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For locally compact groups, Fourier algebras and Fourier�Stieltjes algebras have
proven to be useful dual objects. They encode the representation theory of the
group via the positive definite functions on the group: positive definite functions
correspond to cyclic representations and span these algebras as linear spaces. They
encode information about the algebra of the group in the geometry of the Banach
space structure, and the group appears as a topological subspace of the maximal
ideal space of the algebra. Because groupoids and their representations appear in
studying operator algebras, ergodic theory, geometry, and the representation theory
of groups, it would be useful to have a duality theory for them. This paper gives
a first step toward extending the theory of Fourier�Stieltjes algebras from groups
to groupoids. If G is a locally compact (second countable) groupoid, we show that
B(G), the linear span of the Borel positive definite functions on G, is a Banach
algebra when represented as an algebra of completely bounded maps on a
C*-algebra associated with G. This necessarily involves identifying equivalent
elements of B(G). An example shows that the linear span of the continuous positive
definite functions need not be complete. For groups, B(G) is isometric to the
Banach space dual of C*(G). For groupoids, the best analog of that fact is to be
found in a representation of B(G) as a Banach space of completely bounded maps
from a C*-algebra associated with G to a C*-algebra associated with the equiv-
alence relation induced by G. This paper adds weight to the clues in earlier work
of M. E. Walter on Fourier�Stieltjes algebras that there is a much more general
kind of duality for Banach algebras waiting to be explored. � 1997 Academic Press

INTRODUCTION

As suggested by the title, this paper connects two lines of earlier work,
and we begin with an abbreviated history of each of these lines, in order
of appearance. After the history, we will state our main results and outline
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the body of the paper. We mention here that some basic definitions can be
found in Section 1 and that we assume locally compact spaces are second
countable. More background on groupoids is available in [4, 5, 13, 14, 16,
17, 22, 24, 26, 27, 30, 31]. The necessary background on Fourier�Stieltjes
algebras can be obtained from [7, 34, 35].

In 1963, Mackey [16], introduced the notion of virtual group as a tool
and context for several kinds of problems in analysis and geometry. Virtual
groups are (equivalence classes of) groupoids having suitable measure
theoretic structure and the property of ergodicity. Ergodicity makes a
groupoid more group-like, but many results on groupoids do not require
ergodicity. Among the structures which fit naturally into the study of
groupoids are groups, group actions, equivalence relations (including folia-
tions), ordinary spaces, and examples made from these by restricting to a
part of the underlying space.

The original motivation for studying groupoids was provided by
Mackey's theory of unitary representations of group extensions. The idea
has been applied to that subject: for example see [1, 2, 23]. In his original
paper, Mackey also showed the relevance of the idea for ergodic group
actions in general, and a number of applications have been made there, for
example see [17, 18, 41�44].

Most uses of groupoids have been in the study of operator algebras,
another approach to understanding and exploiting symmetry. Several
pioneering papers should be mentioned. Hahn proved the existence of Haar
measures for measured groupoids, whether ergodic or not, and used this to
make convolution algebras and study von Neumann algebras associated
with measured groupoids [13�15]. Feldman and Moore made a thorough
analysis of ergodic equivalence relations that have countable equivalence
classes, showing that the von Neumann algebras attached to them are
exactly the factors that have Cartan subalgebras [10, 11]. Connes intro-
duced a variation on the approach of Mackey in [4], in particular by
working without a chosen invariant measure class. This approach has some
advantages for applications to foliations and to C*-algebras [5]. Renault
[26] studied C*-algebras generated by convolution algebras on locally
compact groupoids endowed with Haar systems, not using invariant
measure classes. It was shown in [24] that measured groupoids may be
assumed to have locally compact topologies, with no loss in generality.
(The continuity of the Haar system was neglected in that paper, but can be
achieved.) Thus the study of operator algebras associated with groupoid
symmetry can always be confined to locally compact groupoids, whether
one is interested in C*-algebras or von Neumann algebras.

Basically one can say that locally compact groupoids occur in situations
where there is symmetry that is made evident by the presence of an equiv-
alence relation. Many of these are associated either with group actions or
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foliations. It can be surprising how group-like both group actions and
foliations can be. In particular, some of the papers mentioned above have
included information about the unitary representations of groupoids.
However, there is no treatment of duality theory for groupoids. and we
intend to make a beginning here.

