other curve joining the two points.

These spaces are referred to as geodesic spaces in [7] and as strictly intrinsic geodesic spaces
in [8]. A complete Riemannian manifold is a geodesic space by the Hopf—-Rinow Theorem
(cf. [10]). In fact Hopf and Rinow proved that any complete locally compact length space is
a geodesic space (cf. [11]). Note however, that other aspects of the Riemannian Hopf-Rinow
Theorem do not hold on these more general spaces.

Example 1.2. A metric space, X, can be created by taking a collection of line segments
[0, 14 1/j] and gluing all the left endpoints to a common point, p, and all the right endpoints to a
common point, g. The metric on X can be defined as the infimum of the lengths of all rectifiable
curves running between the given points. Note that p and ¢ have infinitely many geodesics run-
ning between them and the distance between them is 1. Although X is a complete metric space,
it is not a geodesic space because the distance between p and g is not achieved. If we add one
more segment [0, 1] running from p to ¢ then we obtain a geodesic space, Y.

Definition 1.3. A geodesic in a geodesic space is a curve which is locally minimizing. A closed
geodesic is a map y : S' — X which is locally minimizing (generalizes smoothly closed). All
geodesics are parametrized proportional to arclength.
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Geodesics are sometimes called “local geodesics.” Here we will always say minimizing
geodesics when the geodesic achieves the distance between two points (following the convention
in Riemannian geometry). Geodesics need not be unique (even locally), they may branch and
they are not necessarily extensible.

Since there is no notion of a tangent space or a starting vector, the notion of convergence of
geodesics needs to be clarified. In order to compare geodesic segments of different lengths, we
will reparametrize them so that they are defined on unit intervals.

Definition 1.4. Let I" ([0, 1], X) € Co([0, 1], X) be the space of geodesic segments, y : [0, 1] —
X, parametrized proportional to arclength considered as a subset of the space of continuous
functions on [0, 1] with the sup norm:

1 —v2lo= sup dx(y1(t), »2(1)). (1.1)
1€[0,1]

We say y; converge as geodesics to y if they converge in this space once they are reparametrized
to be defined on [0, 1].

Note that the sup norm is not in fact a norm but just a metric on Co([0, 1], X) and I" ([0, 1], X).
Definition 1.5. Define a metric d on " ([0, 1], X) € Cy([0, 1], X) to be
dr(yi,y2) =Iy1 — 2lo+ |L(y1) = L(»)|. (1.2)
See Example 1.12 as to why this definition gives a stronger definition of convergence than just
the sup norm convergence. Later we also see that they give the same topology when the space is
a Riemannian manifold.
Lemma 1.6. In a compact length space, if v; are uniformly minimizing in the sense that they run

minimally between points of some uniform interval of width 28, and if they have a uniform upper
bound on length, then a subsequence converges in Cq to y and

lim L) =L(y). (1.3)
11— 00
Proof. One first applies Arzela—Ascoli to show a limit y exists. Since

Jim d(yi(t; = 8), yi(ti +8) =d(y (1 =8),y (1 +8)) < L(y (It = 8,1 + 1)) (14)

< lim L(yi (It = 8,1 +81)) = lim d(yi(t; — 8), yi (1 + ),
(1.5)

so all are equalities, we see that y is a geodesic. To see that the lengths converge, we sum up the
lengths of the minimizing segments and take the limit again. O

Without the uniform minimizing property this need not be true as can be seen in the well-
known example of a cube.
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Example 1.7. If X is a 2-dimensional cube, then squares which avoid the edges of the cube are
geodesics, but when they reach a square lying on the edge, this last curve is not a geodesic. The
edge square is not minimizing on any intervals about the points on the corners because there are
short cuts in the face. Intuitively, wrap a rubber band around four faces of a cube and then slide
it to one side. It snaps off when you reach the edge.

A study of geodesics with uniform minimizing properties appears in [21]. Here however, we
do not want to restrict our collection of geodesics and so we restrict our spaces instead. Recall
the following definition; spaces with this property have been discussed in [21].

Definition 1.8. A geodesic space is uniformly minimizing if there exists a § > 0 such that all
geodesic segments of length < § are minimizing.

Definition 1.9. We say a geodesic space is locally uniformly minimizing if about every point p in
the space there is a neighborhood U, and a length €, such that any geodesic in the neighborhood
U, of length < €, is minimizing.

This concept is distinct from that of a locally minimizing space where minimizing geodesics
are required to be unique and lengths are not uniformly estimated. Note that Riemannian mani-
folds and CBA (k) spaces are locally uniformly minimizing. See for instance Proposition 1.4 (1)
and (2) on page 160 of [7] and recall that CBA (k) spaces are locally CAT (k).

Lemma 1.10. Let X be a locally uniformly minimizing geodesic space and geodesics y; converge
in the sup norm to a curve y, then y is a geodesic.

Proof. Let U be a uniformly minimizing neighborhood about y (¢). Take a quarter of the uniform
minimizing radius of U and let § < €;,(;)/4. So y ([t —§,t + 6]) is a curve lying in U. Eventu-
ally y; ([t — §,¢ + 8]) lies in U so it is unique and minimizing. Then we apply (1.4) to prove
y ([t — 8,t + 5]) is minimizing as well. O

The cube is not locally uniformly minimizing as can be seen by taking the point p to be
one of its corners. The following lemma’s proof requires the assumption of locally uniformly
minimizing and uses Lemma 1.10. We leave the proof as an exercise.

Lemma 1.11. In a locally uniformly minimizing length space X, if geodesics y; converge to y in
the sup norm, then their lengths converge. As a consequence Definitions 1.4 and 1.5 are equiv-
alent on locally uniformly minimizing length spaces including CBA (k) spaces and Riemannian
manifolds.

Example 1.12. Let X be the geodesic space formed by gluing an infinite collection of cylinders
of different radii 7; together along a common line. Taking r; = 1/j we see this is the isometric
product of the Hawaiian earring with a line. If we take y to be a geodesic of length 1 lying on
the line where all the cylinders were glued, then it is approached uniformly by geodesics y; of
length 2 lying in the jth cylinder, wrapped extra times around.

Example 1.12 indicates the necessity of the locally uniformly minimizing condition. The ne-
cessity of the local compactness can be seen in the Y of Example 1.2 where the sequence of
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geodesics from p to g of decreasing lengths has no limit since they are uniformly bounded away
from each other by a distance at least 1. We can now state the Geodesic Arzela—Ascoli Theorem
which gives convergence in the sense of Definition 1.5.

Theorem 1.13 (Geodesic Arzela—Ascoli Theorem). In a locally uniformly minimizing locally
compact geodesic space, a sequence of geodesics with a common upper bound on their lengths
whose endpoints converge to points p and q, will have a subsequence which converges in dr to
a geodesic with endpoints p and q.

Proof. Since the endpoints converge and the length is bounded above, all the y; lie in a common
closed ball. Since the space is locally compact, this closed ball is compact. Since the geodesics
are parametrized proportional to arclength, they are equicontinuous and thus by Arzela—Ascoli,
they have a subsequence which converges in the sup norm to a curve. By the local uniform
compactness and Lemmas 1.10 and 1.11, the subsequence converges indr. O

We close with the statement of a well-known lemma that will be useful later.

Lemma 1.14. In a Riemannian manifold, M, y; converge to y in the sup norm if and only if
¥i(0) = y(0) and y/(0) — y'(0) in TM.

In general length spaces there is no concept of vectors or angles between geodesics emanating
from a common point. Even in CAT (k) and CBA (k) spaces, where there is a concept of angle,
the angle between two geodesics could be 0 and the geodesics could be distinct. In fact a tree is
a length space, and there the geodesics start together and can agree on intervals only to diverge
later.

2. Symmetric conjugate points

‘We can now rigorously state the definition of a one-sided conjugate point. This notion was first
introduced by Rinow [18]. His definition of conjugate point used the notion of an exponential
map that he had created using the fact that his spaces had extensible nonbranching geodesics
which were locally unique. He then proved that his notion was equivalent to this one [18, pp. 414—
415]. See Appendix A for a translation of these pages.

Definition 2.1. Given a pair of points p and ¢ in a geodesic space, X, we say ¢ is a one-sided
conjugate to p along a geodesic y running between them if there exists a sequence of g; con-
verging to g such that for each ¢; there are two distinct geodesics running from p to ¢;, o; and
y;, both of which converge to y as geodesics as in Definition 1.5. By distinct we mean that there
exists ¢ such that y; (¢) # o; ().

Note that Alexander and Bishop [1] use the weaker definition Definition 1.4 for the conver-
gence but they work in CBA(0) spaces and the definitions are equivalent there by Lemma 1.11.
In [20] the spaces were exponential length spaces, where geodesics have initial vectors and the
vectors were required to converge. Zamfirescu has a stronger notion of conjugate point which
requires that the geodesics be minimizing [23]. In [22], F. Warner proves that Riemannian con-
jugate implies one-sided conjugate although he did not state it as such.
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Theorem 2.2 (Warner). If M is a complete Riemannian manifold then q is one-sided conjugate
to p along y in the sense of Definition 2.1 if and only if it is conjugate to p in the Riemannian
sense, i.e., there is a nontrivial Jacobi field along y which vanishes at p and at q.

Warner’s Theorem is easy to see in one direction just using the Inverse Function Theorem to
show that the exponential map is locally one-to-one. However, the opposite direction uses special
properties of the exponential map demonstrating that it cannot behave like f(x) = x3 which is
one-to-one globally but has a critical point.

In this paper we would like to make a more natural extension of the Riemannian definition of
a conjugate point which allows for the variation of both endpoints.

Definition 2.3. Given a pair of points p and ¢ in a geodesic space, X, we say g and p are
symmetrically conjugate along a geodesic y running between them if there exists a sequence of
gi converging to g and p; to p such that for each pair p;, g; there are two distinct geodesics o;
and y; running from p; to g; both of which converge to y in (I" ([0, 11), dr).

Remark 2.4. One could also say they are Cy symmetrically conjugate if one requires only that
o; and y; converge to y in the Cyp sense.

Clearly if ¢ is one-sided conjugate to p along y then p and g are symmetrically conjugate
along y. The converse is less clear.

Open Problem 2.5. Can one construct a length space with a symmetric conjugate point that is
not a one-sided conjugate point?

The above question can however be answered for Riemannian manifolds; all notions of con-
jugate are equivalent in this setting. One of these equivalences in the theorem below is Warner’s
theorem.

