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Centro-median stimulation yields additional seizure frequency and attention
improvement in patients previously submitted to callosotomy
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A B S T R A C T

Rationale: Deep brain stimulation (DBS) has been increasingly used in the treatment of refractory

epilepsy over the last decade. We report on the outcome after thalamic centro-median (CM) DBS in

patients with generalized epilepsy who had been previously treated with extended callosal section.

Methods: Four consecutive patients with generalized epilepsy who were previously submitted to

callosal section and had at least 1 year of follow-up after deep brain implantation were studied. Age

ranged from 19 to 44 years. All patients were submitted to bilateral CM thalamic DBS. Post-operative CT

scans documented the electrode position in all patients. All patients had pre- and post-stimulation

prolonged interictal scalp EEG recordings, including spike counts. Attention level was evaluated by

means of the SNAP-IV questionnaire. The pre-implantation anti-epileptic drug regimen was maintained

post-operatively in all patients.

Results: Post-operative CT documented that all electrodes were correctly located. There was no

morbidity or mortality. Seizure frequency reduction ranging from 65 to 95% and increased attention level

was seen in all patients. Interictal spiking frequency was reduced from 25 to 95%, but their morphology

remained the same. There was re-synchronization of interictal discharges during slow-wave sleep in 2

patients.

Conclusion: All patients benefit from the procedure. The CM seems to play a role in modulating the

epileptic discharges and attention in these patients. On the other hand, it is not the generator of the

epileptic abnormality and appeared not to be involved in non-REM sleep-related interictal spiking

modulation.

� 2009 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The pathophysiology of both primary and secondary general-
ized epilepsy has been extensively discussed, but little consensus
has been reached so far.1 Lesional factors are extensively
implicated in the development of secondary generalized epilepsy
(SGE)2 and genetic factors in the development of idiopathic
primary generalized epilepsy (IGE).3 The relative role of the corpus
callosum, cortical and subcortical structures in the development
and modulation of the disease has also been discussed.4–7 Two
major apparently contradictory theories (but not necessarily so)
tried to explain the electrophysiological findings in generalized
epilepsy: the centro-encephalic8 and the cortico-reticular theory.9

In summary, the centro-encephalic theory claims the existence of a
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central pacemaker, located in deep subcortical structures that
would be the generator of the epileptic discharges registered at the
cortical level. On the other hand, the cortico-reticular theory states
that the epileptic activity was generated by an abnormal
interaction between the neocortex and some of the subcortical
structures mentioned by the centroencephalic theory.

Callosal sections have been used as a palliative procedure in the
treatment of both IGE and SGE.10–15 These consistent clinical
findings suggested that cortico–cortical interaction was important
in seizure generation in both SGE and IGE, but did not exclude a
modulatory function of subcortical structures. In fact, many of
these patients submitted to extensive callosal sections in whom
post-operative EEG showed asynchronous hemispheric discharges
(post-callosotomy rhythm) had re-synchronization of the dis-
charges during sleep, suggesting that subcortical structures were
indeed modulating cortical activity.

Deep brain stimulation (DBS) has been increasingly used in the
treatment of refractory epilepsy over the last decade. Both
subcortical (mainly thalamic) or supratentorial (hippocampus)
structures have already been targeted.16 The centro-median (CM)
vier Ltd. All rights reserved.
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Table 1
Summary of the pre-operative clinical findings. IGE: idiopathic generalized epilepsy; SW: spike and wave; AT: atonic seizures; AA: atypical absence seizures; MYO: myoclonic

seizures; TO: tonic seizures; TC: tonic–clonic seizures; TA: typical absence seizures; Sz: seizure; CS; callosotomy; Freq: frequency.

Patient Age Sz onset Sz types Syndrome Pre-CS Sz freq. EEG at diagnosis

1 7 AT/AA/MYO/TO/TC Lennox-Gastaut Daily Diffuse polispike

2 8 TA/TC Lennox-like Daily Diffuse polispike

3 2 TA/TC IGE Daily Diffuse SW 2.5 Hz

4 8 TA/TC IGE Daily Diffuse SW 3.0 Hz
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thalamic nucleus is a non-specific brain relay very likely related to
the modulation of the epileptic activity seen in generalized
epilepsy.17 We report on the outcome after CM-DBS in patients
with SGE and IGE who had been previously treated with extended
callosal section and remained with frequent disabling daily
seizures despite optimal medical treatment.

