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Abstract

A target that differs in orientation from neighboring lines and ‘‘pops out’’ has been found to evoke larger responses in cortical V1

cells than lines in the uniform texture surround which do not popout (e.g., Journal of Neurophysiology 67 (1992) 961). If this is more

than a coincidence of observations, physiological properties of contextual modulation should be reflected in the perception of

salience. In particular, as the differential suppression from texture surround has been reported to be delayed, target salience may be

affected by the history of surrounding lines, i.e. by their orientation before the target was presented. This was tested using a feature

flicker paradigm in which target and background lines changed their orientations (Experiment 2). All subjects (N ¼ 4) indicated a
benefit in target detection when target orientation was not previously present in the surround. A control experiment showed that this

effect was not caused by the purely temporal aspects of asynchronous stimulus presentation (Experiment 3). To distinguish this effect

from other sources of delayed processing, Experiment 1 compared the performance in target detection and target identification

tasks, for single-lines and popout targets. All subjects required longer stimulus presentation time to identify the orientation of a

single line than to detect the line itself, indicating that orientation coding needs longer processing than encoding stimulus onset.

However, most subjects needed even longer presentations to detect popout, suggesting that the processing of orientation contrast

adds to this delay. In an appendix, putative response variations of V1 cells to asynchronous flicker are computed.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A line that differs in orientation from neighboring
lines is salient and pops out (Foster & Ward, 1991;
Nothdurft, 1992; Treisman & Gormican, 1988). The
neural mechanism of this striking perceptual phenome-
non has not yet been identified, but response variations
consistent with this effect have been observed in single
cells of area V1 (Kastner, Nothdurft, & Pigarev, 1997,
1999; Knierim & Van Essen, 1992; Lamme, 1995; Lee,
Mumford, Romero, & Lamme, 1998; Nothdurft, Gal-
lant, & Van Essen, 1999; Sillito, Grieve, Jones, Cudeiro,
& Davis, 1995; Zipser, Lamme, & Schiller, 1996). In
many cells, a line in the receptive field surrounded by
lines outside the field evoked a larger response when the
surrounding lines were orthogonal than when they were
parallel to the center line. This is consistent with the

salience of an orthogonal line in a homogeneous texture
field, and it has been proposed that salience variations
associated with orientation contrast may resemble re-
sponse variation by contextual modulation in V1 (e.g.,
Kastner et al., 1997; Knierim & Van Essen, 1992; Li,
2002; Nothdurft, 1994a,b; Nothdurft et al., 1999). In
order to investigate the proposed link of single-cell re-
sponses and visual perception, I have recently studied a
number of properties of perceptual popout that are
predicted by physiological observations but had not yet
been identified perceptually (Nothdurft, 2000a–c). One
of these was the dynamics of orientation popout
(Nothdurft, 2000b). Recordings in behaving and anes-
thetized monkeys had shown that response differences
due to differential contextual modulation occur with a
delay in onset of the population response (Bair, Cava-
naugh, & Movshon, 1999; Knierim & Van Essen, 1992;
Lamme, 1995; Lee et al., 1998; Nothdurft et al., 1999;
Zipser et al., 1996). Therefore, if the salience of an or-
thogonal line is related to the response modulation in
V1, the detection of popout should be delayed against
the detection of the line itself. This was indeed found
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(Nothdurft, 2000b); subjects needed longer stimulus
presentations to detect a line that popped out from
orientation contrast than to detect a single line. A sec-
ond proposal was also verified. Since contextual mod-
ulation is delayed, the dynamics of saliency effects from
orientation contrast should be different from those
based on the onset of responses, e.g. saliency effects from
luminance contrast. Indeed, when target and back-
ground line features were rapidly exchanged (‘‘feature
flicker’’), targets defined by orientation contrast lost
their salience at lower frequencies than targets defined
by luminance contrast (Nothdurft, 2000b).
Although these observations strengthen the assump-

tion that salience from orientation contrast is encoded
by contextual response modulation in V1, the compar-
ison of dynamic properties may go one step further. If
the onset of differential responses in single cells is lin-
early related to the presentation of the different texture
surrounds, then the response difference between a line
with orthogonal surround (the popout target) and lines
with parallel surround (the lines in the uniform texture
field around the target) should be larger if the surrounds
are presented earlier so that the (delayed) suppression
from the surround can modulate the line response right
from the beginning. This prediction was tested in the
present study.
Note, however, that the longer processing of orien-

tation popout is not necessarily due to the neural
mechanisms encoding feature contrast. The evaluation
of line orientation itself may be slower than the evalu-
ation of the presence of the line, and the observed dy-
namics may simply reflect this difference (see Motoyoshi
& Nishida, 2001, for an elegant investigation of this
interdependence). The response of an orientation selec-
tive cell in area V1 does not indicate when stimulus
orientation is optimally encoded in the brain. Indeed,
early recordings from orientation selective cells in the
cat seemed to suggest that tuning curves sharpen with
the ongoing response and hence orientation selectivity
may improve with time (cf. Hubel & Wiesel, 1959,
Fig. 3), although such a dynamic sharpening of orien-

tation tuning has not always been confirmed (Celebrini,
Thorpe, Trotter, & Imbert, 1993; Volgushev, Vidyasa-
gar, & Pei, 1995; but see Ringach, Hawken, & Shapley,
1997). Thus, while the proposal from physiology was
that detection of orientation contrast would be delayed
against the detection of a single line, and this proposal
was confirmed (Nothdurft, 2000b), it would be in-
teresting to know whether or not the detection of an
orthogonal line (popout) would be delayed against evalu-
ation of line orientation itself.
The present study addressed these two questions.

Experiment 1 compared the dynamics of target detection
and target identification both with single lines and with
lines that popped out from orientation contrast. It was
found that the identification of target orientation indeed
required longer stimulus presentations than simple de-
tection of the target. However, the detection of popout
from orientation contrast required even longer presen-
tations, although this difference was small for one sub-
ject. Experiments 2 and 3 addressed the latency question
raised above and investigated whether orientation
changes applied to targets and background lines in
asynchrony, have an effect on target visibility.

2. General methods

This study is a continuation of Nothdurft (2000b) and
is based on similar experimental paradigms. Stimulus
patterns were made of line elements at one of two oblique
orientations (Fig. 1). There was either a single line or a
texture-like arrangement of lines with one line orthogo-
nal (popout target). Subjects performed one of two tasks,
(i) a target detection task in which they had to indicate
the location of the target being displayed on either the
left or right half of the screen; (ii) a target identification
task (not tested in Nothdurft, 2000b) in which subjects
had to indicate whether the target line was tilted to the
left or to the right. All tasks were performed under fix-
ation of a small dot in the middle of the screen. In Ex-
periment 1, stimulus presentation time was varied and

Fig. 1. Stimulus patterns. In Experiment 1, targets were single lines or lines with orientation contrast, which subjects had to detect or to identify.

Patterns were masked soon after presentation. In Experiment 2, popout patterns were alternated with complementary pictures, in which all lines were

replaced by their orthogonal counterpart. Subjects had to detect the target. In Experiment 3, lines were randomly oriented (Fig. 8) and replaced by

orthogonal lines; target and background lines flickered out of phase.
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performance accuracy was measured at each of several
durations, to reveal the growth of performance with the
signal. In Experiments 2 and 3, different popout patterns
were presented in sequence so that target and back-
ground lines alternated with their orthogonal counter-
parts (feature flicker). Performance accuracy was
measured for different flicker frequencies and for in-
phase and out-of-phase target and background flicker.