Theorem 2.6. Let M be a complete Riemannian manifold and suppose p and q are points on a
geodesic y. Then the following statements are equivalent:

(i) g is one-sided conjugate to p along y.

(1) g is symmetrically conjugate to p along y.

(iii) g is conjugate to p in the Riemannian sense, i.e., there is a nontrivial Jacobi field along y
which vanishes at p and at q.

Proof. If p and g are conjugate in the Riemannian sense then Warner’s Theorem says that p is
conjugate to g in the sense of Definition 2.1, which immediately implies they are symmetrically
conjugate.

If p and g = exp,(v) are not conjugate in the Riemannian sense then the map F: TM —
M x M defined as

Fx,w)= (x, expx(w)) (2.6)

has a nonsingular differential at (p, v). Thus by the Inverse Function Theorem this is locally
invertible around (p, ¢) back to points near (p, v). Now suppose on the contrary that p and g
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are symmetrically conjugate, so there exists p; — p g; — g and y;, o; distinct geodesics from
pi to g; converging to y as geodesics. Lemma 1.14 implies that y/(0) and o/(0) are converging
to y'(0). Thus F(p;, y/(0)) = F(pi,0/(0)) and it is not locally one-to-one about (p,v). O

3. Continuous families of geodesics
Recall from Definition 1.4 the space of geodesics, I" ([0, 1], X) C Co([0, 1], X) and d.

Definition 3.1. We say F is a continuous family of geodesics about y if there are neighborhoods
U of y(0) and V of y (1) such that

F:UxV—> F([O, 1],X), F(x,y)=y, wherex=y(0)andy=y(1), 3.7

is continuous with respect to dy. The map F is defined for any u e U, v € V as F(u,v) =o,
where o is a geodesic such that 0(0) =u and o (1) = v.

Remark 3.2. One could similarly define Cy continuous families about geodesics.

The following weaker definition will be essential to understanding uniqueness of families.
The crucial distinction is that here we do not assume continuity on the whole domain, but only
at the endpoints of the given geodesic y .

Definition 3.3. We say F is a family of geodesics which is continuous at y if there are neighbor-
hoods U of (0) and V of y (1) such that

F:UxV—TI(01],X), F(x,y)=y, wherex=y(0)andy=y(l), (3.8

is continuous with respect to d at (¥ (0), y(1)). The map F is defined forany u e U, v € V as
F(u,v) =0, where o is a geodesic such that 0 (0) =u and o (1) = v.

In the above definition if there are neighborhoods U, V such that the family is unique, i.e., for
any other family of geodesics, there exist possibly smaller neighborhoods U’, V' on which the
two families are the same, then we say that there is a unique family continuous at y.

Lemma 3.4. Let X be a geodesic space. If all geodesics y of length L(y) < R have unique
families of geodesics about them which are continuous at (y(0), y (1)), then all geodesics y of
length L(y) < R have continuous families of geodesics about them.

Proof. We begin with a family F about a geodesic y which is continuous at (y (0), y(1)). Note
that if we further restrict U and V we can guarantee that all geodesics in this family have lengths
< R by the definition of d-.

We need only to show F is continuous on possibly smaller neighborhoods U and V. If not
then F is not continuous at a sequence (p;, g;) converging to (y(0), y(1)). Let y; = F(pi, qi).
This means that there exists an ¢; > 0 and (p;,j, g;, ;) converging to (p;, g;) such that

lim F(pij.qi.;)# F(pi,qi) (3.9)
j—>00

where it is possible this limit does not exist.
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Since L(y;) < R, each y; has a family F; defined about it which is continuous at (p;, g;) so
in particular

jl_i)rrgoﬂ(pi,j,qi,j)=m=F(pi,qi). (3.10)
Thus there exists a j; sufficiently large that
F(pij.qij) # Fi(pi.j,4i,j) VJj=Ji- (.11
Choosing j; possibly larger, we can also guarantee that
dr(Fi(piji.qij).vi) <1/i (3.12)
and that (p; j;, gi,j;) — (¥ (0), y(1)).

Thus we have two distinct geodesics F(p;, j;,qi,j;) and Fi(p; j;, gi,j;) both converging to y.
This contradicts the fact that we have a unique family that is continuous at y. O

Proposition 3.5. On a Riemannian manifold two points on a geodesic y, say y (0) and y (1) are
not conjugate along y if there is a continuous family about y which is unique among all families
of geodesics about y which are continuous at y .

Proof. If y(0) and y (1) are not conjugate then the map F : TM — M x M defined as
F(x, w) = (x, exp,(w)) (3.13)

is locally invertible around (y (0), y (1)) back to points near (y (0), y'(0)). We then construct the
continuous family using this inverse F~1: U x V — T M followed by the exponential geodesic
map: Exp: TM — I' ([0, 1]) defined as

Exp(p, v) :expp(tv). 3.14)

We then apply Lemmas 1.14 and 1.11 to see that Exp o F~! provides a continuous fam-
ily. If the family is not unique on possibly a smaller pair of neighborhoods, then there exists
(pi»qi) = (y(0), y (1)) with multiple geodesics y; and o; running between them (from different
families). This implies that y(0) and y (1) are symmetric conjugate. By Theorem 2.6, they are
then Riemannian conjugate which is a contradiction. 0O

The following proposition is classical so we do not include a proof.

Proposition 3.6. On a Riemannian manifold two points on a geodesic vy say y (0) and y (1) are
not conjugate along y if and only if there is a continuous family about y which is unique among
all families of geodesics about y which are continuous at y .

The following theorem also holds if one uses Cy symmetric conjugate points and Cyp families
rather than the stronger definition of convergence on any geodesic space X. There is no need to
assume local compactness or local uniform minimality.
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Theorem 3.7. Assume X is a geodesic space. If x,y € X are not symmetrically conjugate along
y and there is a continuous family F : U x V — I' ([0, 1], X) about y, then there exists possibly
smaller neighborhoods U' C U of x and V' C 'V of y such that F restricted to U’ x V' is the
unique continuous family about y defined on U’ x V'. In fact it is the only family continuous at
(v (0), y (1)) on these restricted neighborhoods.

Proof. Assume on the contrary that there exists §; — 0 and families
Fi : Bs,(x) x Bs,(y) = I'([0, 1], X) (3.15)
about y such that
oi = Fi(xi, yi) # F(xi, yi) = Vi (3.16)

for some x; € Bs,(x) and y; € Bs,(y). But then 0;(0) = x; = ;(0) and 0;(1) = y; = y;(1) and
by the continuity of F and F; at (y(0), y(1)) we know o; and y; both converge to y causing a
symmetric conjugate point. [

We are not able to show in general that unique continuous families exist precisely when two
points are not symmetrically conjugate.

Open Problem 3.8. Assume X is a locally compact length space which is locally minimizing. Is
it true that two points p, g € X are not symmetrically conjugate along y if and only if there are
neighborhoods U of p and V of ¢ and a unique continuous map F : U x V — I'([0, 1], X) such
that F(p,q) =y andforanyu e U,v eV, F(u,v) = 0o, where 6(0) =u and ¢ (0) = v?

The main difficulty in attempting to answer this question is in the construction of the family
of geodesics. This motivates the concept of an unreachable conjugate point and Proposition 4.2.

4. Unreachable conjugate points

Definition 4.1. We say that p and ¢ are unreachable conjugate points along y if there exist
sequences p;, g — p, q such that no choice of a sequence of geodesics y; running from p; to g;
converges to y. Otherwise we say that a pair of points is reachable.

Naturally as soon as pairs of points are reachable there are geodesics joining nearby points
which can be used to build a family about y which is continuous at y. This is the content of
the next proposition. Note that it does not require local compactness and holds for all pairs of
reachable points including symmetric conjugate points. The proof follows almost immediately
from the definitions.

Proposition 4.2. Assume X is a geodesic space. Suppose y (0) and y (1) are reachable along y .
Then there exist neighborhoods U about y (0) and V about y (1) and a family F about y which
is continuous at (y (0), y (1)).

Example 4.3. On a standard sphere the poles are unreachable conjugate points along any min-
imizing geodesic running between them. This can be seen by taking describing the geodesic y
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as the 0 degree longitude and taking p; and g; all lying on the 90 degree longitude where p; ap-
proach the north pole p and g; approach the south pole ¢. Since any geodesic running between
pi and g; must lie on the great circle which includes the 90 degree longitude, none of them is
close to our given geodesic y.

Note that these poles are also symmetric conjugate points as can be seen by taking sequences
pi = p and g; = q and y; the small positive degree longitudes and o; the small negative degree
longitudes.

Lemma 4.4. On a Riemannian manifold, unreachable conjugate points are Riemannian conju-
gate points and are therefore symmetric conjugate points as well.

The proof follows from Proposition 3.6 and Theorem 2.6. On the other hand it is not clear
what may happen in a general geodesic space. Rinow proved that unreachable conjugate points
are one-sided conjugate points on geodesic spaces with extensible geodesics and local uniqueness
by effectively constructing an exponential map such that whenever a point is not a one-sided con-
jugate point (an ordinary point), the exponential map provides a continuous family of geodesics
based at the fixed point [18, pp. 414—415]. In other words, the problem below is settled for the
spaces studied by Rinow which are generalizations of Riemannian manifolds. But it is still open
for locally uniformly minimizing geodesic spaces.

Open Problem 4.5. Does there exist a geodesic space with a geodesic y whose endpoints are
unreachable conjugate points along y but are not symmetric conjugate points along y ? See Re-
mark 8.6.

The converse of Lemma 4.4 is not true. In fact already for Riemannian manifolds, symmetric
conjugate does not imply unreachable conjugate. More precisely consider the following lemma.

Lemma 4.6. On a Riemannian manifold if y is the unique geodesic which is minimizing from
¥ (0) to y (1) and these points are conjugate along y, then the family of minimizing geodesics is
continuous at y (0) and y (1) so the conjugate points are not unreachable conjugate points.

We present a specific example of such a phenomenon pointed out to us by Viktor Schroeder.

Example 4.7. Let M 2 be an ellipsoid that is not a sphere, i.e., a surface of revolution of the curve

Z—; + Z—j =1, where 1 < a < b. If we consider a generic geodesic y, for example any geodesic
that is not parallel to the coordinate planes, then the conjugate locus of such a geodesic looks like
a diamond with inwardly curving sides (cf. [10, Chapter 13, Remark 2.6]). On the other hand the
cut locus is a tree. If we consider a common vertex of the cut locus and the conjugate locus, then
we obtain a point along y that satisfies the hypotheses of Lemma 4.6.