In 1964 Eymard [7], introduced Fourier and Fourier�Stieltjes algebras
for non-commutative locally compact groups. Roughly, the Fourier�
Stieltjes algebra of a locally compact group, G, denoted B(G), is the unitary
representation theory of G equipped with some additional algebraic and
geometric structure. More precisely, B(G) is the set of finite linear com-
binations of continuous positive definite functions on G equipped with a
norm, which makes B(G) a commutative Banach algebra (using pointwise
addition and multiplication). The elements of B(G) are exactly the matrix
entries of unitary representations of G. A primary source of intuition is the
fact that when G is abelian, B(G) is the isometric, inverse Fourier�Stieltjes
transform of M 1(G� ), the convolution, Banach algebra of finite, regular
Borel measures on G� , the dual group (of characters) of G. Thus B(G), as
a Banach algebra, ``is'' M 1(G� ). The fact that B(G) exists (as a commutative
Banach algebra) when G is not abelian leads one to hope that a useful
duality theory exists for non-abelian groups which is in spirit similar to the
application rich Pontriagin�Van Kampen duality for abelian locally com-
pact groups. That such a duality theory exists has been established by
Walter in [35] by proving that

(1) B(G) is a complete invariant of G, i.e., B(G1) and B(G2) are
isometrically isomorphic as Banach algebras, if and only if G1 and G2 are
topologically isomorphic as locally compact groups, and

(2) There is an explicit process for recovering G given its ``dual
object'', B(G). Exactly how useful this theory will be remains to be seen
since all but a few of the hoped for important applications await rigorous
proof.

For various reasons it turns out that it may be more fruitful to look at
B(G) from a broader perspective than that afforded by the category of
locally compact groups. Namely, in [36] it is seen that there is a natural
duality theory for a ``large'' collection of Banach algebras that extends
in a precise way the Pontriagin duality for abelian groups as well as
the above-mentioned duality for non-abelian groups. The theory of
C*-algebras plays a large role both technically and intuitively in this
duality theory.

In an effort to understand this new duality theory better, as well as to
generate meaningful applications and examples of a concrete nature, in this
paper we have answered affirmatively the question: Does a locally compact
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groupoid G have a Fourier�Stieltjes algebra? For groupoids, there is more
than one candidate for the Fourier�Stieltjes algebra, and the details are
more technical than for groups, but there is an affirmative answer.

The existence of a Fourier�Stieltjes algebra augurs well for future
applications. In particular, one example suggests an interesting possibility:
The algebra of continuous functions on X vanishing at infinity, C0(X), is
the Fourier algebra of a locally compact space X. This opens up an entire
``dual'' approach to the currently exploding subject of non-commutative
geometry, which at the moment is regarded more or less exclusively in
terms of the associated C*-algebras (not the Fourier�Stieltjes algebras).

As for groups, the Fourier�Stieltjes algebra of a groupoid is the linear
span of the positive definite functions and the algebra structure is given by
pointwise operations. To provide the Banach space structure, we use
C*-algebras attached to G, but we use them in a different way from
Eymard, and also use C*-algebras associated with the equivalence relation
that G induces on X.

To describe the various algebras, let us begin with the space Mc(G) of
compactly supported bounded Borel functions on G, and its subspace
Cc(G). Both are algebras under convolution, which is defined by using the
Haar system, and have involutions. If R is the equivalence relation on
X induced by G, defining %(#)=(r(#), s(#)) gives a continuous homo-
morphism of G onto R using the relative product topology on R. The
quotient topology on R has some advantages: for example, if % is one-to-
one then % is a homeomorphism. (G is said to be principal.) Under the
quotient topology R is _-compact and we can provide it with a Borel
measurable Haar system, which allows us to make a convolution V -algebra
of the space M%c(R) of bounded Borel functions on R that are supported
by the image of some compact set in G. In Section 1, we show how to make
an algebra on G that contains a copy of the space M(X ) of bounded Borel
functions on X as well as Mc(G), and this algebra is denoted by Mc(G, X ).
The analog for R is denoted by M%c(R, X ). Let X� denote the one-
point compactification of X. Then C(X� )�M(X ), so Mc(G, X) contains
both Cc(G) and C(X� ). The span of these two subalgebras is denoted
Cc(G, X� ).