2.1. Stimuli

Stimuli (cf. Fig. 1) were displayed on a 1500 monitor
placed 67 cm in front of the subject. Lines (0:9 deg�
0:25 deg) were arranged in a 9� 9 texture field (1.8 deg
raster width, with random jitter of up to�0.2 deg at each
position). The center element was omitted to avoid in-
terference with the fixation point. Targets were presented
at 3.7–5.5 deg eccentricity on the left or right side of the
screen and were randomly chosen to display one of the
two oblique orientations; the other lines were either
blanked (single-line condition) or all orthogonal (popout
condition). Masks displayed superimposed line elements
at both orientations; even single-line targets were masked
with the entire texture field. Monitor refreshing rate was
100 Hz; stimulus durations were synchronized to this
rate. Lines (10.5 cd/m2) and masks (32 cd/m2) were white
on dark background (3 cd/m2); the fixation point
(0:1 deg� 0:1 deg) was green (47 cd/m2). Stimulus se-
quences differed between the experiments and will be
described below.

2.2. Subjects

Four subjects (21–53 years; two females) including
the author participated in experiment; three of them
received payment for the time they invested. All subjects
had normal or corrected-to-normal visual acuity. Three
of them had performed similar tests before; one subject
(EB) had carried out target detection and identification
tasks but had not been tested with feature flicker. All
subjects except the author were unaware of the purpose
of the experiments.

2.3. Procedure

Subjects indicated their choice by pressing specified
keys on a computer keyboard. Targets located in the left
half of the screen and targets tilted to the left were as-
sociated with a left-hand key, targets located in the right
half or tilted to the right with a right-hand key. There
was no time pressure for the response. About half a
second after the subject’s reaction a new trial started
with the 1 s presentation of the fixation point.
The different series of experiments were performed in

sequence. At the beginning of each series, subjects were
given a test run to familiarize them with the stimulus

conditions and with the tasks. Fixation was controlled
by means of a video camera focused on the subject’s
eyes. Since all subjects kept their eyes still right from the
beginning of the study, only occasional controls were
made in later sessions. Stimulus durations in Experiment
1 were too short to take advantage by shifting the eyes.
Tests were blocked for the task (detection vs. identi-

fication) and for target type (single line vs. popout;
Experiment 1) or cycle time (Experiments 2 and 3).
Blocks contained 30 repetitions of each individual test
condition and were repeated in an interleaved fashion so
that, finally, each data point resembled measurements
from at least 90, but often 120 or more repetitions of the
same stimulus condition, for every subject. Performance
of a single test block took 10–25 min; subjects could
pause whenever they wished. Tests were carried out in
sessions of up to 2 h; 7–8 sessions were needed to com-
plete all experiments. Subject HCN performed a number
of additional tests.

3. Experiment 1: detection and identification of single-line

and popout targets

Nothdurft (2000b) reported that the detection of a
target that pops out from orientation contrast requires
longer stimulus presentation than the detection of a
single line. This was assumed to reflect the delayed
manifestation of differential contextual modulation in
V1, which generates a larger response to the popout line
than to lines in the surrounding uniform texture field
(Knierim & Van Essen, 1992; Nothdurft et al., 1999).
However, orientation contrast can only be evaluated if
line orientation is represented in the brain, and it would
be interesting to see whether the longer processing time
needed to detect orientation popout is explained by the
time needed to encode line orientation, or goes beyond
such an effect. A straightforward test would be to com-
pare the dynamics of popout target detection with those
of an orientation discrimination task.

3.1. Methods

Four different tests were included in this experiment
(cf. Fig. 1). A single-line and a popout target had each to
be detected or to be identified. Targets were randomly
tilted to the left or right and occurred randomly on
either side of the display. Each trial began with a 1 s
presentation of the fixation point, then the stimulus
pattern was shown for variable duration and subse-
quently masked. The mask disappeared after 500 ms.

3.2. Results

Performance in these four tests differed considerably
(Fig. 2). Subjects could generally detect single lines of
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shorter durations than popout targets, and required
longer presentation time to identify a target than to
detect it. However, these differences were not equally
strong for all subjects. Whereas most subjects revealed a
considerable shift of performance between the tasks, the
curves of one subject fell closer together (HCN). Nev-
ertheless, the ranking of performance was consistent
among subjects and was also apparent in the mean data
(Fig. 3). Single lines could be identified from shorter
presentations than could popout targets be detected,
indicating that the evaluation of orientation contrast
added to the processing time needed to encode orien-
tation.
A repeated-measures two-factor ANOVA revealed

significant differences between the single-line and the
popout target detection task ½F ð1; 3Þ > 47:8; p < 0:0001�
as was already shown in the previous study (Nothdurft,
2000b), in which three of the four subjects also partici-
pated. Popout detection was also significantly delayed
relative to single-line identification ½F ð1; 3Þ > 7:63;
p < 0:01�. In general, the same task for different tar-
gets led to significant differences; not only the detection
but also the identification of popout targets needed
significantly longer presentation times than detection
and identification of a single line ½F ð1; 3Þ > 24:2; p <
0:0001�. Finally, target identification was significantly
delayed compared with target detection both for single
lines ½F ð1; 3Þ > 35:4; p < 0:0001� and popout targets
½F ð1; 3Þ > 4:6; p < 0:05�.

3.3. Discussion

There were reliable differences in performance be-
tween the different tasks. In particular, single targets
were detected faster than popout targets, as found in the
previous study (Nothdurft, 2000b).

Fig. 2. Detection and identification of single-line and popout targets.

Individual data of all four subjects. Error bars give the confidence

range of each measurement, corresponding to the standard error of the

mean (SEM). With increasing presentation time, performance in-

creases in each task. Targets were generally detected faster than they

were identified, and single lines faster than popout targets, irrespective

of the different speed at which subjects performed the tasks (note

different scales).

Fig. 3. Mean data and SEM of Fig. 2.
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However, the question behind the experiment was
whether or not this difference can be explained by the
time needed to encode line orientation in the brain: if
representation of line orientation were delayed com-
pared to the representation of line onset, then the de-
tection of orientation popout would necessarily take
longer than the detection of a single line. The data do
confirm the slow encoding of orientation information,
but they do not indicate that the slower detection of
orientation contrast is due exclusively to this effect. All
subjects needed longer stimulus presentations to identify
the orientation of a single line than to detect it (Fig. 2,
black continuous vs. dashed curves). But most of them
needed even longer presentations to detect the ortho-
gonal popout target (gray, continuous curves). This
suggests that encoding of salience from orientation
contrast is delayed beyond the (delayed) encoding of
orientation. Note, however, that this additional delay
was very small for subject HCN.
This is in disagreement with recent observations by