Nevertheless the concept of unreachable conjugate points is crucial to the existence of unique
continuous families and so we define a third kind of conjugate point which incorporates both
unreachable and symmetric conjugate points.
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5. Ultimate conjugate points

Definition 5.1. Two points p, ¢ on a geodesic are said to be ultimate conjugate points along y if
they are either two-sided (symmetric) conjugate along y or unreachable conjugate along y .

Remark 5.2. Naturally one can define Cp unreachable and C ultimate conjugate points.

Theorem 5.3. On a Riemannian manifold points are conjugate along a given geodesic if and
only if they are ultimate conjugate along that geodesic.

Proposition 5.4. Suppose X is a locally uniformly minimizing and locally compact geodesic
space. Suppose y(0) and y (1) are not ultimate conjugate points along y. Then there exists a
unique continuous family about y as in Definition 3.1. In fact it is the only family continuous
aty.

Proof. By Theorem 3.7 we need only to show there is a continuous family. To do this it suffices to
show that the family F given in Proposition 4.2 is continuous on possibly smaller neighborhoods
U and V. If not then F is not continuous at a sequence (p;, g;) converging to (y (0), y(1)). This
means that there exists an ¢; > 0 and (p; ;, ¢;,j) converging to (p;, g;) such that

lim F(pij,qi ;) # F(pi,qi) (5.17)
j—oo

where it is possible this limit does not exist. If there is a uniform upper bound on the lengths
of a subsequence of these geodesics then by Lemma 1.10 a subsequence of these geodesics
converges in Cyp to some geodesic o; # F(p;, ¢;) running from p; to g;. This is where we use
locally uniformly minimizing and locally compact. We now choose j; such that

dr(oi, F(pij;»qij)) < 1/i. (5.18)
This implies that o; converges to
lim F(pij, qij)=v- (5.19)
11— 00

So does y; = F(pi,qi). Thus y(0) and y (1) are symmetric conjugate, and hence ultimate con-
jugate, along y, which is a contradiction. O

The next proposition establishes the connection between unique continuous families and the
non-existence of ultimate conjugate points (compare with Question 3.8). But note that its proof
strongly requires the use of d in the definition of convergence, continuity and conjugate points.
It may not hold if one uses Cy versions of the definitions. We do not know of any examples.

Proposition 5.5. Suppose X is a geodesic space. If there are no ultimate conjugate points along
any geodesics of length less than R then there are unique continuous families about all geodesics
y of length < R. In fact on a sufficiently small domain the continuous family is unique among
all families continuous at (y (0), y (1)).
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Proof. By Theorem 3.7 we need only to show there is a continuous family about any geodesic
y of length < R. By Proposition 4.2, we have a family F about any such y which is continuous
at (y(0), y(1)). The proposition then follows from Lemma 3.4. O

The following proposition is well known but we include its proof here for completeness of
exposition. It gives us a local existence result. Note that here we use the locally minimizing set
rather than a lack of conjugate points to obtain uniqueness. We not require locally uniformly
minimizing.

Proposition 5.6. Suppose X is a locally minimizing and locally compact geodesic space and
suppose W is a minimizing neighborhood. For any pair of points in W there is a unique mini-
mizing geodesic joining them. If y : [0, 1] — W is a geodesic, then there exists is a continuous
family F extending vy on a sufficiently small pair of neighborhoods about y (0) and y (1) which
in fact consists of minimizing geodesics.

Proof. Let U, V C W be neighborhoods of y (0), y (1) € W respectively. Define F : U x V —
I’ ([0, 1], X) so that F(u, v) is the unique minimizing geodesic running from u to v. By con-
struction F(y(0), y(1)) =y.If u; — u and v; — v then F(u;, v;) = o; are equicontinuous and
a subsequence converges to some o, € C([0, 1], X) running from u to v. Since

d(u,v) < L(0x) < liminf L(o;) < lim d(u;, v;) =d(u, v), (5.20)
1—> 00 1—> 00

we know o is a minimizing geodesic from u to v. Thus it is unique and so in fact o; converge
to o as geodesics without any need for a subsequence. So lim;_, oo F(u;, v;) = F(u,v). O

6. Long homotopy lemma a la Klingenberg

Now we proceed to generalize the long homotopy lemma of Klingenberg (cf. [13]) which
states that if a ¢ is a nontrivial, contractible closed geodesic in a compact Riemannian manifold M
of length £(c) < 2 conj(M), then any null homotopy c¢; of ¢ contains a curve ¢y, of length £(cy,) >
2conj M. Given that we have a notion of conjugate point in locally uniformly minimizing length
spaces, we may now define the conjugate radius of such a space.

Definition 6.1. The ultimate conjugate radius at a point p € M, denoted UltConj(p), is the
largest value r € (0, oo] such that along all geodesics starting at p, there are no ultimate conjugate
points up to length r. The ultimate conjugate radius of M is

UltConj(M) = inf UltConj(p). (6.21)
2504

Theorem 6.2 (Long Homotopy Lemma). Let M be a locally minimizing, geodesic space and let
c:[0,1] = M be a nontrivial, contractible closed geodesic of length €(c) < 2 UltConj(M).
Then any null homotopy H(s,t) of c(s) contains a curve c,, = H(s,ty) of length £(cy) =
2 UltConj(M).

The following notion will be crucial in the proof of this theorem.
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Fig. 1. A fan along an S shaped curve C.

Definition 6.3. Let M be a locally uniformly minimizing and locally compact geodesic space.
Let C : [0, L] = M be any continuous curve. Then we define the fan of C as the family of
geodesics,

F:[0,T) x [0,1]1 = I'([0,11, M), F(s,1)=05(1), 0,(0)=C(0),

where oy (¢) is a geodesic joining the points C(0) and C(s). The map F is required to be contin-
uous with respect to dr.

The following lemma shows that for curves that are small enough, one is able to construct
unique fans. We point out that the geodesics in the fan need not be minimizing, nor are they
necessarily the unique geodesics joining C(0) to C(s). However, the fan is uniquely determined
for C as in the lemma. See Fig. 1.

Lemma 6.4. Let M be a locally uniformly minimizing and locally compact geodesic space. Let
C : [0, L] - M be any continuous curve parametrized by s. Then there exists a fan F : [0, T) x
[0, 1] — ([0, 1], M) defined on C. Furthermore, if T is the maximal size of the interval on
which the fan is defined, then either T = L or limsup,_, 7 L(o;) = UltConj(M).

Proof. We construct the fan by slowly unfolding it. Let S be the collection of § such that the fan
of C is uniquely defined on [0, 5] and £(o5) < conjC(O)(M) for all s € [0, 5]. Let soo = sup S; we
need to show that either s, = L or £(05,,) = UltConj(M). We know 0 € S, so § is nonempty. So
we need only to show S is closed and open as a subset of [0, L].

To show S is open about a given s € S such that £(s) < UltConj(M), we first extend C locally
below 0 and above L so that it passes through C(5). Since C is a continuous curve one may
extend C beyond its endpoints, for example by backtracking on itself.

Then we just apply Proposition 5.4 to the geodesic os. This provides both the extension of the
definition of the oy to all s <5 + § and the uniqueness of such an extension. Then we restrict
ourselves back to s € [0, L], so that we have shown § is an open subset of [0, L].

To prove S is closed, take s; € S converging to 5. Without loss of generality we may assume
the s; are increasing. So we have geodesics o5 determined by the unique fan for all s < 5.
Since they have a uniform upper bound on length, they have a converging subsequence o; by
Theorem 1.13, the Geodesic Arzela—Ascoli Theorem.

Let 0 be such a limit and assume L(ox) < UltConj(M). By Proposition 5.4, we have a
continuous family 65 about oo, Which must include the o; or i sufficiently large. But each o;
also has a unique continuous family about it (in fact this family is o;), so oy = &5 near every s;.
Thus o5 = 65 on (500 — €, Sxo] Unless there exists t; — s Where the two families agree on one
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Fig. 2. A fan along an S shaped curve, C, with bands in black.

side of #; and disagree on the other side. But this contradicts the existence of unique continuous
families about o, = G (¢;).

Once o5 = G on (Seo — €, Sco] then we see the limit o, must have been unique and the family
is continuous on [0, so] which is closed.

Since our collection is nonempty, open and closed, it must be all of [0, L].

The fan is unique because if there were two distinct fans then there would be another family
which is continuous at the point where they diverge from each other, and that would imply there
is a symmetric conjugate point by Theorem 3.7. O

Lemma 6.5. Let X be a locally uniformly minimizing locally compact geodesic space. Let C be
a curve with a fan oy such that L(os) < UltConj(M) for s € [0, S1. Then

L(oy) < L(C([0, 51)). (6.22)
Proof. We begin by defining bands H, C | sef0.s)Im(oy) as follows; see Fig. 2:
H, = {as(r/L(os)): s € [0, S]}. (6.23)
Note that H, is a connected set by the continuity of the family of geodesics and that
H, NIm(C) = C(s,) (6.24)
where L(oy,) =7.
Note that USG[O’ s1Im(o;) is compact and our space is locally uniformly minimizing, so there
exists some sufficiently small € > 0 such that all geodesics of length € are minimizing. In partic-
ular all the oy Tun minimally between bands H, and H,¢/>.

Fixing s € [0, S] and taking a partition 0 =rg <r; <--- <ry = L(og) such that r; 1 — r; <
€/2 we have:

k
L(oy) =) (ri—ri-) < Y_d(C(sr). Clsy,_,)) (6.25)
i=1 i=1
k
<D L(C(Isr 5r,,1)) < L(C(10. 1)) (6.26)
i=1

Note that this last inequality follows both from the fact that C is not a geodesic and the fact that
C may move back and forth in the bands. See Fig. 3. O
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Fig. 3. The bands for each r; are marked in black, the alternating minimizing segments along oy are in black and grey.
The corresponding segments along C are marked in matching colors (and are longer). The total length of C in fact may
include extra segments, like the dotted section, which do not contribute to the sum.

Lemmas 6.4 and 6.5 then immediately imply the next corollary.

Corollary 6.6. Let M be a locally uniformly minimizing, locally compact, geodesic space. If
C :[0,L] - M is a continuous curve of length < UltConj(M), then it has a fan defined on
[0, L].

Lemma 6.7. Let M be a locally uniformly minimizing locally compact geodesic space. Let
H :[0,1] x [0, 1] = M be continuous such that for all t, C;(s) = H(s,t) implies L(C;) <
UltConj(M). Then there exists a unique continuous family of geodesics

o:[0,11 x[0,1] — F([O, 1], M) (6.27)
such that Vs, t € [0, 1] we have o5 ;(0) = H(0,0) and o, (1) = H(s, t).