If | is the universal representation of G, then | carries each convolution
algebra on G to an algebra of operators and thereby provides the convolu-
tion algebra with a norm. The closures of the algebras of operators or the
completions under the norms are useful in various ways, so we have nota-
tion for them: C*(G) is the completion of Cc(G), C*(G, X� ) is the comple-
tion of Cc(G, X� ), M*(G) is the completion of Mc(G), and M*(G, X ) is the
completion of Mc(G, X ). Likewise for R we get M*(R) and M*(R, X ) from
M%c(R) and M%c(R, X ). The algebra B(G) is isomorphic to a Banach
algebra of completely bounded operators on M*(G), but the functions also
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correspond to completely bounded bimodule mappings from C*(G, X� ) to
M*(R, X ) as bimodules over C(X� ).

The reader who is unfamiliar with groupoids will find some necessary
background material in Section 1. Assuming that background, we define a
bounded Borel function p on a locally compact groupoid G with Haar
system * to be positive definite if

|| f (#1) f� (#2) p(#&1
2 #1) d*x(#1) d*x(#2)�0

for every f # Cc(G). The set of these is denoted P(G) and by definition the
set B(G) is the linear span of P(G). In both sets two elements that agree
except on a negligible set need to be identified, though we find it con-
venient to indulge in the usual carelessness about maintaining the distinc-
tion. The primary result of this paper is

(I) B(G) is a Banach algebra.

Results needed to prove this are:

(II) Each p # P(G) can be represented in terms of a unitary
representation of G and a cyclic ``vector'' for the representation.

(III) Multiplication by a b # B(G) defines a completely bounded
operator on M*(G) whose norm is at least the supremum norm of b.

(IV) The set of operators arising from elements of P(G) is closed in
the space of completely bounded operators on M*(G).

In fact, B(G) is a Banach algebra of completely bounded operators on
M*(G), and the elements of P(G) occur as completely positive operators.
In order to prove the completeness of B(G), we introduce an auxiliary
groupoid. Let T2 denote the transitive equivalence relation on the two
point set [1, 2], so that functions on T2 are 2_2 matrices. Thus functions
on G_T2 can be regarded as 2_2 matrices of functions on G. Then each
b # B(G) appears as a corner entry of a positive definite function on G_T2

whose completely bounded norm is the same as that of b. Furthermore,
such a corner entry is always in B(G). Combining these facts with the com-
pleteness of P(G_T2) is what allows us to finish the proof of completeness
of B(G). This groupoid is used in a similar way in [29].

The material in this paper can be outlined as follows. Section 1 is devoted
to background material on three topics: locally compact groupoids, con-
volution algebras attached to them, and representations of groupoids and
the algebras. Here the reader will find our notation established in the midst
of some examples and discussion of results needed later. Section 2 contains
some measure theoretic technicalities about Haar systems and choosing of

318 RAMSAY AND WALTER



File: 580J 308306 . By:DS . Date:13:08:01 . Time:03:46 LOP8M. V8.0. Page 01:01
Codes: 3101 Signs: 2581 . Length: 45 pic 0 pts, 190 mm

Borel functions in prescribed equivalence classes modulo null sets.
Section 3 contains the fundamental results about positive definite functions.
We give the definition of ``positive definite function'' and establish the
connection between such functions and cyclic unitary representations of G.
In Section 4 we show that multiplication by a positive definite function is
a completely positive operator on M*(G), using the main result of Sec-
tion 3. Section 4 also includes the proof that a positive definite function
gives rise to a completely positive operator from C*(G, X ) to M*(R, X ).
All of these operators are bimodule maps over C(X� ), the algebra of con-
tinuous functions on the one-point compactification of the space of units of
G. Section 5 contains results about completely bounded bimodule maps.
Finally in Section 6 we are able to complete the proof that the linear
combinations of positive definite functions constitute a Banach algebra.
Section 7 contains some counterexamples.

1. BACKGROUND ON GROUPOIDS

The purpose of this section is to give the reader a source of some essen-
tial information about analysis on groupoids needed in this paper. A more
thorough background might be useful, and we omit much historical
motivation, but we think the bare minimum is here. Some of the informa-
tion is not in other papers, and we also have to establish notation for this
paper.

Groupoids

Much of our motivation comes from the fact that group actions give rise
to groupoids, and that case was important in the development of the sub-
ject. However, we want to present a definition that has a different motiva-
tion, hoping to make the idea easier to grasp. Effros suggested this
approach.

Start with two sets, X and G, and suppose that X is the set of vertices
and G the set of edges of a directed graph. If the structure we are about to
describe is present, we say that G is a groupoid on X. Suppose that we have
a mapping taking values in G and defined on the set of pairs of edges for
which the first edge starts from the vertex where the second edge ter-
minates. (For a groupoid of mappings, we want the operation to be com-
position and we want the right hand factor to be applied first.) We want
the operation to be associative and to have units and inverses.