Motoyoshi and Nishida (2001), who measured the
temporal-frequency limits of local orientation coding
and orientation-based texture segregation and found
similar cut-off frequencies for both properties. The au-
thors concluded that the temporal limit for orientation-
based texture segregation depends only on that of local
orientation coding. This was not generally confirmed in
the present study, but the reason for this discrepancy
is not yet clear. On the one hand, there were several
methodological differences between the studies. In the
present study, local orientation coding was measured
explicitly by having subjects identify the orientation of a
single line; Motoyoshi and Nishida measured local ori-
entation coding indirectly, with stimulus patterns that
were designed to lose orientation information when
temporally fused. Another distinction is the usage of
different stimuli; Motoyoshi and Nishida used second
derivatives of Gaussians rather than bars, and studied
texture segregation, not popout. On the other hand,
however, the small differences between single-line iden-
tification and popout detection for subject HCN suggest
that the processing time for detecting orientation con-
trast is not always above that of orientation coding but
may perhaps be reduced with practice. Furthermore,
orientation coding and orientation-based popout were
measured, in the present study, in different patterns and
it is not obvious that this difference did not affect per-
formance. In fact, several studies have shown that the
responses of V1 cells to a single line are reduced when
the line is presented with texture surround (Kapadia,
Westheimer, & Gilbert, 1999; Li, Thier, & Wehrhahn,
2000; Nothdurft et al., 1999). But latency shifts are ra-
ther small (Li et al., 2000) and perhaps too small to
account for the differences seen in Fig. 3.
Interestingly, single lines were not only detected faster

than popout targets; they were also identified faster. At a

first glance, this is astonishing. Whereas the detection of
a single line may be based on stimulus properties (e.g.,
luminance onset) other than the detection of orientation
popout, hence the different dynamics in target detection
are perhaps not surprising, target identification should
always be based on the neural representation of line
orientation. Why should it take longer to identify the
popout target than to identify the single line? Part of this
effect may again be due to the attenuation of neural
responses by texture surround (Kapadia et al., 1999; Li
et al., 2000; Nothdurft et al., 1999).
Another explanation might be that targets must be

localized before their orientation can be identified. Since
single lines were detected faster than popout targets,
they might also be identified faster. Such a delay be-
tween salience detection and target identification would
be consistent with observations on the dynamics of at-
tention shifts to salient targets (Nothdurft, 2002).
In conclusion, Experiment 1 has shown that detection

of orientation contrast requires longer stimulus pro-
cessing than detection of a single line. For most subjects,
this time exceeded even that for orientation coding.
Given the uncertainty of when orientation is encoded in
the response of a cell population in V1, the results are
consistent with the proposal that popout from orienta-
tion contrast manifests with a delay compared to stim-
ulus onset, as it might be associated with (delayed)
differential contextual modulation in area V1. The sec-
ond part of this study will investigate if and how this
delay affects the detectability of flickering popout tar-
gets.

4. Experiments 2 and 3: the effect of asynchronous target

and background flicker on target visibility

Contextual modulation of line responses in V1 man-
ifests in two effects, (i) responses are generally sup-
pressed by texture surround, and (ii) the suppression is
stronger when the surrounding lines are parallel. Only
this latter, differential effect is delayed and proposed to
account for the salience of popout targets as in Fig. 1. If
this suppression is linearly related to the onset and offset
of parallel texture surround, target salience should de-
pend not only on the actual popout display but also on
the history of the lines around the target before that
pattern was shown. The aim of Experiment 2 was to test
this prediction. Is a popout line more salient when the
surround was orthogonal before the target is switched
on than when it was parallel to the orientation of the
target?
The question was studied using a feature flicker

paradigm (Harasawa & Sato, 1999; Motoyoshi &
Nishida, 2001; Nothdurft, 1999, 2000b) in which target
and background lines frequently change their orienta-
tions. By having target and background lines switch in
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asynchrony, it should be possible to distinguish the dy-
namics of differential effects from parallel and ortho-
gonal surrounds. However, onset delays themselves are
recognized by the visual system (Leonards, Singer, &
Fahle, 1996; Theeuwes, 1991; Ziebell & Nothdurft,
1999) and the synchronized flicker of all background
elements together may help to detect the target (Lee &
Blake, 1999). To exclude the possibility that variations
in target detectability were simply due to the asynchro-
nous presentation of target and background lines, irre-
spective of their orientation contrast, the detectability
of pure timing effects also had to be measured (Experi-
ment 3).

4.1. The ‘‘C4F’’ paradigm

One way to study the dynamics of popout from fea-
ture contrast is to measure the ‘‘critical feature flicker
fusion frequency’’ (C4F; Nothdurft, 2000b). The para-
digm is illustrated in Fig. 4A. In a pattern with feature
contrast (schematic drawing on the left), target and
background features are regularly exchanged (center
and right-hand drawings). In each pattern, the target
pops out from orientation contrast. However, this pop-

out is not seen if alternation rates are too fast to be
resolved by the neural mechanisms encoding feature
contrast; the target would then remain undetected even
though the feature flicker itself might be observed. In the
mean data of five subjects, only flicker rates below 7.7
Hz produced better than 0.5 target detectability for
orientation contrast (Nothdurft, 2000b). Targets defined
by luminance contrast, for example, were seen up to
considerably higher flicker rates (17.5 Hz). The inverse
of flicker frequency is cycle duration, T; for the C4F of
orientation popout (7.7 Hz) each stimulus pattern must
be shown for about 65 ms (T=2).
Fig. 4B and C illustrate the stimulus sequences when

target and background elements flicker out of phase;
delays indicate the time when target orientation changes
relative to the last, or next orientation change of back-
ground elements. The sequence of popout patterns is
now interrupted by patterns with uniform texture. If
cycle duration is held constant, the time during which
the target pops out (Tpop) is reduced but the frequency at
which either target or background elements flip is not
affected. The length of the delay plus Tpop always add
to half a cycle, and longest popout presentations are
obtained for zero delays (Tpop ¼ T=2), when target and
background lines flip in phase (as sketched in Fig. 4A).
Vice versa, the maximum delay is T=2, which results
in uniform texture patterns with no popout at all
(Tpop ¼ 0). Fig. 4B and C distinguish two cases. In Fig.
4B, the popout condition is reached by an orientation
change of the target; the later change of background
orientation makes the popout disappear. In Fig. 4C
(sketched for the same Tpop), the popout condition is
achieved by an orientation change of the background
lines; the popout effect disappears when the target is
changed. If suppression from parallel lines in the sur-
round is delayed, we should expect poorer target visi-
bility in Fig. 4C than in Fig. 4B, for the same Tpop, since
suppression from background lines parallel to the target
might still be effective in Fig. 4C but not in Fig. 4B.
Thus, with the nomenclature used here, positive delays
should produce better target detectability than negative
delays of the same duration.

4.2. Experiment 2: feature flicker

This section presents experimental data obtained with
asynchronous feature flicker in a target detection task.