2. Methods

Four consecutive patients with generalized epilepsy who were
previously submitted to callosal section and had at least 1 year of
follow-up after deep brain implantation were studied. All patients
were treated with at least high dose valproate, lamotrigine and
phenobarbital in mono- or politherapy before surgery. All patients
were previously submitted to extended callosal section, which
consisted in a 90% callosal section, leaving only the splenium in
place, in a single procedure. Details of this procedure have been
published previously.13 All callosal sections were documented by
post-operative MRI. All patients were submitted to bilateral CM
thalamic DBS. Under general anesthesia, a stereotactic frame was
attached to the patient’s head and stereotactic CT and MRI were
acquired and fused whenever needed. The CM was targeted using
proportional data in the AC–PC (anterior commissure–posterior
commissure) space according to the Schaltembrandt atlas. A point
located bilaterally at the level of the posterior commissural point
(intersection of the posterior commissure and posterior perpendi-
cular plane) and 10 mm lateral to the midline was chosen in all
patients for the location of the more distal electrode of a
quadripolar Medtronic KinetraR DBS device. The electrode was
inserted through a burr hole located immediately in front of the
coronal suture, 1.5 cm from the midline. An intra-operative scalp
EEG was obtained and low (6 Hz, 4 V, 300 ms) and high-frequency
(130 Hz, 4 V, 300 ms) stimulation was carried out. A generalized
bilateral recruiting response prevailing ipsilaterally was seen after
low-frequency unilateral stimulation and a bilateral DC-shift after
high-frequency stimulation, in all patients. The electrodes were
immediately connected to the generator in the same procedure
and remained off until sutures were removed 21 days after
implantation. Chronic continuous stimulation between the more
proximal and distal contacts was carried out by progressive
increments of 0.2 V in intensity every 2 weeks, until the final
Fig. 1. Axial CT slices at the level of the posterior commissure showing the
parameters (2 V, 130 Hz and 300 ms) were reached in all patients.
Patients kept a seizure diary pre- and post-operatively. Post-
operative CT scans documented the electrode position in all patients.
All patients had pre- and post-stimulation prolonged interictal scalp
EEG recordings (10–20 system), including manual spike counts and
visual analysis of bilateral synchrony. Attention level was evaluated
by means of the attention-related 18-questions of the SNAP-IV
questionnaire18 at baseline and 6 and 12 months after stimulation
was started. A single question, using the same rating system,
regarding verbal output was added, thus yielding a 19-questions tool
(extended-SNAP). The pre-implantation anti-epileptic drug regimen
was maintained post-operatively in all patients.

Statistical analysis was carried out using the Student T-test
when needed.

3. Results

A summary of the patients’ pre-operative clinical data can be
seen in Table 1.

MRI was normal in three patients and showed moderate diffuse
atrophy in one. Post-operative CT documented that all electrodes
were correctly located (Fig. 1). There was no morbidity or
mortality. Follow-up time ranged from 1 to 2 years after CM-
DBS (mean = 1.5 years).

Age at CM-DBS ranged from 19 to 44 years (mean = 30.7 years).
Mean age at seizure onset was 6.2 years (2–8 years). One patient
had the diagnosis of Lennox-Gastaut syndrome, one of Lennox-like
syndrome (some Lennox-Gastaut features but without an epileptic
recruiting rhythm during slow-wave sleep) and two of primary
idiopathic generalized epilepsy (IGE). The patient with Lennox-
Gastaut syndrome had multiple seizures types including tonic,
atonic, atypical absences, myoclonic and tonic–clonic seizures; the
three other patients had simple absences and tonic–clonic
seizures. All patients had daily seizures before callosal section.
After callosal section, seizure frequency decreased from 65 to 95%
in all patients, but all of them remained with daily absence and
tonic–clonic seizures (Table 2). During CM-DBS, an additional
decrease in seizure frequency ranging from 65 to 98% was noted in
all patients (mean = 78%) (Table 3).

Before callosal section, EEG showed bilateral and synchronous
spike-and-wave discharges (2.5–3.0 Hz) in two patients (those
electrodes’ tip (seen as white dots) position in three different patients.



Table 2
Summary of the clinical findings after callosal section. CS: callosotomy; Re-synch: re-synchronization; Sz: seizures.