To describe this in more detail, we use two functions r and s from G onto
X, such that each # # G is an edge from s(#) to r(#). Then for # and #$ in
G, the element ##$ of G is defined iff s(#)=r(#$). We write G (2)=[(#, #$) #
G_G : s(#)=r(#$)]. We also assume there is given a mapping x [ ix of X
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into G and an involution # [ #&1 on G. Then we require the following
properties:

(a) (associativity) If s(#1)=r(#2), then s(#1#2)=s(#2), and r(#1#2)=
r(#1). If, also, s(#2)=r(#3), then (#1 #2) #3=#1(#2 #3).

(b) (units) If x # X, then r(ix)=s(ix)=x. If # # G, then #is(#)=
ir(#) #=#.

(c) (inverses) r(#&1)=s(#), s(#&1)=r(#), ##&1=ir(#) , and #&1#=
is(#) .

Remark. It is usually convenient to identify x # X with ix # G, and thus
think of X as a subset of G. If # # G and x=s(#), y=r(#), we think of # as
mapping x to y and may write # : x � y. (A groupoid is a small category
with inverses.)

Examples. (a) Suppose a group H acts on a set X (on the left). Set
g=H_X, identify X with [e]_X, and define r(h, x)=hx, s(h, x)=x.
Then we can define (h1 , x1)(h2 , x2)=(h1h2 , x2) if x1=h2x2 , ix=(e, x) and
(h, x)&1=(h&1, hx), to make a groupoid. (Right actions work better for
left Haar measures as we see below, and then we have s(x, h)=xh,
r(x, h)=x.)

(b) To make a groupoid from an equivalence relation R on a set X,
identify X with the diagonal in X_X, define r(x, y)=x, s(x, y)= y,
(x, y)( y, z)=(x, z) and (x, y)&1=( y, x).

(c) Let X be the set of open sets in Rn, and let G be the set of dif-
feomorphisms between elements of X. For # # G, let s(#) be the domain of
the mapping and let r(#) be its range. Let the product be function composi-
tion and let the inverse be the inverse of functions.

For other examples see [4, 16, 17, 22, 26].
Every groupoid determines a natural equivalence relation on its set of

units, namely xty iff there is a # : x � y. The equivalence class of x is
denoted [x] and is called its orbit. As a subset of X_X, this equivalence
relation is R=[(r(#), s(#)) : # # G]. The function %=(r, s) mapping G to R
is a groupoid homomorphism and G is called principal iff % is one-one, i.e.,
G is isomorphic to an equivalence relation. If G arises from a group action,
G is principal iff the action is free (the only element of the group that has
any fixed points is the identity).

If G is a groupoid on X, and Y�X is non-empty, we call r&1(Y ) &
s&1(Y) the restriction of G to Y, and write G |Y for it. In terms of graphs,
G |Y is the set of all edges in G that connect points of Y. G |Y is a sub-
groupoid of G, and a groupoid on Y. For each x # X, G|[x] is a group
called the stabilizer of x or the isotropy of x.
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If A and B are subsets of a groupoid G, we define the product AB of the
two sets to be [##$ : # # A, #$ # B, r(#$)=s(#)]. If A has a single element #0 ,
we write #0B for AB. Thus YGY=G | Y and xGx=G | [x] if Y�X and
x # X. We also use the sets r&1(x)=xG and s&1(x)=Gx when x # X.

A groupoid G is a Borel groupoid if G has a Borel structure, X is a Bored
set when regarded as a subset of G, and r, s, ( )&1 and multiplication are
Borel functions. We will consider only Borel groupoids which are at least
analytic, and then X=[# : r(#)=#] is Borel if r is Borel. A groupoid G is
topological if it has a topology such that X is closed, and r, s, ( )&1 and
multiplications are continuous, while r and s are open. Again these proper-
ties are not independent. It is necessary for r to be open in order to prove
that AB is open whenever A and B are open [25].

We write M(G) for the space of bounded Borel measurable functions on
G, whenever G is a Borel groupoid. If G has a topology in which it is
_-compact (a countable union of compact sets), we write Mc(G) for the
subspace of M(G) of functions having compact support.

If G is an analytic Borel groupoid, we say a measure + on G is quasisym-
metric if it has the same null sets as its image (+)&1 under ( )&1. Thus +
and (+)&1 are in the same measure class, and the measure class [+] (set
of measures with the same null sets as +) is invariant under ( )&1. For
measures on G, this global symmetry is just the same as if G were a group.