Proof. We know by the above that for each fixed r we have a unique continuous fan o; ; running
along C;. So we have a family of geodesics o; ¢ which is continuous with respect to the s variable.

Assume o is continuous on 7 x § where S and T are intervals including 0. We know this is
true for the trivial intervals S = {0} =T.

We claim S and T are open on the right: if o € 7" and sg € S then there exists § > 0 such that
to+ 6 €T and sp + 8 € S. This follows because there are unique continuous family of geodesics
about o; 5, and about oy, ; for all s € S and t € T and so these continuous families must agree
on the overlaps of all the neighborhoods. By choosing § small enough that our fans land in this
neighborhood, we see they must agree with this continuous family (by the uniqueness of the fans
and the construction of the fans using the unique continuous families).

We claim S and T are closed on the right. Let s; approach sup S = s and #; approach
supT = t. Then by local compactness and locally uniformly minimizing property, and the
Geodesic Arzela—Ascoli Theorem, a subsequence of the oy, 5, must converge to some limit.

Let oo be such a limit and assume L(00) < UltConj¢ (o) M. By Proposition 5.5, we have a
continuous family &y ; about oo, which must include the oy, 5, for i sufficiently large. But each
01,5; also has a unique continuous family about it (in fact this family is oy ;), so o5 = 0y ¢
near every s;. Thus o5 = 05 0n (Seo — €, So0] X (too — €, foo] Unless there exists slf — So0 and
t! — to where the two families agree on points near (z/, s/) and disagree nearby as well. But this
contradicts the existence of unique continuous families about Oy sl = G(tl,s)).

Once 0; 5 = 07,5 0N (foo — €, foo] X (S0 — €, Soo] then we see the limit 0, must have been
unique and the family is continuous on [0, sso] X [0, foo] Which is closed. Since our collection
is nonempty, open and closed, it must be all of [0, L]. The family is unique because if there
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Fig. 4. The bands for each r; are marked in black, the alternating minimizing segments along oy are in black and grey.
The corresponding segments along C are marked in matching colors (and are longer). The total length of C in fact may
include extra segments, like the dotted section, which do not contribute to the sum.

were two distinct families then there would be another family which is continuous at the point
where they diverge from each other, and that would imply there is a symmetric conjugate point
by Proposition 5.5. O

Proof of Theorem 6.2 (Long Homotopy Lemma). Each curve in the homotopy is denoted ¢, (s) =
H(s, 1), so co(s) = p (the point curve) and c1(s) = c(s) (the given curve). Without loss of gen-
erality we may assume each curve ¢; is parametrized proportional to arclength. We assume, by
way of contradiction, that all closed curves in the homotopy have length L(c;) < 2 UltConj(M).

Let y(¢) = H(0,t) (the starting point of each curve), and let o (t) = H (%, t) (the halfway
point of each curve). Then y(0) =0 (0) = p, y(1) =c(0) and o (1) = c(%). In Fig. 4: on the left
we see p at the top, y running down the front of the surface and o running down the back of the
surface, with ¢ at the neck and cy/s, ¢2/5, ¢3/5 and c4/5 drawn as ellipses for simplicity.

By our control on the lengths of ¢; and by Corollary 6.6 we have two well defined fans: Ay ; is
the fan for ¢;(s) running along s = [0, 1/2] and fz“ which is the fan for c;(s) running backward
from s = 1 down to s = 1/2. In Fig. 4 on the right we see two such pairs of fans, above one for
c1/5 and below one for c4/5. By Lemma 6.7, the families A, and fzs, ¢ are continuous in both s
and 7.

We will say ¢;(s) has a closed pair of fans when the two fans meet at a common geodesic,
hip:(r)= le/z,,(r). This happens trivially at = 0, where

hs.o(r) = hgo(r) = H(s,0) = p. (6.28)

In Fig. 4 the pair of fans of ¢y/5 is closed but not the pair for c4/5. By the continuity of / and h,
¢;(s) must have a closed fan for all ¢.

However ¢ (s) is a geodesic, so when one creates a fan about it one just gets g 1(r) = c1(r)
and l_zs,l(r) = c1(L(c) — r) for all values of s. This is not closed. By continuity, nearby curves
¢t (s) for t close to 1 are also not closed. This is a contradiction. O

7. Cut loci and injectivity radii

In this section we define four kinds of cut loci and injectivity radii all of which extend the
Riemannian definition for these concepts and yet take on different values on length spaces. Those
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interested in the CBA (k) analog of the concepts we have already introduced may skip to the
section reviewing that theory.

Definition 7.1. We say ¢ is a cut point of p if there are at least two distinct minimizing geodesics
from p to q.

The following definition then naturally extends the Riemannian definition of a cut locus; see
for example [10].

Definition 7.2. A point ¢ is in the First Cut Locus of p, g € 1stCut(p) if it is the first cut point
along a geodesic emanating from p. Note that in the case where there is a sequence of cut points
y (t;) of a point p = y(0) with ¢#; decreasing to 7, then y (fx) is considered to be a first cut point
as long as there are no closer cut points along y, even if y (fx,) is not a cut point itself.

We use the term “first” because we will define other cut loci which are not based on being the
first cut point but also agree with the traditional cut locus on Riemannian manifolds.

Definition 7.3. Let the First Injectivity Radius at p be defined
IstInj(p) = d(p. 1stCut(p)) (7.29)

and 1stInj(M) = inf,ep 1stInj(p). If the cut locus of a point is empty the 1st injectivity radius
of that point is infinity.

The next definition is the well-known notion that has appeared in various papers. In particular,
this is the notion used in the book [7, p. 119].

Definition 7.4. The Unique Injectivity Radius of a geodesic space X denoted Uniquelnj(X), is
the supremum over all » > 0 such that any two points at distance at most r are joined by a unique
geodesic.

Example 7.5. On the closed flat disk the Unique Injectivity Radius is equal to oo since for any
r > 0, any two points at distance at most » can be joined by a unique geodesic (the statement is
of course vacuous for r > 1). The first cut locus of the origin is empty for the same reason.

The following lemma is not too hard to show.
Lemma 7.6. On a geodesic space
IstInj(p) = Uniquelnj(p). (7.30)
The next definition of cut locus matches the definition on Riemannian spaces given in
DoCarmo [10] and so it is another valid extension of the concept. It emphasizes the minimiz-
ing properties of geodesics rather than uniqueness.
Definition 7.7. We say ¢ is in the Minimal Cut Locus of p, g € MinCut(p), if there is a mini-

mizing geodesic running from p through g which is not minimizing from p to any point past g.
We are assuming this geodesic extends past g.
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Fig. 5. The pinned sector and the pinned hemisphere.

Note that the MinCut(p) is the cut locus defined by Zamfirescu in his work on convex sur-
faces [23].

It is an essential point that this definition has no requirement that there be a unique geodesic.
On a Riemannian manifold, geodesics stop minimizing past the First Cut Locus because as soon
as geodesics are not unique, there are short cuts that can be taken which smooth out the corners.
On many length spaces this is not the case:

Example 7.8. The pinned sector is a compact length space created by taking an “orange slice” or
sector between poles on a sphere and adding line segments to each of the poles. See Fig. 5. We
will denote the poles as p; and the far ends of the segments as g;. Then p, € UniqueCut(p;) and
p2 ¢ MinCut(p1). In contrast the pinned closed hemisphere has p, € MinCut(p;) because the
geodesic running along the edge of the hemisphere stops minimizing at p> and continues along
the edge. There is no such geodesic in the pinned sector.

Note that while compact Riemannian manifolds always have nonempty cut loci due to the
extendability of geodesics, this is not the case on compact length spaces:

Example 7.9. On the flat disk, the center point, p, has an empty Minimal Cut Locus because
every geodesic stops existing before it stops minimizing. It also has an empty First Cut Locus
because there are unique geodesics joining every point to p.
Definition 7.10. Let the Minimal Radius at p be defined

MinRad(p) = d(p, MinCut(p)) (7.31)
and MinRad(X) = inf,cx MinRad(p).

Note that, although the minimal radius agrees with the injectivity radius on a Riemannian
manifold, we do not call it an injectivity radius because it does not imply any uniqueness of
geodesics (like the injectivity of the exponential map).

In Example 7.8, we have

MinRad(p) = oo, Istlnj(p) = 7. (7.32)

The following lemma follows immediately from Definition 1.9 of locally uniformly minimiz-
ing and standard compactness arguments.

Lemma 7.11. A compact length space is locally uniformly minimizing if and only if its minimal
radius is positive.
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Example 7.12. The Rationally Attached Line, is a countable collection of real lines all attached
to a common real line in the following manner. The first real line is attached to the common line
at corresponding integers, the second at corresponding half integers, the third at corresponding
third integers and so on. Note that on this line there are infinitely many minimizing geodesics
joining any two points on the common line and that the common line is minimizing between any
pair of its values. The unique injectivity radius and the first injectivity radius are both zero. On
the other hand, since any geodesic between any pair of points is minimizing, the minimal radius
is oo.

In order to compare the minimal radius with the unique injectivity radius, we recall that on a
Riemannian manifold, any point in the cut locus is either a cut point or a conjugate point along
a minimizing geodesic. This leads to an alternate extension of the notion of the Riemannian cut
locus:

Definition 7.13. The Symmetric Cut Locus of p, denoted SymCut(p), is the collection of all
cut points of p and all symmetric conjugate points to p which are symmetric conjugate along a

minimizing geodesic.

This definition is equivalent to the others on Riemannian manifolds because the concept of
a symmetric conjugate point is equivalent to the concept of a conjugate point on Riemannian
manifolds (Theorem 2.6) and on a Riemannian manifold a symmetric conjugate point along a
minimizing geodesic is a first conjugate point. We can then also extend the definition of injectiv-
ity radius using this notion:
Definition 7.14. The Symmetric Injectivity Radius,

SymInj(p) = d(p, SymCut(p)) (7.33)

and SymlInj(X) = inf,cx SymlInj(p).

In Miller and Pak’s work [14] on piecewise linear spaces, their cut locus is in fact
CI(MinCut(p)).