Patient Age at CS Post-CS awake EEG Sleep EEG re-synch Post-CS Sz freq. Post-CS Sz reduction

1 14 No synchrony Yes Daily 80%

2 40 No synchrony No Daily 95%

3 30 No synchrony No Daily 80%

4 23 No synchrony Yes Daily 65%

Table 3
Summary of the clinical findings during CM-DBS. F-U: follow-up; Sz: seizures; Freq: frequency; Re-synch: re-synchronization.

Patient Age at DBS F-U DBS Sz freq DBS Sz reduction DBS Sleep EEG re-synch Spike decrease DBS Spike morphology DBS

1 19 2 years Rare 98%* Yes 99%* Unaltered

2 44 2 years 1�/week 65%* No 60%* Unaltered

3 36 1 year 3�/week 70%* No 90%* Unaltered

4 24 1 year 5�/week 85%* Yes 25% Unaltered

* Statistically significant.
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with the diagnosis of IGE), diffuse secondary bilateral synchrony in
one (with Lennox-Gastaut syndrome) and diffuse polyspikes in one
(with Lennox-like syndrome). After callosotomy, rupture of
bilateral synchrony was seen in all patients; spikes could be seen
independently over each hemisphere. In two, there was re-
synchronization of the discharges during slow-wave sleep. Re-
synchronization of the discharges persisted during DBS in these
two patients. A decrease in the interictal spike frequency of
appearance was noted in all patients during CM-DBS and ranged
from 25 to 99% (mean = 68.5%). Pre-CM-DBS spike frequency/hour
was 300, 120, 150 and 180 in patients 1–4, respectively, compared
Fig. 2. EEG samples obtained from two different patients (1 and 2). The recordings on the l

tracings in the middle show post-callosotomy EEG findings and those on the right were o

before callosal section. After callosotomy, spike frequency of appearance decreased. Durin

morphology and distribution pattern remained similar to that seen before stimulation
to 3, 48, 15 and 135 during CM-DBS, respectively. The morphology
and spatial distribution of the interictal spikes were unchanged
during CM-DBS (Fig. 2).

A clinically relevant increase in attention level was noted in all
patients during DBS, as documented by improvement of at least
one point in a mean of 9 items (ranging from 8 to 13 items) in the
extended SNAP-IV questionnaire. The improvement in attention
level was noted always prior to the decrease in seizure frequency in
these patients; attention started to improve when stimulation
reached 0.5 V of intensity, while seizure frequency decrease was
noted only after intensity reached at least 1.2 V. There was
eft were obtained before callosotomy was performed (pre-operative basal findings);

btained during CM-DBS. Diffuse bilateral and synchronous discharges could be seen

g DBS, an additional decrease in spike frequency of appearance was noted, but their

.



Table 4
Cognitive findings during CM-DBS. Pre-CS: pre-callosotomy; post-CS: post-casllosotomy.

Patient Attention improvement Pre-CS IQ Post-CS IQ Post-DBS IQ

1 10 out of 19 SNAP-IV items 62 64 68

2 5 out of 19 SNAP-IV items 94 95 98

3 8 out of 19 SNAP-IV items 76 79 85

4 13 out of 19 SNAP-IV items 77 79 82
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progressive seizure frequency reduction up to the final 2.0 V
stimulation level.

Mean general IQ was 77 (62–94) before and 79 (64–95) after
callosotomy. After 1 year of CM-DBS, mean general IQ was 83 (68–
98) (Table 4).

One patient (patient 3) received vagus nerve stimulation
therapy after callosotomy and before CM-DBS without any clinical
improvement.

We did not observe any side-effect related to bilateral thalamic
stimulation, although some patients presented with short-lasting
(15–20 min) contralateral paresthesia immediately after each
voltage increase beyond 1.0 V.

4. Discussion

This series is the first one to report the outcome after CM-DBS in
patients with generalized epilepsy previously submitted to callosal
section. Stimulation of the centro-median thalamic nuclei was
effective in reducing generalized seizure frequency by 25–98% as
noted by others19 and in increasing attention in our series.
Although there was seizure frequency reduction in all patients, the
most striking clinical finding was increased attention level. All
patients had increased verbal output; it is not clear how much of
this higher verbal output was related to increased attention level
alone. The anti-epileptic drug regimen was kept the same during
CM-DBS and cognitive improvement was very unlikely related to
AEDs plasma level modifications.