In the material following this paragraph, we give the definitions for
groupoids that extend the notions of invariance and quasiinvariance of
measures under translation on a group or under other actions of the group.
Because translation on the left by a groupoid element # makes sense only
on s(#)G, and similarly for right translation, the notions of invariance and
quasiinvariance are more complicated for groupoids than for groups.

Following Connes [4] we say that a kernel is a function & assigning a
_-finite (positive) measure &x on G to each x # X, so that these two
statements are true:

(a) &x(G"xG) is always 0. One may say that &x is concentrated on
xG.

(b) If f # M(G), and f �0, the function &( f ) : X � [x, �] defined by
&( f )(x)=&x( f )=� f d&x is Borel.

Given an element # # G, the mapping #$ [ ##$ is a Borel isomorphism of
s(#)G onto r(#)G and thus maps &s(#) to a measure #&s(#) on r(#)G, for every
kernel &. A kernel & is called left invariant provided &r(#)=#&s(#) for all # # G.
It is called (left) quasiinvariant if &r(#) and #&s(#) are equivalent for all # # G.

A left invariant kernel, *, on a Borel groupoid G is called a Borel Haar
system. Then defining *x to be the image of *x under inversion produces a
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right Borel Haar system. A Borel Haar system * on a locally compact
groupoid is called a Haar system if supp(*x) is always xG and *( f ) # Cc(X )
for each f # Cc(G). In particular, each *x is a Radon measure. For discus-
sions of Haar systems, see [14, 26, 30, 31].

When * is a Haar system, it can be convenient to have a left quasi-
invariant kernel *1 consisting of probability measures equivalent to the
measures *x. It is not difficult to show that there is a continuous, strictly
positive, function f on G such that for every x # X, � f d*x=1. We choose
one such f and write *x

1 for the measure f*x. We also write +x
1 for the prob-

ability measure s(*x
1) on X; these measures also depend on x in a Borel

way.
If * is a Borel Haar system on a Borel groupoid G and + is a proba-

bility measure on X, we can form a measure &=� *x d+(x) : � f d&=
�� f (#) d*x(#) d+(x). We often write *+ for this measure &. Suppose that
G=X_H, where X is a right H-space, and give G the groupoid structure
that comes from the group action. Let * be a left Haar measure on H. For
each x # X, let =x be the point mass at x, and define *x==x_*, to get a
Borel left Haar system. If + is a _-finite measure on X for this groupoid,
then &=*+=+_* and the class [&] is symmetric iff + is quasiinvariant
under the group action, i.e., for every Borel set E�X and every group ele-
ment h, +(E)=0 iff +(Eh)=0. This follows from [22, Theorem 4.3] and
the fact that if + is quasiinvariant under almost all elements of the group,
then it is quasiinvariant. Hence, on a general Borel groupoid with Borel
Haar system *, a _-finite measure + on X is called quasiinvariant iff *+ is
quasisymmetric. In that case, a result of Peter Hahn [13, Corollary 3.14],
combined with [24, Theorem 3.2], shows that there is a Borel homo-
morphism, 2+ , of G to the multiplicative positive real numbers such that

2+=
d*+

d(*+)&1 .

This homomorphism is called the modular function by analogy with locally
compact groups. If + is quasiinvariant, and Y is a +-conull Borel set in X,
the restriction G | Y is called inessential.

We often refer to the set of all quasiinvariant _-finite measures on X, and
will denote that set by Q. We say a Borel set N�X is Q-null provided
+(N)=0 for every + # Q. It follows from the existence, and uniqueness up
to equivalence, of a quasiinvariant _-finite measure on each orbit [26,
Proposition. 1.3.6 and Proposition. 1.3.8] that N is Q-null iff *x(GN) is
always 0. The measures +x

1 introduced above are in this class, and any
measure in Q equivalent to such a measure is called transitive because it is
concentrated on a single orbit. For a Borel set N�G, we say N is *Q-null
iff *+(N)=0 whenever + # Q. A function f on X is Q-essentially bounded iff
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the restriction of f to the complement of some Q-null set is bounded, and
then & f &� is defined to be the smallest element of [B : | f |�B +-almost
everywhere for every + # Q]. The space of Q-essentially bounded functions
on X will be denoted by L�(Q). A similar definition is used for the space
L�(*Q) of *Q-essentially bounded functions on G, except that the measures
*+ are used.