Lemma 7.15. On a geodesic space
Cl(MinCut( p)) C SymCut(p) (7.34)
and
MinRad(p) > SymlInj(p). (7.35)
Proof. Let g; € MinCut(p) and ¢q; — ¢. Either a subsequence of g; are conjugate to p along a
minimizing geodesic y; or a subsequence of g; are cut points of p. In either case there exists pairs
of geodesics o; and ¢; running between common endpoints such that one of the two satisfies:
dr(oj,vi) <1/i (7.36)

and the other also satisfies this equation or has the same length as y;.
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Moreover, since M is a uniformly locally minimizing compact space, we can apply our
Geodesic Arzela—Ascoli Theorem to find a subsequence such that y; converges to Y, running
minimally between p and g and o; converges to 0. If 060 = Y0, then p and g are symmetric
conjugate, otherwise they are cut points. 0O

This inequality is not an equality as can be seen by examining the pinned sector (Example 7.8).
There the pole p; lying opposite p; in the sector is a symmetric conjugate point for p; so
p> € SymCut(p;) and

SymInj(p;) = 1stInj(p;) = 7. (7.37)

On the rationally attached line (Example 7.12), every point is a symmetric conjugate for any
other point and so

SymlInj(p1) = Istlnj(p1) =0. (7.38)
In fact the symmetric injectivity radius always agrees with the first injectivity radius.

Lemma 7.16. On a geodesic space X,
IstInj(X) = Uniquelnj(X) = SymlInj(X) < MinRad(X). (7.39)

Proof. If Uniquelnj = ro, then all geodesics of length < ¢ are unique, so any sequence of pairs
of nonunique geodesics approaching a pair of symmetric conjugate points has length at least r,
thus SymlInj(X) > rg.

On the other hand if SymlInj(X) = rg, then for any p € X we have d(p, SymCut(p)) > ro and

so the nearest cut point to p is outside B (rp), so all geodesics of length < r¢ are unique and
Uniquelnj > rg. The rest follows from Lemmas 7.6 and 7.15. O

Finally we introduce the ultimate cut locus and the ultimate injectivity radius.

Definition 7.17. The Ultimate Cut Locus of p, denoted UltCut(p), is the collection of all cut
points of p and all ultimate conjugate points to p which are conjugate along a minimizing
geodesic.

Definition 7.18. The Ultimate Injectivity Radius, denoted Ultlnj(p) is d(p, UltCut(p)).

Note that Ultlnj(p) = min{UltConj(p), Uniquelnj(p)} where the ultimate conjugate radius
was defined in Definition 6.1. By the definition of an ultimate conjugate point we have the fol-
lowing lemma.

Lemma 7.19. On a geodesic space,
SymCut(p) C UltCut(p) (7.40)

and

Ultnj(p) < SymInj(p) < MinRad(p). (7.41)
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Lemma 7.20. If X is locally uniformly minimizing and locally compact then the ultimate injec-
tivity radius is the supremum over all v > 0 such that any minimizing geodesic, y, of length <r
is unique between its endpoints and has a continuous family about it which is unique among all
families continuous at y and no ultimate conjugate points along y .

Proof. If Ultlnj(X) = ro, then there are no ultimate conjugate points along any minimizing
geodesics of length less than ¢ and so by Proposition 5.4 there are continuous families about
these geodesics. The uniqueness of the minimizing geodesics of length < rg follows from the
definition of cut and the inclusion of cut points in the ultimate cut locus. The converse follows
similarly by applying Proposition 5.5. O

Lemma 7.21. If X is locally uniformly minimizing and locally compact then any geodesic, y, of
length less than the unique injectivity radius has a continuous family about it which is unique
among all families continuous at y .

Proof. We will prove that the end points of y are not ultimate conjugate points and apply
Proposition 5.5 to complete the proof. By Definition 5.1 we need only to show they are neither
unreachable conjugate nor symmetric conjugate points.

First note that y(0) and y (1) are not unreachable conjugate points. If they were, then there
would be sequences of points p; — ¥ (0) and g; — y (1) such that any choice of sequence of
geodesics y; joining p; to ¢; will not converge to y. On the other hand for i large enough,
d(pi,qi) < Uniquelnj(X) since d(y(0), y(1)) < Uniquelnj(X), which implies that there is a
unique minimal geodesic, y;. So y; must converge in the sup norm to y otherwise y (0), y (1)
would have two distinct minimizing geodesics joining them, namely y and lim;_, , y;. Note this
limit geodesic exists by the Geodesic Arzela—Ascoli Theorem (Theorem 1.13) using the fact that
X is locally compact and locally uniformly minimizing.

We now show y(0), y (1) are not symmetrically conjugate. If they were then there exist se-
quences p; — ¥ (0), ¢; — v (1) and geodesics o}, A; joining p; and ¢g; that converge to y in dr.
Since L(y;) and L(o;) both converge to L(y) eventually their lengths are less than Uniquelnj(X),
By Lemma 7.16, we eventually have

L(y;), L(0i) < Uniquelnj(X) < MinRad(X)

so y; and o; are eventually minimizing geodesics. However, minimizing geodesics having length
less than the Unique Injectivity Radius are unique, so eventually y; = o; which is a contradic-
tion. O

Open Problem 7.22. It would be interesting to find an example demonstrating the necessity of
the locally uniformly minimizing condition in the last lemma.

Remark 7.23. We should point out that with any of the numerous definitions of cut loci and
injectivity radii, the injectivity radius for an arbitrary compact length space can be zero and this
is probably true generically.

8. Klingenberg’s injectivity radius estimate

In the special case that ¢ is the closest point in the minimal cut locus of p, Klingenberg’s
Lemma from Riemannian geometry extends to locally uniformly minimizing length spaces.
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Lemma 8.1. Let M be a locally uniformly minimizing, locally compact length space. Let p € M
and suppose q € CI(MinCut(p)) such that d(q, p) = d(p, MinCut(p)) > O then either there is
an ultimate conjugate point along a minimizing geodesic from p to q or there is a geodesic
running from q to q and passing through p.

As you will see the proof follows Klingenberg’s original proof (cf. [10]) almost exactly except
that we have Lemma 8.1, where one shows the nearest point in the minimal cut locus of a point
either has a closer ultimate cut point or a geodesic loop running through it. The distinction here is
that this ultimate conjugate point need not be the closest cut point because the geodesic running
through it may still be minimizing past it.

Proof. Assuming there are no ultimate conjugate points, then by Lemma 7.15, we know there is
a pair of distinct minimizing geodesics from p to ¢: y and o. If we can show there exists € > 0
such that

d(y(l —¢€),0(l — e)) =2ed(p,q) (8.42)

then we are done.
Assume, instead there exists €; — 0 such that

dy(1—€),0(1 —¢)) <2€d(p.q) (8.43)

thus the midpoint x; between these two points is closer to p than g is.

Since there is a continuous family about y and a continuous family about o we can find y;
converging to y running from p to x; and we can find o; converging to ¢ running from p to x;.
Eventually y; and o; must be distinct.

By the triangle inequality

L(yi)) <L(y([0,1 —€1)) +€id(p,q) = L(y) (8.44)
and
L(oi) < L(o ([0, 1 —€;1)) + €id(p, q) = L(0). (8.45)

Thus if y; and o; are minimizing, then we have found a closer cut point, causing a contradiction.

By Proposition 5.5 our family of geodesics about y is unique among all families continuous
at y. Choosing § > 0 sufficiently small and N sufficiently large that all the y; for i > N have
(i (0), ¥ (¢)) in the unique domain for all ¢ > #; where

t =min{1, (d(p,q) — 8)/L(y»)}. (8.46)

This implies that y; restricted to initial segments of length > d(p,g) — § and y similarly
restricted must be part of this unique family.

Let us restrict y and y; to segments of length d(p, g) — 8’ for some &’ € (0, §). The restricted
y is minimizing and is the unique minimizing geodesic between its end points by our definition
of Cut(p). Thus if we replace the restricted y; by minimizing geodesics between their endpoints,
we’d get another family which is continuous at y. By the uniqueness in Proposition 5.5 this
forces the restricted y; to be minimizing between their endpoints.
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That is all the y; with i > N are minimizing on initial intervals of length < d(p, ¢). How-
ever, y; have length less than d(p, ¢) so they are minimizing geodesics without any restriction.
The same is true for o; with i taken sufficiently large. Thus x; is a cut point which leads to a
contradiction. O

Lemma 8.2. If X is a compact length space with one extensible geodesic y : [0,00) - X
parametrized by arclength then

MinRad(X) < MinRad(y (0)) < oo. (8.47)

Proof. The geodesic y cannot be minimizing on all intervals [0, T'], so eventually it stops mini-
mizing and we have an element in the minimal cut locus of y (0). O

The next theorem is applied in the final section of this paper to recover a result of Charney and
Davis on CBA (k) spaces but is much more general (Theorem 12.3). Note that since the minimal
injectivity radius is positive, X is locally uniformly minimizing so it satisfies the hypothesis of
Lemma 8.1.

Theorem 8.3. If X is a compact length space with a positive and finite minimal injectivity radius
then either there exists p and q which are ultimate conjugate and d(p, q) < MinRad(X) or there
is a closed geodesic y : S' — X which has length twice the minimal injectivity radius.

Proof. Let ro = MinRad(X). So there exists p; € X possibly repeating such that MinRad(p;)
decreases to rg. So d(pi, MinCut(p;)) decreases to ry. Since X is compact, there exists
gi € CI(MinCut(p;)) such that MinRad(p;) = d(p;, ¢i). So by Lemma 8.1 either p; and g;
are ultimate conjugate or there is a geodesic y; running from p; to p; through g; of length
L(yi) =2d(pi, gi)-

Since X is compact p; has a subsequence converging to some p and ¢; has a subsequence
converging to some ¢, and d(p, q) = ro. Since y; is minimizing on [0, 1/2] and on [1/2, 1] it
has a subsequence which converges to a piecewise geodesic y Which is minimizing on these
intervals.

If Yo runs back and forth on the same interval then p and g are symmetric conjugate and thus
ultimate conjugate. Otherwise ¢ is a cut point of p and ¢ is a cut point of p. Applying Lemma 8.1
to this pair p and g we see that y must be minimal about both p and g unless they have ultimate
conjugate points on a minimizing geodesic running between them. Therefore y : S! — X is a
geodesic. 0O

The following example is somewhat extreme.

Example 8.4. Take a circle and let d(p1, p2) =ro < . Join p; and p> by a second line segment
of length d. This space has minimal injectivity radius and unique injectivity radius = ry. So in
this space with no ultimate conjugate points we have the obvious geodesic loop of length 2ry.
See the upper left space in Fig. 6 where one identifies the left and right endpoints, the loop is
marked in black.