Increased attention level has also been seen in other patient
populations in whom seizure frequency was dramatically reduced,
such as after cortical resection or callosal section.20 This
improvement in attention level has been rarely documented,
possibly due to the lack of adequate tools to measure attention.
This is particularly so in patients with diffuse cognitive deficits, as
is very often the case in patients with generalized epilepsy. The
SNAP questionnaire seemed to be useful and was able to document
attention level improvement after DBS that correlated well to
better daily life performance.21

All our patients were previously submitted to extended callosal
section. This procedure led to rupture of secondary bilateral
synchrony (SBS) in all of them, suggesting that the corpus callosum
was a relevant brain relay in the genesis of the abnormality. SBS
rupture correlated well to clinical improvement in these patients.
Stimulation of the CM thalamic nuclei led to lower seizure
frequency and 25–99% interictal spiking reduction as well. On the
other hand, the morphology and topographical distribution of the
residual spikes did not differ from those before stimulation.
Additionally, two of our patients continue to disclose re-
synchronization of EEG interictal discharges during sleep, which
was already present after callosotomy. These findings favor the
idea that CM might modulate the epileptic activity in these
patients but does not represent a main structure involved in the
generation of the epileptic abnormality. CM stimulation inability
to avoid re-synchronization during sleep also suggest that this
nucleus might not be actively involved in the mechanisms
underlying the sleep-induced modifications in epileptic activity
that has been previously recognized both in focal and generalized
epilepsy.22
On the other hand, CM appeared to be intimately involved in the
mechanisms related to sustained attention in these patients.
Although it could be argued that increased attention level might
had correlated to seizure frequency reduction alone, improvement
in attention was so marked in all patients according to their family
or caregiver, that a putative role of CM in it might be postulated.
Additionally, the improvement in attention level was noted at
lower stimuli intensity as compared to seizure frequency
reduction, which might also suggest a specific role of CM in
attention mechanisms. Actually, the non-specific character of this
nucleus might favor a more widespread action upon the cortex. CM
stimulation using the present parameters is very likely to cause
local and passing fibers tracts inhibition, although the overall
response in other nuclei is still unknown.

Unilateral effects were not seen during CM-DBS. This might be
related to the fact that we were performing bilateral continuous
thalamic stimulation and not unilateral stimulation. On the other
hand, the fact that acute intra-operative unilateral stimulation of
the CM always yielded bilateral responses might postulate that
unilateral CM stimulation would be as effective as a bilateral one,
but this has never been tried.

No patient presented somnolence or increase in interictal
epileptic discharges; we were unable to trigger characteristic
spike-and-wave discharges with low-frequency stimulation of the
CM. As far as stimulation parameters were kept stable, clinical
response was stable too and did not improve in time, as might
happen with other types of modulatory treatment, such as vagus
nerve simulation, suggesting a direct effect of CM stimulation in
seizure and attention modulation.

The presence of recruiting responses and DC-shifts has been
used to confirm the adequate position of the electrodes at the CM
by some authors.23 We were able to replicate these observations,
but identical findings could also be obtained after stimulation of
other thalamic nuclei, such as the anterior nucleus24 (Cukiert,
personal communication). These neurophysiological responses did
not seem to be specific and they were probably inadequate as a
localizing tool during implantation. On the other hand, it could be
used as an intra-operative test for hardware and connections
performance. Microelectrode recording characterization of the CM
activity, currently under way in our center, would be needed to
further refine the targeting technique.

One of our patients had a definite diagnosis of Lennox-Gastaut
syndrome and happened to be our best clinical result. The other
three did well, but not as much as the first one. It is yet not clear if
this was a random excellent response to treatment or if this better
response is related to the diagnosis of Lennox-Gastaut syndrome
itself.

All patients with generalized epilepsy in our center who are
currently undergoing CM-DBS were previously submitted to
callosal section. It is not possible to elaborate on the relative
efficacy of both callosotomy and DBS at this point. On the other
hand, VNS has yielded poor results in this very refractory patient
population. Clearly, patients who were previously submitted to
callosal section or VNS benefit from CM-DBS in this series,
although the open-labeled, uncontrolled nature of the present
report should be considered. Extending our thalamic DBS series
would enable us to further understand its role in seizure frequency
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modulation as well as its role in higher cortical functioning and
attention.
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