Examples. (a) If G=X_H, where X and H are locally compact and
H is a group, let =x denote the unit point mass at x for x # X and let * be
a left Haar measure on H. Then *x==x_* defines a Haar system for G.

(b) If E is an analytic equivalence relation on X and each equiv-
alence class is countable, we can let *x be counting measure on [x]_[x]
to get a left invariant system of measures.

(c) Here is an example of a locally compact groupoid that has a
Borel Haar system but no Haar system. Let G=[0, 1�2]_[0] _
[1�2, 1]_Z�2. This is a field of groups. To get a Borel Haar system, we can
make each *x a multiple of the Haar measure on [0] or Z�2. Then
*1�2([1�2, 0)])=*1�2([1�2, 1])>0, and if we let f be the characteristic
function of [1�2, 1]_[1], then the function *( f ) has a jump at 1�2. We
could easily change to another locally compact topology on this G and get
a Haar system. In general, it may be necessary to change the topology on
G and pass to an inessential restriction in order to get a Haar system.

Convolution

We use several convolution algebras in this paper, and will introduce
them here. There are two basic convolutions, a convolution of functions
that can be defined in the presence of a Borel Haar system, and a convolu-
tion of kernels that does not depend on any such system. If the groupoid
is locally compact and the Haar system is continuous, then Cc(G) is an
algebra under the convolution of functions. We will see that convolution of
functions can be subsumed under convolution of kernels by replacing each
function by the kernel obtained by multiplying the Haar system by the
function.

First, let G be a Borel groupoid with a Borel Haar system *. If f, g are
non-negative Borel functions on G, then � f (#1) g(#2) d*r(#1)(#2) is a Borel
function of #1 , so by taking linear combinations and monotone limits we
see that whenever F is a non-negative Borel function on G_G the integral
� F(#1 , #2) d*r(#1)(#2) depends on #1 in a Borel manner. Then for non-
negative f, g # M(G), we can let F(#1 , #2)= f (#1) g(#&1

1 #2) when r(#2)=
r(#1) and F(#1 , #2)=0 otherwise, and see that � f (#1) g(#&1

1 #2) d*r(#2)(#1) is
a Borel function of #2 . Denote this function by f V g, provided that it is
always finite valued. Then f V g # M(G). The function f V g is called the
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convolution of f and g. Convolution can be extended to more general func-
tions using linearity.

Define the space Ir(G, *) to be [ f # M(G) : *( | f | ) is bounded], and give
it a norm by letting & f &I, r be the sup norm of the Borel function *( | f | ).
As proved on page 51 of [26], Ir(G, *) is closed under convolution and the
norm & }&I, r is an algebra norm. We can define an involution on M(G) as
in [26] by letting f �(#)= f� (#&1) for f # M(G), # # G. If we set I(G, *)=
Ir(G, *) & (Ir(G, *))� , then we can define & f &I to be the maximum of & f &I, r

and & f � &I, r for f # I(G, *), obtaining a normed algebra on which the
involution is an isometry.

If G is locally compact and * is a Haar system, then Cc(G) is a V -sub-
algebra of I(G, *). In the inductive limit topology, Cc(G) is a topological
algebra [26, page 48].

The second kind of convolution can be introduced after the objects are
defined: A complex kernel is a function & assigning a complex measure &x

on G so that

(a) &x is always concentrated on xG.

(b) if f # M(G), the function &( f ) taking x # X to &x( f ) is Borel.

We define K(G) to be the space of bounded complex kernels on G, i.e.,
those for which the total variation of &x is a bounded function of x.

If # # G and & # K(G) we can map &s(#) to a measure on r(#)G, via left
translation by #, as we do in defining Haar systems. Denote this measure
by #&s(#). If &1 , &2 # K(G) we can define the convolution &=&1 V &2 by
&x=� #&s(#)

2 d&x
1(#). We can also define an action of K(G) on Ir(G, *) as

follows. If & # K(G), f # Ir(G, *) and #$ # G set

L(&) f (#$)=| f (#&1#$) d&r(#$)(#).