Example 8.5. If we fill in the loop of length 2r( with a sector of a sphere of intrinsic diameter ry,
then the line segments will still be geodesics, but the corners will provide short cuts and so the
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Fig. 6. The pinned sector and the pinned hemisphere.

loop will no longer be a geodesic. In fact while the first injectivity radius is still 79 the minimal
injectivity radius will increase to ro and there are now ultimate conjugate points on the sector a
distance rq apart. See the upper right space in Fig. 6.

One wonders if one could change the metric on the sector so that it is still a minimizing
neighborhood and somehow remove the ultimate conjugate points so that Theorem 8.3 forces us
to see the loop which has length . In other words can we introduce nonuniqueness to a circle
without reducing its minimal injectivity radius or introducing ultimate conjugate points? In the
bottom two spaces of Fig. 6 we stretch the sector and see that on one case we get closer ultimate
conjugate points while in the other we get a short closed loop.

Remark 8.6. In light of the above example, one might consider using Theorem 8.3 to produce
ultimate conjugate points in spaces where closed geodesics are well understood. This might help
address Open Problem 4.5.

9. Reviewing CAT («) versus CBA (k)

In the remainder of this paper we apply the theory we have developed to CBA («) spaces and
so in this section we briefly recall the definitions of CAT (k) and CBA (k) spaces. We then give a
very brief review of key results needed for this paper. For a more in depth approach see Bridson
and Haefliger’s text [7].

Let X be a metric space and « a fixed real number. To define these spaces we need the notion of
a comparison space. Let M 3 denote the 2-dimensional, complete, simply connected Riemannian
manifold of constant curvature k. So M is the round sphere of radius 1, My is the Euclidean
plane and M_ is hyperbolic plane. Let D, denote the diameter of M,. Then

%, if k > 0,

) (9.48)
+o0, ifk <O.

D, =diam(M,) = {

Given a triangle constructed of three minimizing geodesics, A, in X with perimeter less than
2D,, we can define a comparison triangle A in M, whose sides have the same length. Given x
and y in A we can construct unique comparison points X and y in A which lie on corresponding
sides with corresponding distances to the corresponding corners. Since the comparison triangle
is unique up to global isometry the distance between these comparison points does not depend
on the comparison triangle.
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Definition 9.1. A geodesic space X is a CAT (k) space if for all triangles A of perimeter less than
2D, and all points x, y € A we have

d(x,y)<d(Xx,y) (9-49)
where X and y are points on the comparison triangle A in M 3

Note that this is a global definition; for example, a torus is not CAT(0). To extend the concept
of a Riemannian manifold with sectional curvature bounded above one uses a localized version
of this definition:

Definition 9.2. A geodesic space X is said to be CBA (k) or to have curvature bounded above by
K if it is locally a CAT («) space. That is, for every x € X, there exists ry > 0 such that the metric
ball B, (ry) with the induced metric is a CAT (k) space. We will abbreviate this to CBA (k).

An example of a CBA(1) space which is not CAT(1) is a real projective space and an example
of a CBA(0) space that is not CAT(0) is a flat torus.

Theorem 9.3 (Alexandrov). A smooth Riemannian manifold M is CBA(k) if and only if the
sectional curvature of all 2-planes in M is bounded above by k.

The condition of CAT(x) is a fairly strong condition on a space, much stronger than just
having an upper curvature bound. For example it is easy to use the definition and degenerate
comparison triangles to prove the following well-known proposition:

Proposition 9.4. On a CAT (k) space, X, all geodesics of length less than D, are minimizing
and they are the unique minimizing geodesics running between their end points:

MinRad(X) > D, and Uniquelnj(X) > D,. (9.50)

The next proposition is then immediate implying in particular that the results from the previ-
ous sections apply to CBA (k) spaces.

Proposition 9.5. A compact CBA(k) space is locally uniformly minimizing as in Definition 1.9.

Naturally the minimal radius of a CBA(k) space may be much smaller than D, just as the
minimal radius of RP? is only 7/2 not 7. We will later show its ultimate conjugate radius is
> m; see Theorem 11.1. The following theorem distinguishes between CBA(x) and CAT (k)
spaces. Note that the notion of injectivity radius of X used by Gromov in the theorem below
corresponds to UniqInj(X) in our scheme; see Definition 7.4.

Theorem 9.6 (Gromov). Let X be a compact length space that is CBA(k). Then X fails to be
CAT (k) if and only if it contains a closed geodesic of length £ < 2D,. Moreover, if it contains
such a closed geodesic, then it contains a closed geodesic of length Sys(X) = 2inj(X), where
the systole Sys(X) is defined to be the infimum of the lengths of all closed geodesics.

In the next section of our paper we will need an angle comparison theorem. We recall that on
a CBA (k) space the notion of angle is well defined (cf. [7]):
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Definition 9.7. Let X be a CAT () space and suppose ¢, ¢’ : [0, 1] — X are two geodesics issuing
from the same point p = ¢(0) = ¢’(0). Then the Alexandrov angle between c, ¢’ at the point p is
defined to be the limit of the x-comparison angles lim,_, o Zg‘)(c(t), c@),ie.,

/

/(c,c)=1lim 2arcsin<w>.
t—0 2t

Let p, x, y be points in a length space X such that p # x, p # y. If there are unique geodesic

segments px, py, then we write Z,(x, y) to denote the Alexandrov angle between these seg-

ments. 4,") (x, y) denotes the angle of the comparison triangle in M, 3 We then have the following

angle comparison theorem for CAT (k) spaces (see for instance [7, Proposition II,1.7]) which may

be reformulated for a suitable CAT (k) neighborhood in a CBA (k) space.

Theorem 9.8 (Alexandrov). Let X be a CAT (k) metric space with MinRad(X) > Dy (i.e., there is
a unique geodesic between any pair of points less then distance D, apart). Furthermore if k > 0,
then the perimeter of each geodesic triangle considered is less than 2D,. For every geodesic
triangle A(p, q,r) in X and for every pair of points x € pq,y € pr, where x # p,y # p, the
angles at the vertices corresponding to p in the comparison triangles A(p,q,r), A(p,x,y) in
M? satisfy

() ()
Ly (x,y) < Ly (g, ).

This theorem was applied to small triangles in CBA(«x) spaces by Alexander and Bishop to
prove the following Cartan—-Hadamard Theorem originally stated by Gromov.

Theorem 9.9 (Gromov). If X is a CBA(k) length space for any k < 0, then its universal cover
X is a CAT (k) space.

The original result of Gromov appears in [12]. A detailed proof in the locally compact case
was given by W. Ballmann (cf. [4]. Alexander and Bishop proved the theorem (cf. [1]) under the
additional hypothesis that X is a geodesic metric space.

Another key property of Alexandrov spaces is that they have the nonbranching property. That
is, if two geodesics agree on an open set then they cannot diverge later. In particular, if there is
more than one minimal geodesic running from p to g, then neither geodesic can extend minimally
past g. As a consequence we have:

Lemma 9.10. All cut points q of p are in 1stCut(p) and if a minimizing geodesic from p to q
extends as a geodesic past q, then g € MinCut(p) as well.

Otsu and Shioya have defined a larger cut locus, C,, for Alexandrov spaces in [15] to be
the collection of points p which do not lie within minimal geodesics. So MinCut(p) C Cj, and
IstCut(p) C C)p. Note that on the flat disk with p at the center, C), is the boundary rather than the
empty set. Otsu and Shioya prove that the Hausdorff measure of C), is zero [15, Proposition 3.1],
thus:

Proposition 9.11 (Otsu—Shioya). In a CBA(k) space, MinCut(p) and 1stCut(p) have Hausdorff
measure zero.
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Fig. 7. A bridge with xj = y(¢;) and y; =0 (¢;).

Shioya believes he can extend this to nonbranching spaces with weaker curvature conditions
like the BG scaling condition he has been investigating recently.

10. The Rauch Comparison Theorem

In this section we prove Rauch Comparison Theorems for CBA(x) spaces (Theorems 10.1
and 10.5). They will be applied in the next section to prove Theorem 11.1 that ultimate conjugate
points are never less than D, apart and so there are continuous families about geodesics of length
< D, regardless of whether they are minimizing or not.

The following theorem and proof were outlined to us by Stephanie Alexander for a one-sided
conjugate points on CBA(1). It is essentially a Rauch Comparison Theorem. We include its proof
below for completeness since it is necessary to motivate our extension of the theorem, the Rel-
ative Rauch Comparison Theorem (Theorem 10.5). Similar techniques were used by Alexander
and Bishop in their proof of the Cartan-Hadamard Theorem for CBA(0) spaces [1].

Theorem 10.1. Let X be a CBA(k), geodesic space. If y (0) and y (1) are symmetric conjugate
along y, then L(y) = D.

To prove this we will build a bridge. In order to build the bridge we need struts. We first
provide precise definitions.

Definition 10.2. A strut is a quadrilateral with a diagonal. That is, it is a pair of minimiz-
ing geodesic segments o and y with four sides: S = L(o), T = L(y) A =d(y(0),0(0))
B =d(y(1),o0(1)) and a diagonal D =d(y(0), o (1)). The entire strut must lie within a CAT (k)
neighborhood.

A comparison strut can then be set up in the simply connected two-dimensional comparison
space M,%. It is built by joining two geodesic triangles with sides SAD and T'BD. So the com-
parison strut is unique when S + A+ D and T + B + D are less that D, . The side lengths of the
comparison strut are the same but the angles all increase by the angle version of the comparison
theorem: Definition 9.7 and Theorem 9.8.

Definition 10.3. A bridge on y is a nearby geodesic o and a collection of struts between them.
That is we selected 0 =59 <s1 <---<sy=1land 0=1) <t; <--- <ty = | and partition y
and o into segments such that y (¢;), y (tj+1), 0 (s;), 0 (s;+1) form a strut for j =0... N.

A bridge has length < L if both y and ¢ have length < L and it has height < h if all struts
have all their sides of length < A.

See Fig. 7.
One can build a comparison bridge in M, 3 by piecing together the comparison struts. Unlike
the bridge in X, this comparison bridge does not have geodesic beams. The struts in fact glue
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Fig. 8. Here the comparison space is a sphere.

together to form a bridge whose upper and lower decks are piecewise geodesics: y and o. The
lengths of all the triangles match and the interior angles in the comparison bridge do not decrease.
See Fig. 8.

Note it is crucial that the comparison space is two-dimensional. In the setting where one
proves a Rauch Comparison Theorem for spaces with curvature bounded below, this leads to
some complications. See the work of Alexander, Ghomi and Wang [3].