4.2.1. Methods
Stimuli were line patterns as in Fig. 1 (center) with an

orthogonal popout target that subjects had to detect.
Each line in the pattern alternated with its orthogonal
counterpart, so that, in synchronous flicker, the target
always differed from the surround (cf. Fig. 4A). In the
original experiment (Nothdurft, 2000b), flicker rate was
varied to find the frequency at which the target lost its

Fig. 4. Paradigm of Experiment 2. In popout patterns like Fig. 1,

target and background lines change orientation. For synchronous

flicker (A), the popout target is always present but occurs at different

orientations. For asynchronous flicker, two sequences are distin-

guished (B, C) in which popout is either achieved by an orientation

change of the target or by orientation changes of background lines.
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salience and could not be detected. In the present study,
not only flicker frequency but also the phase of target
and background flips were varied.
Stimulus presentation was synchronized to the frame

rate of the monitor (100 Hz). Each trial started with a 1 s
presentation of the fixation point; then flicker sequences
were shown for 1 s. Subjects were asked to keep their
eyes on the central fixation point. To avoid onset and
offset effects with medium flicker frequencies, each
stimulus period was started and terminated with a 60 ms
period (three cycles) of the fastest flicker possible (50
Hz). (In an additional series of experiments with subject
HCN, no difference was found when the initial fast
flicker period was omitted, provided that flicker se-
quences started with the uniform stimulus pattern (not
possible for zero delay). However, when the stimulus
sequence started with the popout display, the target was,
at medium durations Tpop, sometimes detected from the
first pattern even if it was not seen in the later flicker
sequence, in close agreement with Beaudot (2002).
Subject HCN performed the most extensive testing in

this study. Based on his data, three cycle durations were
selected for the experiments which the other subjects
were asked to perform.

4.2.2. Results
Fig. 5 shows target detection rates of subject HCN,

for a variety of flicker frequencies. The continuous (but
flickering) presentation of popout patterns did not al-
ways allow the target to be easily detected; except for the
longest cycle duration (T=2 ¼ 200 ms) performance with
synchronous flicker (delay ¼ 0 ms) was generally below
100%. With increasing delay, performance increased,
both for positive and negative delays and then dropped
down to chance when stimuli displayed uniform textures
with no popout target at all (delay ¼ T =2).
Except for the fastest flicker rates tested, the curves

show an obvious asymmetry in performance for delays
close to T=2. Targets were seen better when popout
was obtained from a target change (positive delays;
continuous curves) than when obtained from a change
of background orientation (negative delays; dashed
curves).
There was a similar though less pronounced perfor-

mance asymmetry at short delays, where preferences
were reversed and targets were seen better in negative
than in positive delays.
To illustrate the variations with flicker, detection

rates for different popout presentations (Tpop) were

Fig. 5. Data of subject HCN in Experiment 2. Numbers give half cycle time, T=2, in milliseconds. Errors bars in T=2 ¼ 200 ms indicate the con-
fidence range of each measurement, corresponding to SEM. The value varies with the level of performance; error bars in other flicker rate conditions

were similar. Performance in target detection differed between positive (continuous) and negative delays (dashed), as qualitatively predicted from

delayed contextual modulation. Targets were generally detected better in asynchronous than in synchronous flicker and were seen best at long

positive and short negative delays.
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plotted against flicker frequency (Fig. 6). With increas-
ing flicker frequency, performance generally decreased,
but steepest curves (best performances) were not ob-
tained for the maximal popout duration (thick lines) but
for asynchronous flicker with shorter presentations of
the popout target (gray lines). For positive delays, pre-
sentations of TpopP 30 ms produced the steepest curves
and, hence, the best performance at intermediate flicker
frequencies. Only for the shortest popout presentation
(Tpop ¼ 10 ms) was performance worse than for the
synchronous flicker condition, Tpop ¼ max. A similar
improvement of performance was seen for negative de-
lays though shifted towards longer presentation times.
The steepest curve, i.e. best performance was obtained
for Tpop ¼ 50 ms; two curves, Tpop ¼ 10 and 20 ms, fell
below that of the synchronous case.
The asynchronous flicker experiment was repeated,

for three cycle durations, by the three other subjects
(Fig. 7). The results were consistent and showed the
same characteristic properties as those of subject HCN.
All subjects revealed strong differences in performance
at short popout presentations (delays close to T=2), in
agreement with the expected differences for positive and
negative delays. These asymmetries were seen at all three
flicker rates tested. There also were asymmetries, in the
opposite direction, at short delays (delays close to 0) but
these were generally less pronounced. Popout targets
were less easily detected when target and background
lines flipped together (delay 0 ms) than when either
target or background flicker preceded. Performance
generally diminished towards high flicker rates (short
T =2).
The different strength of asymmetry effects at large vs.

short delays is well seen in the mean data of all four

subjects (Fig. 7B). Two-factor ANOVA for repeated
measures revealed that performance differences at large
delays were significant, whereas those at short delays
were not. The differences between positive and negative
delays in the four shortest Tpop conditions were highly
significant for T=2 ¼ 100 and 200 ms ½F ð1; 3Þ > 22:0;
p < 0:0001�; they also were significant in the three
shortest Tpop conditions of T=2 ¼ 60 ms ½F ð1; 3Þ > 4:85;
p < 0:05�. When the same popout durations Tpop at dif-
ferent flicker frequencies were looked at, asymmetry
effects for Tpop ¼ 10 and 20 ms were each highly signifi-
cant ½F ð1; 3Þ > 27:6; p < 0:0001�. For Tpop ¼ 30 ms, the
strength of asymmetry effects began to diminish
½F ð1; 3Þ > 5:31; p < 0:05� because 100% performance
was reached in some conditions. In contrast, the differ-
ences at short flicker delays generally did not reach
significance (p > 0:26).

4.2.3. Discussion
Experiment 2 revealed several interesting effects.

First, asynchronous flicker indeed produced perfor-
mance differences beyond the variations associated with
the duration of popout presentation. In particular, for
short popout presentations (long delays) detectability
varied considerably between conditions in which popout
was obtained from an orientation change of the target
(so that the surround was always orthogonal to the new
orientation of the target) and conditions in which po-
pout was generated by changing background lines (so
that the surround was previously parallel). This perfor-
mance asymmetry was seen with all flicker frequencies
above T=2 ¼ 50 ms (cf. Fig. 5). Second, asynchro-
nous flicker was generally found to improve target vis-
ibility over that of synchronous flicker. This effect was

Fig. 6. Performance variations with flicker frequency; data re-plotted from Fig. 5. Target detection generally deteriorated with increasing frequency.

Steepest curves, i.e. best performance at medium frequencies, were not obtained for synchronous (Tpop ¼ max; thick line) but for asynchronous
flicker. Positive (A) and negative delays (B) produced similar curves except that performance at negative delays was generally diminished and longer

popout presentations were needed to reach maximal performance (Tpop ¼ 30 vs. 50 ms; gray lines).
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naturally most pronounced at medium and high flicker
rates where performance with the synchronous flicker
was not yet perfect.

The observed asymmetry at long delays is exactly
what is to be expected on the basis of single-cell re-
sponses in V1 (see Appendix A). However, two obser-
vations are not consistent with a simple model of
delayed contextual modulation, the increased perfor-
mance at short negative delays, and the fact that per-
formance asymmetries are even reversed at these delays.
The (presumably delayed) suppression from parallel
surround should always be stronger, thus target salience
always be reduced, for negative than for positive or zero
delays (see Appendix A).
Note that targets were salient not only from their

(momentary) orientation contrast but also from their
different flicker compared to background lines (Leo-
nards et al., 1996). Thus, targets might have been de-
tected because they were flickering out of phase. This
would explain why performance increased in asynchro-
nous presentations, even for negative delays. To un-
derstand the unexpected performance asymmetry at
short delays, it would be helpful to re-consider the un-
derlying stimulus sequence. The sign of the delay, posi-
tive or negative, indicates in which part of the pattern an
orientation flip made the target pop out from orienta-
tion contrast; it thus tells about the previous orientation
of lines in the surround when the popout target was
displayed. It does not indicate, however, the temporal
sequence of target and background flicker in these re-
placements. In fact, a small positive delay (close to 0 ms)
corresponds to a target change shortly after the back-
ground change, whereas a large positive delay (close
to T=2) corresponds to target switching shortly before
background. These sequences are reversed for negative
delays (see Fig. 4). Thus, if the visual system would
detect flicker sequences in which the single line is
changed first better, targets should be detected better at
short negative and long positive delays, which is exactly
the finding of Experiment 2. In order to exclude the
possibility that the observed performance asymmetries
were due to a particular sensitivity for the sequence of
target and background orientation flips, independent of
orientation popout, we should compare these data with
the performance in a task in which targets had to be
detected from flicker asynchrony alone.