It is not difficult to verify that L(&) is a bounded operator whose norm is
at most the essential supremum of the total variation norms of the signed
measures &x. If &1 and &2 are in K(G) and f # Ir(G, *), then we can calculate

(L(&1)(L(&2) f ))(#)=| (L(&2) f )(#&1
1 #) d&r(#)

1 (#1)

=|| f (#&1
2 #&1

1 #) d&s(#1)
2 (#2) d&r(#)

1 (#1)

=|| f (#&1
2 #) d&s(#1)

2 (#&1
1 #2) d&r(#)

1 (#1)

=| f (#&1
2 #) d(&1 V &2)r(#) (#2),
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showing that L takes convolution to composition of operators. Since L is
faithful, K(G) is an algebra under convolution. If f, g # Ir(G, *) it is not
difficult to verify that f* # K(G) and L( f*) g= f V g:

L( f*) g(#)=| g(#&1
1 #) f (#1) d*r(#)(#1).

Since L is faithful and convolution is associative, it follows that f* V g*=
( f V g) *. Thus Ir(G, *) *=[ f* : f # Ir(G, *)] is a subalgebra of K(G) iso-
morphic to Ir(G, *). If G is locally compact and has a Haar system *, the
calculations just made also show that Cc(G) * is a subalgebra of K(G)
isomorphic to Cc(G).

Next we want to enlarge Cc(G) * to a subalgebra of K(G) that contains
a copy of Cc(X ). We denote the one-point compactification of X by X� . The
mapping f � f | X takes C(X� ) one-one onto the algebra of continuous func-
tions on X that have a limit at infinity. We identify C(X� ) with that sub-
algebra of C(X ) but continue to write C(X� ). Notice that there is also a sub-
algebra of K(G) isomorphic to C(X� ), obtained as follows. First define = to
be the kernel that assigns the point mass at x to each x # X, which we
denote by =x as above. Next notice that K(G) is closed under multiplication
by any bounded Borel function on G, so if h # M(X) and & # K(G), we can
define h& to be (h b r) &, and &h=(h b s) &. (These agree with the naturally
defined left and right multiplication of M(X ) on Ir(G, *) when the latter is
regarded as a space of kernels.) Then M(X ) = is a subalgebra of K(G)
isomorphic to M(X ), and that algebra includes C(X� ) =, which is iso-
morphic to C(X� ).

If we write Cc(G, X� ) for the sum of C(X� ) = and Cc(G) * as subspaces of
K(G), it can be seen that Cc(G, X� ) is a subalgebra. Also the involution on
Cc(G) extends in a natural way to Cc(G, X� ). We need the algebra Cc(G, X� )
because it generates a C*-algebra that contains C(X� ) as a subalgebra,
enabling us to apply a result on completely bounded bimodule mappings
in Section 5.

On the other hand, the algebra Cc(G) has an approximate unit [20]. In
order to state the existence theorem, we need to introduce some of their
terminology. They call a set L in G r-relatively compact if KL is relatively
compact for every compact set K�X. There exists a decreasing sequence
U1 , U2 , . . . of open r-relatively compact sets whose intersection is X. There
also exists an increasing sequence of compact sets in X, K1 , K2 , . . . whose
interiors exhaust X. These come from the second countability of G,
and they allow us to make a sequence that is an approximate unit
(instead of a more general net). We call a function f in Cc(G) symmetric
if f � = f.
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Theorem 1.1. [20] There is a sequence e1 , e2 , . . . of symmetric functions
in C +

c (G) such that for each n we have

(i) supp(en)�Un , and

(ii) � e(#) d*x(#)�1&n&1 for x # Kn , and �1 for all x # X.

Such a sequence is a two-sided approximate unit for Cc(G) in its inductive
limit topology, i.e., for uniform convergence on compact sets.

Representations

A (unitary) representation of a locally compact groupoid G is given by
a Hilbert G-bundle K over X, the unit space of G; this means we have two
functions that have some properties:

(a) a Hilbert space K (x) for each x. We form 1K =[(x, v) :
x # X, v # K (x)], called the graph of K, and require that 1K have a
standard Borel structure such that the projection onto X is Borel and there
is a countable set of Borel sections of 1K such that for each x the set of
their values at x is dense in K (x).

(b) a Borel homomorphism ? of G into the unitary groupoid of the
bundle K, i.e., for each #, ?(#) : K (s(#)) � K (r(#)) is unitary, and ? is a
Borel function [26, page 52].

This can also be said as follows: (K, ?) is a Borel functor on G taking
values in the category of Hilbert spaces.