Proof of Theorem 10.1. Assume on the contrary that L(y) < D, and there are y; and o;
converging to y which share endpoints. They are eventually length < T < D, as well by
Lemma 1.11 since CBA (k) spaces are locally uniformly minimizing.

Now we can cover y with a collection of balls such that each ball is CAT (k). For i sufficiently
large both y; and o; are both within the union of these neighborhoods. We now use y; and o; to
build a bridge. We do this by partitioning y; and o; into N subsegments of equal length with N
large enough that each strut formed by the corresponding subsegments of y; and o; fit within a
CAT (x) neighborhood.

We now build a comparison bridge in M, ,f using the comparison struts, obtaining the piecewise
geodesics: y; and o;. Note that here we build each triangle one by one with matching lengths
starting from t = s = 0. See Fig. 8.

We claim that y; and &; are bending apart as depicted in Fig. 8 because the interior angles are
greater than . This can be seen because they are built with comparison triangles. Comparison
triangles have larger angles than the corresponding angles in the space X. Since the geodesics y
and o are straight where the triangles meet them, the sum of the three interior angles meeting at
each partition point is > 7, and so the sum of the comparison angles are only larger. Since the
comparison space is two-dimensional this forces the piecewise geodesics apart.
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Thus if we were to straighten out y; and o;, creating smooth geodesics of the same length
with the same initial opening angle by bending each geodesic segment inward, then they would
meet before 1. That is they would meet before they are as long as T'. But two distinct geodesics
cannot meet before D, in M ,% which gives us a contradiction. O

Notice that in Theorem 10.1 the bridge is replacing the role of Jacobi fields in the standard
differentiable Rauch comparison theorem. Recall that Rauch proved in [17] that a Jacobi field
J (t) which has J(0) = 0 in a space with sectional curvature less than ¥ = 1 then has nondecreas-
ing |J(¢)|/ sin(¢). Thus |J(¢)| = sin(¢) and it cannot hit O before 7. Imitating Gromov’s proof of
the Relative Volume Comparison Theorem [11], one can say that forallr < R <m

[J(r)] - [J(R)]
sin(r)  sin(R)’

(10.51)

which we call the smooth version of the Relative Rauch Comparison Theorem. The inequality is
opposite that of Gromov’s because the curvature is bounded above here.

We now prove the Relative Rauch Comparison Theorem for CBA(k) spaces with bridges
replacing Jacobi fields. It will be applied in the next section to prove that there are no ultimate
conjugate points before D, in such spaces.

Recall Definition 10.3. First we need to insure that the bridge is short enough that its compar-
ison bridge lies in a single hemisphere of the comparison sphere. See Fig. 8.

Lemma 10.4. [f a bridge has length L < w and height h < (m — L) /4 then its comparison bridge
lies in a hemisphere.

Proof. By the triangle inequality, all points on the bridge are within a distance L/2 + 2h < /2
from the halfway point of one of the geodesics. O

Theorem 10.5 (Relative Rauch Comparison). Let X be a CBA (k) space. Suppose y and o form
a bridge in X with length L < D, and height h < (D, — L) /4 with y(0) = o(0). Then for all
re4h,L)and R € (r +4h, L —4h), ifr,,ro € r —h,r +h) and R,, R, € (R—h, R+ h) lie
near partition points t; =r/L and tj = R/ L of the bridge, we have:

dy (ry/L), 0o /L)) < .iﬁ) sup Jie(r) 4h+a (R —r+F,h)
d(y(Ry/L),o(Rs /L)) ~ D ) retr—n) Je(R =1 +7) D,

(10.52)

where f, is the warping function of the space of constant curvature k and o, (s, h) is an error
term satisfying

ay(h,s)
m =
h—0 h

0. (10.53)

In particular fi(r) =sin(r), fo(r) =r, a1(s, h) = |s — arccos(cos(s)/ cos(h))| and ao(s, h) =
2(s — /52 — h?).

One can immediately see that as the bridge decreases in height, 4 — 0, our r approaches r
and the right-hand side of (10.52) converges to (10.51). Note that for ¥ < 0 there is no restriction
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on the length or height of the bridge for this theorem to hold other than requirement that the struts
lie in CAT («x) neighborhoods.

Remark 10.6. Note also that to apply this theorem we need only to show that y and o form a
bridge with heights < /#/2 in a space where all triangles of circumference < 3# fit in CAT (k)
neighborhoods, and then we can always add extra partition points to that bridge to ensure that we
pass through » and R.

Proof. As in the proof above we build a comparison bridge in M, 3 by piecing together the com-
parison struts where the struts glue together to form a comparison bridge whose upper and lower
decks are only piecewise geodesics, y and &, such that

du(y (), 0(s)) = dm, (7)), 5 (s7)) (10.54)
for all j including ¢; =r/L and ¢t; = R/L. These piecewise geodesics bend apart because the
sum of the interior angles meeting at a given point on a deck is greater than 7 (each angle has
increased in size) exactly as depicted in Fig. 8.

This is the step where we use the CAT () property.
By the triangle inequality
du (v (ry /L), 0 (rs /L)) < dig, (7(t). 5 (7)) + 2h (10.55)

and
dy(y(Ry/L),0(Ry /L)) = du, (7(R/L), 5 (R/L)) — 2h. (10.56)
Let 7y = dpy, (¥ (r/L), 7(0)) and 7o = dp, (5 (r/L), 7 (0)). Note that
ry < L()? ([0, r/L])) =r and F,,L(c‘r([O, r/L])) =r (10.57)
because piecewise geodesics are always longer than the distance between their endpoints.
Since the distance is measured in M, and the geodesics y and o are bending apart towards
a maximum distance apart of &, we know that their length r is less than the worst path between
their endpoints which runs straight and then make a right turn and runs a distance #:
r<r,+h and r<7s+h. (10.58)
So
fy,fge[r—h,r]. (10.59)
Now we draw minimizing geodesics of length L, y and 6 from y(0) = ¢(0) through
y(r/L) and & (r/L) respectively so that y(r,/L) = y(r/L) and 6(r5/L) = o (r/L). Notice
these geodesics lie outside the wedge formed by y and o before they hit these points but then

extend into the wedge afterwards because the piecewise geodesics are bending apart. See Fig. 9
where y and 6 arein greyandi =6 < j =7.
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Yo

J

Fig. 9. Here the shaded geodesics are 6 and y which pass through yg = 6 (r/L) and xg = y (r/L). One sees the endpoints
of y and & are closer together than y7 =& (R/L) and x7 = y(R/L) since they extend the same length from xg and yg
but are bending together relative to the comparison bridge’s geodesics.

In particular, the points y (R/L) and o (R/L) must be further apart than their counterparts
on y and ¢ also lying a distance R — r out from their common points y (7, /L) = y (r/L) and
0(re /L) =0(r/L). More precisely:

du, (7((R =7 +7)/L), 7((R = r +75)/L)) > du, (7(R/L), 5(R/L)).  (10.60)

Here we have used the restriction on the height and length of the bridge when « > 0 so that
we avoid passing through a pole or having a short cut running between y (R/L) y(R/L) on the
opposite side of the sphere.
Applying (10.59) and selecting any
relr—nh,r] (10.61)
the triangle inequality combined with (10.60) gives us

du, (7(R/L),6(R/L)) +2h >du, (y(R—r+7)/L),7(R—r+7)/L))  (10.62)

and the triangle inequality combined with the choice of y and ¢ gives us

dm, (7 ((r/L), 7(r/L)) = 2h < du, (7(7y /L), 6 (Fs /L)), (10.63)
Thus
dwm, (?_(R/L), (?(R/L)) +2h > dy, (Y (R—r +~72/L), J~7(ER —r+nr/L)) (10.64)
du, (y(r/L),y(r/L)) —2h dy, (y(r/L),o(r/L))
Combining this with (10.55) and (10.56) we have
du(y(Ry/L),0(Rs/L)) +4h > dy, Y (R—r+7r)/L),6((R—r+7)/L)) (10.65)

dy(y(ry/L),0(rs /L)) — 4h dy, (y(r/L),6(r/L))
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Note that both y and 6 are minimizing geodesics since L < D, and they lie on M. Thus
there distances can be computed using the warping function f.

If we take d,’wk to be the distance in M, measured by taking arc paths in spheres about y (0) =
o (0) then:

dy (7(R=r+7)/L).6((R—r+7)/L))=dy, (7F/L).6GF/L))H  (10.66)

where
_SRord D g D (10.67)
Jie () Felr—h,r] Ju(R—r+7)
Actual distances dy, are somewhat shorter but can be estimated by this d, :
di, (7(9), () <djy (7().6(9)) <, (7(5), 6 (5)) + e (h, ) (10.68)

where a, (h,s) = 2(s — s’) where s — s’ is the maximal distance between the arc joining ¥ (s)
and 6 (s) and the minimizing geodesic between these curves. On Euclidean space we have s’ =
v/s2 — h? and on S? we have cos(s) = cos(h) cos(s’). In general we can say that

. oe(s, h)
lim —— =

0. (10.69)
h—0 h

Thus (10.66) implies

du, (P((R—r+7)/L),6((R—r+7)/L)) = du, (7(F/L),6(F/L))H — o (R —r + 7, h).
(10.70)

Putting this together with (10.65) we obtain

d(y(ry/L),0(ro /L)) —4h < s Jie(r)
d(y(Ry/L),0(Rs /L)) +4h + (R —r +7,h) = fe[r}:t,r] fe(R=r+7)

(10.71)

Since d(y (R, /L), 0 (Rs/L)) < D, and

(x—4h)/(y+4h+a)< H implies x < Hy+4hH +aH +4h (10.72)
implies

x/y<H+ (@4hH+ah+4h)/y <(1+4h/D)H + (4h + @)/ Dy (10.73)

we have (10.52). O
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11. Ultimate conjugate points after &

In this section we describe a proof of the following theorem as an application of our Rel-
ative Rauch Comparison Theorem (Theorem 10.5). We will apply it combined with our Long
Homotopy Lemma (Theorem 6.2) to prove Lemma 12.1. We then combine it with Klingenberg’s
Injectivity Radius Estimate (Theorem 8.3) to prove a result of Charney and Davis used in their
proof of Gromov’s Systole Theorem (Corollary 12.3).

Theorem 11.1 (Alexander—Bishop). If M is a CBA(k) space and y : [0, 1] = M is a geodesic
of length < Dy, then y has a unique continuous family of geodesics about it.