4.3. Experiment 3: control for purely temporal effects

In Experiment 3, target detection was measured in
asynchronous orientation flicker with no orientation
popout. In a first version of this experiment, target and
background lines did not change orientation but were
blanked for half of the cycle, so that target and back-
ground lines were onset and offset with a delay relative
to each other. However, the strong luminance flicker
associated with this display affected performance and
thus rendered the comparison with Experiment 2 diffi-
cult. In a second version, which is presented here, all

Fig. 7. Replication of Experiment 2 with three additional subjects

(data of HCN re-plotted from Fig. 5). Individual data (A) and means

(B) show consistent variations in performance and the same asym-

metry effects as observed with HCN. Error bars give the confidence

range corresponding to SEM (A) and the SEM (B), respectively.
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lines regularly changed their orientation, as in Experi-
ment 2, but the distribution of line orientations was
random so that no single line popped out (Fig. 8).

4.3.1. Methods
The stimuli of Experiment 3 resembled those of Ex-

periment 2 except that lines were randomly assigned to

one of the two oblique orientations (Fig. 8). During
presentation, each individual line was regularly replaced
by its orthogonal counterpart; as in Experiment 2,
‘‘background’’ lines all flipped in synchrony and at
various delays before and after the target line. Subjects
were asked to detect the target that ‘‘differed’’ from the
rest.
Subject HCN performed Experiment 3 for a variety

of flicker frequencies. For all other subjects, testing was
restricted to the three flicker rates in Experiment 2.

4.3.2. Results
Fig. 9A illustrates performance of subject HCN in

Experiment 3. The larger the delay between target and
background orientation flips, the better the target was
seen, confirming that flicker asynchrony itself was well
detected. The sensitivity varied only slightly with flicker
rate; the target was not detected in very fast flicker
(T=2 ¼ 40 ms) but there were almost no differences for
flicker periods above T=2 ¼ 80 ms.
Different to Experiment 2, there were no pronounced

asymmetry effects in Experiment 3. For T=2 ¼ 60 ms,
targets were detected slightly better when they flipped
before the background lines than when the background
lines flipped first, but this asymmetry was reversed at
slower flicker rates (e.g., T =2 ¼ 200 ms).

Fig. 8. Stimulus patterns as used in Experiment 3. All lines simulta-

neously flipped into orthogonal lines, except the ‘‘target’’ line which

flipped at a delay. Subjects were asked to indicate on which side of the

screen the target was located.

Fig. 9. Performance of subject HCN in Experiment 3; targets could only be seen from asynchronous orientation changes. (A) Performance varied

with flicker rate (graphs) and asynchrony (‘‘delay’’). For some flicker rates, targets were seen better when their orientation changes preceded that of

the background lines; for other flicker rates perferences were reversed. (B) Data re-plotted in the scheme of Fig. 7 to illustrate the contribution of

temporal effects upon the asymmetries seen in Experiment 2. Only T=2 ¼ 60 ms produced a small asymmetry effect as in Experiment 2; slow flicker
rates sometimes produced reversed effects.
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In Fig. 9B the data are re-plotted in the format of
Figs. 5 and 7 to illustrate the possible effect which pure
onset delays might have had on target detection in Ex-
periment 2. Since the same flicker sequences correspond
to different values for positive and negative delays,
curves are mutually symmetrical. Only for T=2 ¼ 60 ms
did performance asymmetries occur in the same direc-
tion as those in Fig. 5, but the magnitude of this effects
was much smaller than in Experiment 2.
Similar results were obtained from the three other

subjects (Fig. 10); measurements were restricted to the
flicker rates tested in Experiment 2. Except for subject
EB, performance asymmetries were generally small and
revealed preferences in different directions (continuous
vs. dashed arrows), which average out in the means (Fig.

11A). Performance asymmetries, if at all present, show
preferences opposite to those seen in Experiment 2 (Fig.
11B). A two-way ANOVA with repeated measures re-
vealed that these differences were, however, not signifi-
cant (p > 0:15).

4.3.3. Discussion
The comparison of data curves in Figs. 7 and 12

shows that the asymmetric performance of subjects in
Experiment 2 is not explained by purely temporal effects
associated with the sequence of target and background
orientation changes. Without flicker, popout targets are
better detected when presented shortly before the sur-
round (background) than when the surround precedes
(Ziebell & Nothdurft, 1999). This was also seen in flicker
(T=2P 100 ms), when target and background lines were
blanked rather than replaced by orthogonal lines (first
version of Experiment 3). For orientation flips, however,
performance differences between the two sequences were
negligible and targets were seen similarly well whether
they flipped before or after the background lines.

Fig. 10. Data of Experiment 3 for all four subjects (data of HCN re-

plotted from Fig. 9). Arrows indicate asymmetry effects with prefer-

ences for target-first (continuous) or background-first flicker sequences

(dashed).

Fig. 11. Mean data of Experiment 3. (A) Histograms show minor, if

any, performance differences when target orientation flips either

preceded or followed those of background lines. (B) The same data re-

plotted in the scheme of Fig. 7 to illustrate the magnitude of asym-

metry effects in Experiment 2. Performance differences are small and

reveal reversed preferences to those in Experiment 2. Error bars indi-

cate SEM.
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On the other hand, the good performance of all
subjects in detecting targets that were only defined by
their asynchronous orientation flip suggests that such an
effect was also present in Experiment 2. In the next
section we will try to separate the two saliency effects.

4.4. Comparison of Experiments 2 and 3

Target salience in Experiment 2 was probably based
on two effects, their orientation contrast to neighboring
lines and the fact that target and background lines
flipped in asynchrony. How do these different effects add
to the performance measured in Experiment 2?

4.4.1. Method
Let us assume that the salience from orientation

contrast did not depend on the history of target and
background lines but was only defined by the duration
of the popout stimulus, Tpop. Let us further assume that
the salience from flicker asynchrony (as measured in
Experiment 3) added to this salience.
Salience from orientation contrast increases with pre-

sentation time; this was measured, for single stimu-
lus presentations, in Experiment 1 (gray, continuous
curves). In flicker, particularly at fast flicker rates, per-
formance is reduced; note that detection rates at maxi-
mum presentation times in Experiment 2, Tpop ¼ T =2
(delay ¼ 0 ms), were generally smaller than those for
similar popout durations in Experiment 1. Thus, to
predict salience from orientation contrast in Experiment
2, we must attenuate the curves from Experiment 1 so
that they fit the performance at synchronous flicker in

Experiment 2. 1 Formally, the predicted salience from
orientation contrast, SAL	

ori, at delay t, is then given by
the salience of orientation popout as measured in Ex-
periment 1, SALexp1 (which depends on popout presen-
tation time, Tpop), normalized to the target salience at
delay ¼ 0 ms for a given flicker rate, as measured in
Experiment 2, SALexp2. Because Tpop ¼ T=2
 t,

SAL	
oriðtÞ ¼ SALexp1ðT=2
 tÞSALexp2ð0Þ=SALexp1ðT=2Þ:

This is illustrated in Fig. 12 (‘‘orientation contrast’’).
Note that salience is assumed to be linearly related to
the detection rate, which varies from 0 to 1 for perfor-
mance levels between 50% (chance) and 100%.
Saliency effects from onset delays should be added

to these curves while taking probability summation
into account. This can be achieved by multiplying the
probabilities of detection failures, i.e. when subjects had
to guess,

ð1
 pcombined effectsÞ ¼ ð1
 porientationÞð1
 ponset delayÞ

which is equivalent to

Fig. 12. Comparison of orientation flicker with temporal effects. Mean data from Experiment 2 (black, re-plotted from Fig. 7) are compared with

predictions made from Experiments 1 and 3 (gray). Thick-line curves plot the predicted detection of orientation popout if this depended only on

popout presentation time (Experiment 1) and flicker frequency (Experiment 2; data for delay ¼ 0 ms). Gray curves were obtained by adding the
observed sensitivity to flicker asynchrony (Experiment 3). Predicted performance is often better than measured. In particular, there are large de-

viations at long negative (dashed curves) and short positive delays (continuous curves), which indicate delayed suppression from parallel surround.

1 One could argue that this approach is not exactly true. Popout

targets were shown only once per trial in Experiment 1, but were

shown repeatedly, and even at two different orientations, in Experi-

ment 2. However, if these repeated presentations would accumulate,

targets should have been seen perfectly at zero delays in Experiment 2,

where popout was present during the entire flicker sequence (1 s total

duration). This was clearly not the case. Therefore, given the variation

of performance with flicker frequency (Nothdurft, 2000b) which is also

seen in Figs. 5 and 7, we assume that popout is accumulated only over

half a flicker period. This assumption has no effect on the further

computations, provided data curves from Experiment 1 are normalized

to match the performances at zero delays in Experiment 2.
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pcombined effects ¼ porientation þ ponset delay

 porientation � ponset delay:

4.4.2. Results
The computations were made for each subject and

then averaged; the resulting performance curves are
shown in Fig. 12 (gray). Comparison with the measured
data (black) reveals two major deviations. First, the
predicted performance is slightly better than measured.
This is obvious for T=2 ¼ 100 ms where maximum
performance in Experiment 2 did not exceed 96% but
was close to 100% in Experiment 3. Also for T=2 ¼ 200
ms, but not for T =2 ¼ 60 ms, the predicted performance
was generally slightly better than measured in Experi-
ment 2. The second and, in fact, more prominent dif-
ferences are the deviations of certain branches of the
curves. For all three flicker rates, true performance at
large negative delays was strongly reduced, whereas
performance at the corresponding positive delays tended
to follow the predicted curves. This difference disap-
peared at delays 30–40 ms below T=2. Similar differences
between the measured and the predicted data are seen at
short delays but now reversed. For T=2 ¼ 60 ms, for
example, the performance at negative delays matches the
predictions while that at positive delays is reduced.
Two-factor repeated-measures ANOVA revealed

partial significance of these two observations. Except
for T=2 ¼ 60 ms, the predicted data points for posi-
tive delays were significantly higher than the measured
ones ½F ð1; 3Þ > 15:9; p < 0:001�, and performance at the
three longest negative delays was significantly reduced
½F ð1; 3Þ > 65:9; p < 0:0001�. For T=2 ¼ 60 ms, however,
differences did not reach significance, probably because
the threshold-near performance varied too much be-
tween subjects.

4.4.3. Discussion
The better performance in the predicted than in the

measured data is due to a generally better performance
of some subjects in Experiment 3 than in Experiment 2.
The reason for this improvement is not clear, but there is
evidence that it may reflect long-lasting training effects.
The present version of Experiment 3 was carried out
several months after Experiment 2, and subjects had
participated in other experiments on temporal flicker in
the mean time. To compare the actual performance in
the two experiments, two subjects repeated the critical
measurements of Experiment 2 after they had performed
Experiment 3. For one subject (EB), performance in
Experiment 2 had indeed improved during that time and
data points for long positive delays now fell upon the
predicted curves. Nevertheless, her performance at long
negative delays was still strongly reduced, as it was in

the first series of measurements. The other subject
(HCN) had experienced a long time of practice in these
tasks even before the measurements began, and in his
data there was no significant difference for medium
and long positive delays between the predicted curves
and the early and late measurements in Experiment
2. The differences at long negative delays (cf. Fig. 5)
were, however, replicated. These observations suggest
that the general improvement of performance bet-
ween Experiments 2 and 3 reflects long-lasting training
effects.
The second and more dramatic deviation of measured

from predicted data is the performance reduction at
large negative delays. Target visibility is strongly sup-
pressed when orientation popout is obtained from
background flips. In this case (cf. Fig. 4), lines in the
surround were parallel to target orientation until they
flipped around. Apparently, the stronger suppression
from the (previous) parallel surround was delayed and
lasted long enough to block even the detection of onset
asynchronies, which were, however, well seen when the
surround was previously orthogonal to the new target
(positive delays). This suppression was effective for 30–
40 ms after the parallel surround had been switched off
(i.e. changed to orthogonal orientation). Thereafter, i.e.,
for negative delays shorter than T=2 minus 30–40 ms,
performance was dominated by the temporal effects and
deviations between positive and negative delays were
small. Different from the nearly symmetrical perfor-
mance that would be predicted from flicker asynchrony
in Experiment 3, the true performance measured in
Experiment 2 was strongly suppressed at (long) negative
but not positive delays. This would be consistent with
delayed suppression from parallel texture surround.
Interestingly, this suppression was also seen in the

first version of Experiment 3, in which (parallel) lines
were switched on and off. Targets that preceded the
onset of the (parallel) surround were seen better than
targets that followed it and hence were suppressed more
strongly.
Given these consistent observations, the deviations

at long negative delays seem to be well explained by
delayed suppression from parallel surround. But why
are these effects reversed at short delays, where the
predictions tend to match the measurements for negative
but not positive delays? Positive delays indicate that
orientation popout is obtained from a target orientation
change; that is, the surround is, and was before, or-
thogonal to the new target orientation. However, the
history of the previous display might have been rather
short. At a delay of þ10 ms, for example, the orthogonal
surround preceded the target flip by only 10 ms; before
that time, the surround was parallel to the (new) popout
target (cf. Fig. 4). Accordingly, at short negative delays
the surround before the popout presentation was par-
allel, but only for a short time. Thus, if suppression from
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parallel surround needs time to establish, and also
decays with a delay, the deviations from predicted
performances should be reversed at very short delays,
exactly as it is seen in Fig. 12.