One may wish to keep the following example in mind when considering this theorem in con-
trast to the usual smooth projective spaces:

Example 11.2 (Tetrahedral Bi-sphere). Suppose two copies of the round sphere S? are glued to
each other at 4 points that form the vertices of a regular tetrahedron on each sphere. The resulting
space is CBA(1), but it does not have unique minimizing geodesics between all pairs of points
of distance less than .

Note that by Theorem 10.1, we already know there are no symmetric conjugate points along
y of length less than D,. So if we show every geodesic of length less than 7 has a continuous
family about it (and thus no unreachable conjugate points) then there are no ultimate conjugate
points and, by Proposition 5.5, we know that there is a unique continuous family about y. In
fact one can see that Alexander—Bishop proved exactly what we require in [1] and it is applied
in [2]. A precise statement of their result and proof can be also be found in Ballmann’s book
on manifolds with nonpositive curvature [5, Chapter 1, Theorem 4.1]), as pointed out to us by
Lytchak.

For completeness of exposition we prove a short description of a proof based on the Relative
Rauch Comparison Theorem (Theorem 10.5). A completely rigorous write up of our proof can
be found in the arXiv posting of this paper.

In our proof, we assume there is a continuous family about y restricted to some interval [0, T']
and extend that family out to [0, T 4 T7] for 71 > O but close enough that y ([T — T1, T + T1])
is in a minimizing neighborhood so that we can apply Lemma 7.21 and Proposition 9.5. To do
this we glue geodesics in the continuous family to geodesics in the minimizing neighborhood.
However it is not clear how one can glue geodesics to form geodesics rather than just piecewise
geodesics. In fact, this is impossible when T' = D,.

Instead we start with a pair of points # near y (0) and w near y (T + T1) and define a se-
quence of piecewise geodesics using the continuous family about y ([0, 7']) and the short minimal
geodesics. We then prove this carefully controlled sequence is Cauchy and in fact converges to a
geodesic from u to w. See Fig. 10.

We start with o running minimally from w to yg = y (T — T1) and yy in the given family from
u to the midpoint, x1, of op. Then we take 0| running minimally from w to y; = y9(T — T1) and
y1 in the given family from u to the midpoint, x>, of o1, and so on. We show both sequences,
y; and o;, are Cauchy using the Relative Rauch Comparison Theorem (Theorem 10.5) and the
fact that their combined lengths are kept less than D,.. We then prove they converge to a pair of
geodesics Yoo and o that glue together to form a geodesic y,, , running from u to w.
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u w
P q

Fig. 10. Building the sequence of piecewise geodesics, then taking the limit.

The proof is very technical because we control the total height of the bridges as they build
upon one another by choosing very small neighborhoods for our # and w. We ensure that the
accumulated Rauch estimates and their errors due to the heights remains bounded by using a
geometric series. As this proof was many pages long in the style of an analysis paper rather than
a geometry paper, we have not included it here in the published version.

12. Applications to CBA («) spaces

In this section we briefly survey some applications of our results on geodesic spaces to
CBA(x) spaces and potential further directions of research. We begin with the long homotopy
lemma and then the injectivity radius theorem and finally discuss some further directions.

Theorem 12.1. If M is a locally compact CBA(x) space and c : [0, 1] — M is a nontrivial
contractible closed geodesic of length I(c) < 2Dy, then any null homotopy for ¢ contains a
curve of length > 2D,..

Proof. We begin by noting that M is locally uniformly minimizing (Lemma 9.5). By The-
orem 11.1 we know conj(M) > D,. Thus this follows immediately from Theorem 6.2, our
generalization of the long homotopy lemma. O

The standard application of the theorem to Riemannian manifolds is depicted in Fig. 4. An
application to a CBA (k) space can be seen by taking two copies of that example and joining them
together at finitely many corresponding points similar to the Tetra bi-sphere (Example 11.2).
Note how it is crucial in this application that the fans constructed do not require uniqueness of
geodesics between the points.

Open Problem 12.2. The Riemannian long homotopy lemma has also often been used in combi-
nation with Morse Theory to prove the existence of smooth closed geodesics. Possible extensions
of Morse Theory to length spaces appear in [21]. Thus one might try to extend some of this ex-
istence theory to length spaces and CBA(x) spaces.

Our next application is closely related to a step in Charney—Davis’ proof of Gromov’s Systole
Theorem [9] (cf. [7, 11.4.16]).
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Corollary 12.3 (Charney—Davis). A compact CBA(k) space, X, with « > 0 such that
MinRad(X) € (0, D) has a closed geodesic with length twice the minimal injectivity radius.

Proof. We just combine Theorem 8.3 with Theorem 11.1. O

In the Charney and Davis proof of Gromov’s systole theorem they essentially prove the fol-
lowing statement: If the Unique Injectivity radius is less than D, then there is a closed geodesic
of length equal to twice the unique injectivity radius which is in fact a digon, so its length is twice
the minimal injectivity radius as well. They do not explicitly state this but the essence of the idea
is there so we consider Corollary 12.3 to already be known. The argument in their situation is
easier than ours because it is easy to construct continuous families about unique geodesics. So
Corollary 12.3 is an over simplification of our Klingenberg Injectivity Radius Theorem (Theo-
rem 8.3) but our theorem holds in a much wider setting.

We close with a discussion of the implications of equality in Theorem 11.1.

Definition 12.4. A CBA(1) space is said to have positive spherical rank if any geodesic segment
of length 7 has conjugate endpoints.

On Riemannian manifolds, one has the immediate consequence that every geodesic has a
Jacobi field running along it of the form J(¢) = sin(¢) E(t) where E is parallel. In [19], the
authors called closed manifolds with this property to have positive spherical rank. In that paper
it is shown: If a Riemannian manifold of sectional curvature at most 1 has positive spherical
rank, then its universal cover is isometric to a compact, rank one, symmetric space.

Open Problem 12.5. Can one classify CBA(x) spaces with positive spherical rank?

Note that following example demonstrates that the classification cannot be restricted to sym-
metric spaces at least without the further assumption of a lower curvature bound.

Example 12.6. The triple hemisphere is a compact length space created by gluing three hemi-
spheres together along a common equator. It is a CBA(1) space with infinite negative curvature
along the equator. See for example [8] for theorems about constructing CBA (k) spaces using
gluing. One can find the distance between any pair of points on a common hemisphere using
standard spherical geometry and the distance between any pair of points on different hemispheres
by considering the two hemispheres as a single sphere.

Any geodesic of length < 7 will pass through at most two hemispheres and so can be seen
to be running along a great circle on the sphere formed by those two hemispheres. Thus it has
no ultimate conjugate points before w (otherwise the sphere would have a conjugate point by
Proposition 5.5). So the triple hemisphere is a space with positive spherical rank.

While the above example is not a symmetric space, it is an example of a spherical build-
ing. One might hope that a classification of spaces with positive spherical rank might be limited
to spherical buildings (or their generalizations). In the 2-dimensional case, W. Ballmann and
M. Brin showed that if one further assumes that the space is obtained by gluing spherical sim-
plices together then one has rigidity. Specifically they showed that all such examples are spherical
buildings, spherical joins or one class of examples that is neither; see [6]. One can see that the
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examples in [6] that are neither buildings nor joins do not have positive spherical rank. So in this
case one may be able to prove that such spaces are rigid.
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Appendix A. Translated excerpt from Rinow [18]

As Rinow’s text is in German, we have translated relevant sections here and added comments
in italics.

A.l. Absolute conjugate points; p. 172

Rinow is first interested in minimizing geodesics:

Let f(s),0 < s < B denote the normal representation of a geodesic ray S, with starting point
a = f(0). Let k(S,) denote the supremum over all s’ € [0, B) for those s for which f l[0,s] 18 @
shortest curve (i.e., geodesic segment) between a and f(s”). Obviously, 0 < k(S,) < B.

Rinow then defines a notion of conjugate point which is unrelated to our notion and not
equivalent to the Riemannian notion:

The absolute conjugate point of the ray S, is defined to be the point f(k(S,)) if k(S,) < B,
or in the case k(S;) = B < oo the limit point of S, if it exists. We also denote it as f(k(S,)).
In case k(S;) < B, f(s) always represents a shortest curve on [0, k(S,)], however, not on any
interval [0, o], where k(S;) < o < B. It follows that all inner points for f(k(S,)) are shortest
curves for S,. In an inner metric space, obviously k(S,) = d(a, f(k(S,))), if f(k(S,)) always
exists.

Rinow later defines a notion equivalent to a one-sided conjugate point.

A.2. Conjugate points; pp. 414—415
X is an inner metric space with the following properties (p. 414):

(a) X islocally compact.

(b) X does not have any branching points (i.e., X does not have bifurcation of geodesics; see
p. 162).

(c) For each point a € X, there exists €, > 0 so that

inf{k(y): yeU(a, ex)} > 0.
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Note that due to the nonbranching, there is local uniqueness of geodesics of length less than
k(y). One can also piece together geodesics to extend them:

Let a € X be any point. Let « be a real number so that 0 < o < k(a). Let ), denote the
peripheral sphere of a with radius « (points in X at distance « to a). Every point £ € ), can be
connected to a by exactly one shortest curve and there is exactly one geodesic ray Sg which is
infinitely extendable.

Rinow then defines an exponential map, f, using this uniqueness:

Let f(&,5),0 < s < oo be the normal parameter representation of Sg. We set P =
Y o X[0, 00) with the product metric

P((5.). (. 5N) = JdE. &2 +Is — s/

Then f: P — X is a well-defined map. Every point x # a can be connected to a by a shortest
curve. Consequently, we get a geodesic ray through x. Moreover, f(§,0) = a for every § € Y
and f is continuous on P.

Rinow uses this notion to define conjugate points which he next proves is equivalent to what
we call a one-sided conjugate point:

Given a point (&g, so) € P with 5o > 0, we say sg is an ordinary point for the ray f (&, so) if
for some & > 0, f restricted to Vs(&o, s0) = {(&,5): d(&,&) <8, |s — s9| < 8}, is a topological
map (i.e., homeomorphism onto its image; see p. 11) and in addition f(Vs(&, s9)) is open in X.
If no such § > 0 exists, then s is called a conjugate point. Obviously, the set of ordinary points
is open while the set of conjugate points is closed in [0, 00).

Rinow then proves the following theorem which we only state here:

Theorem 1. Let X be an n-dimensional manifold. so > 0 is an ordinary point of f (&o, s) if and
only if there exists § > 0 such that f restricted to Vs (&, so) is injective.

One then sees that this is equivalent to the notion of a one-sided conjugate point because f is
an exponential map.
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