5. General discussion

The study reports two major findings. First, the
slower detection of an orientation popout target com-
pared to a single line is not explained alone by the slow
encoding of orientation information in the brain but
seems to suffer from an additional delay (Experiment 1).
Second, the history of line orientation in the surround
was found to affect the detectability of popout in flicker
(Experiment 2); the observed performance asymmetries
with orientation flicker were not explained by temporal
saliency effects from the asynchronous stimulus presen-
tation (Experiment 3). Both findings would be consistent
with the observation that differential contextual modu-
lation is delayed.
Delayed contextual modulation has been reported in

a number of single-cell studies; the measures varied from
50–60 ms (Knierim & Van Essen, 1992; Nothdurft et al.,
1999) to 80 ms (Lamme, 1995; Lee et al., 1998; Zipser
et al., 1996) after stimulus onset; this gives a delay of 15–
40 ms after the onset of the earliest responses in area V1,
after which responses to a center stimulus are differently
modulated by different surrounds. While differential
contextual modulation itself was putatively related to
various perceptual phenomena (see Lamme, Sup�eer, &
Spekreijse, 1998, for a review), the question of whether
these perceptual phenomena manifest with a delay was
at first not studied.
Meanwhile, a number of studies have investigated the

temporal aspects of contextual modulation in percep-
tion, with slightly divergent results. Nothdurft (2000b)
reported that the detection of orientation popout (sa-
lience from orientation contrast) needs longer process-
ing time than the detection of a single line (salience from
luminance onset), as would be expected from a delayed
onset of differential contextual modulation. The differ-
ent dynamics of orientation popout and stimulus onset
were also confirmed in flicker experiments. Motoyoshi &
Nishida (2001) compared the processing time for ori-
entation coding and for orientation contrast, and did
not find a significant difference. However, as orientation
coding itself is delayed against the detection of line onset
(cf. Experiment 1), their results are not in disagreement
with the proposed delay.
Vidny�aanszky, Papathomas, & Julesz (2001) recently

stressed that ‘‘contextual modulation of orientation
discrimination is independent of stimulus processing
time’’, a conclusion that again seems to be in con-
flict with the present findings. However, these authors
measured variations of orientation discrimination when

Gabor (test) patterns were flanked by parallel Gabors
(masks). The flanks produced a threshold elevation,
which did not vary relative to no-flank measurements
for stimulus processing times between 56 and 392 ms.
This task is very different from the detection of popout
targets. Discrimination thresholds varied between 10�
and 2� and were frequently far below 5� even in the flank
condition. In contrast, saliency effects from orienta-
tion contrast only become visible around 10–15� mini-
mum (Caelli & Jelesz, 1978; Nothdurft, 1992, 1993).
Nevertheless, the kind of contextual modulation
that affects the orientation discrimination task re-
vealed the same effects on single-cell responses (Li et al.,
2000) as modulation studied in the context of popout
(Knierim & Van Essen, 1992; Nothdurft et al., 1999)
and, therefore, may also manifest with a delay. From
our single-cell recordings in anesthetized monkeys, per-
formance asymmetries as seen with orientation flicker
in Experiment 2 would be predicted (see Appendix
A). However, the range of delays at which these asym-
metries would occur is small (cf. Fig. 6) and might
have been missed in the study by Vidny�aanszky et al.
From our data, differential contextual modulation
should already be well established in 56 ms processing
time. While these authors intended to point out that no
(large) delays occur with contextual modulation, I
would like to stress the presence of a delay as short as
10–15 ms.
Still, from the flicker tests of the present study there is

no direct evidence for the existence of such a delay at
stimulus onset. Experiment 2 has revealed strong per-
formance asymmetries which indicate that salience of
orientation popout is reduced when the parallel sur-
round is shown before. This indicates that suppression
effects disappear with a delay, but it does not indicate
that their onset is delayed as well. I carried out a number
of additional tests to measure onset latencies, but none
of these was unequivocal and free of possible pitfalls
from other effects. The major problem seems to be that
stimulus durations of 10–20 ms are too short to let
orientation contrast pop out, but at longer durations
differential contextual modulation is already activated.
While this coincidence suggests that differential contex-
tual modulation in V1 might be essential for the per-
ception of popout, it does not prove it. However, a
delayed decay of suppression, as documented in Ex-
periment 2, should produce a strong perceptual effect, as
differential contextual modulation has fully developed at
this time.
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Appendix A. Simulation of saliency effects from single-
cell data

To evaluate perceptual performance on the basis of
single-cell physiology, a simulation of asynchronous
orientation flicker was made on the basis of cell re-
sponses obtained in anesthetized monkeys (Nothdurft
et al., 1999). The results reflect some of the effects ob-
tained with orientation flicker in Experiment 2; purely
temporal flicker effects as studied in Experiment 3 were
not investigated.
Fig. 13A shows the mean responses of 32 cells in

monkey area V1 that gave a significantly larger response
to lines in the popout condition than to the same lines
presented in uniform texture. With respect to the stimuli
used in Experiment 2 (Fig. 1, center), these two curves
would resemble mean responses to the popout target
(‘‘popout’’) and to lines in the orthogonal texture sur-
round (‘‘uniform’’). It was proposed that the larger
response to the popout target may correspond to its
particular salience (cf. Knierim & Van Essen, 1992; Li,
2002; cf. Nothdurft, 1994a, 1997). Obviously, the pre-
sumed responses to target and background lines are first
identical and only start to differ after a delay. Given
these data from single-cell recordings in anesthetized
monkeys, how would response differences vary when
target and background lines flicker out of phase?

A.1. Methods

Simulations were made to reflect the C4F paradigm
of Experiment 2 as sketched in Fig. 4. They were based
on linear combinations of the physiological data in Fig.

13A; the resulting saliency effects were computed from
the response differences between target and background
lines. The underlying model used only two independent
response components, (i) the response to the target in
the popout condition and (ii) the additional suppression
from parallel surround. General suppression, i.e., sup-
pression similarly evoked from both parallel and or-
thogonal surround, was not explicitly treated in the
model. This is a simplification since both texture sur-
rounds have been reported to suppress the response
(Kapadia et al., 1999; Knierim & Van Essen, 1992; Li
et al., 2000; Nothdurft et al., 1999). However, this sup-
pression is implicitly implemented in the response to the
popout target. Since targets were always presented with
one or the other surround, this simplification is likely to
be irrelevant for the present study.
In detail, target salience was computed along the

following steps, which are described for one of the two
line orientations in the pattern.

(1) The extra suppression from parallel texture sur-
round was estimated as the difference between the
two measured curves in Fig. 13A (‘‘difference’’).

(2) To allow for the computation of response offsets
(when line orientation was flipped to the orthogonal
orientation) and of new (and, in particular, high)
flicker frequencies, linear impulse response func-
tions, irfðtÞ, were derived from the measured re-
sponses (to a 500 ms stimulus), rðtÞ, using the
following iteration

irfðtiÞ ¼ rðtiÞ 
 rðti
1Þ for 1 < i6 200

and

irfðt1Þ ¼ rðt1Þ:
Time resolution was 1 ms. The different data curves
in Fig. 13A led to three impulse response functions
which are plotted in Fig. 13B. From these, the pre-
sumed responses, r	ðtÞ, to a given stimulus duration
were computed as a convolution of the stimulus with
the impulse response function. For a stimulus that
lastet T=2 ms,

sðtiÞ ¼
1 for 06 ti < T=2;
0 for ti P T=2;

�

the presumed response would be obtained from an
integration (here summation over j),

r	ðtiÞ ¼
Xi
1
j¼0
irfðti
jÞsðtjÞ;

which gives stimulus onset responses identical to the
measured ones.

(3) The presumed responses for the different conditions
(popout, uniform, and difference) were combined ac-
cording to the sequence of target and background
presentations in each test condition. For background

Fig. 13. Population responses of 32 ‘‘OC cells’’ in the anesthetized

monkey (from Nothdurft et al., 1999) to lines with parallel (uniform)

or orthogonal surround (popout). Response differences reflect differ-

ential contextual modulation (difference) which is delayed compared to

the onset of responses. From the data in (A) impulse response func-

tions were derived (B) which were used to compute the presumed re-

sponses to orientation flicker at various frequencies.
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lines, responses were simply taken from the uni-
form condition synchronized to background flicker,
i.e., possible interactions from the target on back-
ground line responses were ignored. For target lines,
responses were constructed from the popout con-
dition synchronized to target onset, minus the ex-
tra suppression from parallel surround (difference)
synchronized to the time when surrounding lines
switched to become parallel to the target.
For asynchronous flicker, in which the target
changes with the delay k after the background lines,
the resulting responses, R, are

RbackgroundðtiÞ ¼ r	uniformðtiÞ;

RtargetðtiÞ ¼ r	popoutðti
kÞ 
 r	differenceðti 
 T=2Þ:

(4) To avoid negative responses, the resulting responses
were clipped, i.e. values below zero were set to zero.

R	ðtiÞ ¼
RðtiÞ for RðtiÞP 0;
0 for RðtiÞ < 0:

�

(5) Salience, SAL, was computed as the response differ-
ence between target and background lines. For the
presentation here, responses were averaged over
the entire flicker cycle before the difference was
taken.

SAL ¼
XT
i¼1

R	
targetðtiÞ 


XT
i¼1

R	
backgroundðtiÞ:

Given the phase-shifted but otherwise identical re-
sponses for orthogonal orientations, the same results
would be obtained if responses of all orientation
channels were averaged for the computation of sa-
lience (cf. Nothdurft, 1994b, 1997). However, slightly
different data, but with similar characteristics, were
obtained when responses were averaged over a lim-
ited (but not too small) time window.

A.2. Results

Fig. 14 shows the predicted responses of neurons with
similar orientation preference to slow orientation flicker
(T=2 ¼ 200 ms); target and background lines flipped
either in phase or out of phase, as depicted in Fig. 4. The
phase of background flicker was held constant (Fig.
14A); the response reflects the measured cell response
in Fig. 13A. Target responses varied with flicker asyn-
chrony (Fig. 14B) and were reduced by additional sup-
pression from the parallel surround (gray curves). Due
to its longer latency, this additional suppression was still
effective in synchronous flicker (delay ¼ 0 ms; arrow)
and disappeared only when background lines were
changed before the target (cf. delay ¼ 20 ms; arrow).
When either target or background lines were switched
long in advance (delays þ180 and )180 ms), there was
only a short period in which the target was presented

Fig. 14. Simulated responses to an orientation flicker of 2.5 Hz (half

cycle duration T=2 ¼ 200 ms). (A, B) Responses to different lines in the
pattern, at the same orientation. Background line flicker (A) was held

constant, while the phase of target flicker (B) was varied between the

different graphs. Responses are plotted in black, the additional sup-

pression from parallel surround in gray. (C) Mean response differences

between target and background lines for the conditions in B. Positive

delays produced larger differences than negative delays.
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with orthogonal surround and additional suppression
disappeared. However, due to latency differences, these
two conditions were not symmetrical but target re-
sponses were more strongly suppressed at negative de-
lays, in which suppression from parallel surround was
still present. For antiphase flicker (delay ¼ 200 ms), the
target was always surrounded by parallel lines and re-
sponses of target and background lines became indis-
tinguishable. (Additional suppression was delayed here,
too, but this was also the case with the background line
responses.)
Fig. 14C plot the differences between target and back-

ground responses in the depicted conditions. Stronger
responses to the target would help to detect it; response
differences may thus be related to the salience of the
target in these conditions. Note that target responses
could be even smaller than background responses, when
the parallel surround was presented shortly before the
target.
Similar pictures were obtained for faster flicker rates.

Fig. 15 summarizes the predicted saliency effects for
different cycle times as a function of the delay. Asyn-
chronous flicker always produced variations in salience
and a strong asymmetry between positive and negative
delays (continuous vs. dashed curves). The differences

were more pronounced for medium and short cycle
durations than for T =2 ¼ 200 ms. Maximal salience was
reduced at short cycles, due to the short presentation of
the popout target, and salience maxima were generally
obtained for slightly positive delays (20–30 ms) rather
than for synchronous flicker.

A.3. Discussion

Given the simple assumptions on which the model
was based, the similarity to measurements is likely to be
limited. Negative salience is, of course, not meaningful
(but may be helpful to illustrate the principle variations
with an asynchronous target and background flicker). It
can be easily removed by minor modifications of the
simulation, e.g., by clipping responses below zero. An-
other uncertainty of the computation comes from the
fact that we do not know how response differences in the
simulation would relate to salience. It might be mean-
ingful not only to introduce a threshold below which
response differences remain undetected. It also seems
plausible to assume saturation, in particular, when
salience is measured as percentage of targets detected;
even with a very salient target, performance cannot
excede 100%. The exact transformation of response

Fig. 15. Summary of the simulation. Response differences indicate strong asymmetries between positive (continuous curves) and negative delays

(dashed curves) for various cycle durations. With increasing delays, response differences increase, then remain constant, and finally diminish towards

antiphase flicker (delay ¼ T=2).
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differences into perceived salience for intermediate val-
ues is also not known; salience increases nonlinearly
with increasing differences in feature space (cf. Noth-
durft, 1993). Finally, it should be stressed that the
computation of responses to flickering patterns was
made, on linear grounds, from the impulse response
functions derived from stationary patterns (presented
for 500 ms). For higher flicker rates this is likely to be
incorrect, since any nonlinearities at faster flicker rates
and, in particular, the limited temporal resolution (Kelly,
1961) of the system were ignored. The long averaging of
neural activity to compute salience for low flicker rates
is also probably not realistic.
Despite these limitations, however, the simulation

revealed interesting parallels to the subjects’ perfor-
mance in Experiment 2. First, asynchronous flicker did
produce strong performance differences between posi-
tive and negative delays. Second, some asynchronous
presentations were found to improve target salience over
that of synchronous flicker (when popout duration was
maximum). This effect was more pronounced for short
flicker periods and relatively small at long durations (cf.
T =2 ¼ 60 vs. 200 ms). Third, beside some differences in
detail, the general response patterns for different flicker
frequencies were rather similar (except for the shortest
cycle times). This was also seen in the experiment.
However, there are also clear deviations from the

measurements in Fig. 5. The simulations gave constant
performance asymmetry over all delays, whereas the
measured differences quickly diminished when the delay
decreased. At short delays, preferences were even re-
versed—opposite to the predictions made from the
simulation. As documented in Experiment 3, all these
deviations are likely to be due to the fact that, in ad-
dition to orientation differences, the purely temporal
flicker sequence also generated salience. When these ef-
fects were large enough, targets were easily detected and
performance was much better than predicted from
(asynchronous) orientation popout alone.
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