Given a representation ? of G, and a measure + # Q, we can obtain from
them a V -representation of Mc(G). Before describing the representation,
we need another item of notation. We will write &=*+=� *x d+(x). Then
we take 2=2+ as above and define &0=2&1�2&, obtaining a symmetric
measure. Next we make a Hilbert space, L2(+ ; K), of square integrable
sections of K. For f # Mc(G) we define ?+( f ) on L2(+ ; K) by setting

(?+( f ) ! | ')=| f (#)(?(#) ! b s(#) | ' b r(#)) d&0(#)

for !, ' # L2(+ ; K). Then ?+ is a V -representation of Mc(G) with &?+( f )&�
& f &I, + [26, pages 52, 53], so its restriction to Cc(G) has the same property.
We denote the restriction by the same symbol, depending on context to
distinguish the two. Later we will also use another method of integrating
a unitary representation of G, one that is due to Hahn [14] and does not
use the symmetrized measure.

It can be convenient to choose + to be finite, say a probability measure,
so we need to know that +$t+ implies ?+$ is unitarily equivalent to ?+. To
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prove this implication, take \ to be a positive Borel function whose square
is the Radon�Nikodym derivative of +$ with respect to +. Then

\2 b r=
d*+$

d*+

and

\2 b s=
d(*+$)&1

d(*+)&1

so

(\2 b r) 2+=(\2 b s) 2+$ .

Hence we can define V : L2(+$, K) � L2(+, K) by V!=\! to get the
necessary unitary equivalence. To see that it is indeed an intertwining
operator, compute to see that the inner products are equal: (?+( f ) V! | V')=
(?+$( f ) ! | ').

It is natural to ask whether every continuous representation of Cc(G)
can be obtained by integrating a unitary representation of G, as is true for
groups. An affirmative answer to this question was provided by an
ingenious argument due to Renault [27], and it follows that every
representation of Mc(G) bounded by & &I can be obtained by integrating a
unitary representation of G. Another discussion of this result is in [19].
Renault's theorem is:

Theorem 1.2. Let G be a locally compact groupoid that has a Haar
system, and let H0 be a dense subspace of a (separable) Hilbert space H.
Suppose that L is a representation of Cc(G) by operators on H0 such that

(a) L is non-degenerate;

(b) L is continuous in the sense that for every pair of vectors !, ' # H0 ,
the linear functional L!, ' defined by L!, '( f )=(L( f ) ! | ') is continuous
relative to the inductive limit topology on Cc(G);

(c) L preserves the involution, i.e., (! | L( f � ) ')=(L( f ) ! | ') for
!, ' # H0 and f # Cc(G).

Then the operators L( f ) are bounded. The representation of Cc(G) on H

obtained from L is equivalent to one obtained by integrating a unitary
representation of G using a probability measure + # Q. In particular, L is
continuous relative to & &I .

In [26], Renault defined a norm on Cc(G) by & f &=sup [&L( f )& : L is
a bounded representation of Cc(G)]. Theorem 1.2 shows that we could get
the same norm by using the representations ?+ in place of the L's. The
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completion of Cc(G) with respect to the norm just defined is a C*-algebra
denoted C*(G). Every positive linear functional of norm one on a
C*-algebra gives rise to a representation of the algebra and a cyclic vector
in the Hilbert space of the representation. The direct sum of all these cyclic
representations is called the universal representation of the C*-algebra. We
will denote this representation by |. For C*(G), we know that every one
of the cyclic representations is of the form ?+, so | can also be regarded
as a representation of Mc(G). We will write M*(G) for the operator norm
closure of |(Mc(G)). Since | is an isomorphism on C*(G), we can regard
C*(G) as a subalgebra of M*(G). We will also refer to | as the universal
representation of G itself.

In proving that L can be obtained by integration, Renault shows that
there is a representation of Cc(X ), say ,, associated with L such that for
f # Cc(G) and h # Cc(X ) we have

L((h b r) f )=,(h) L( f )

and

L( f (h b s))=L( f ) ,(h).

Then , extends in the obvious way to a unital representation of C(X� ) and
can be used to extend L to a representation of Cc(G, X� ):

L( f*+ g=)=L( f )+,(g).

The reader can verify, easily, that this defines a unital representation of
Cc(G, X� ). We extend | to C(G, X� ) in this way, and also to Mc(G, X� ). Then
we define C*(G, X� ) to be the operator norm closure of |(Cc(G, X� )) and
M*(G, X ) to be the closure of |(Mc(G, X )).

For some computations we need another norm [14]. Let + # Q, let
f # Mc(G) and define

& f &II, +=sup {| | f (#) g b r(#) h b s(#)| 2+(#)&1�2 d*+(#)= ,

the supremum being taken over unit vectors g, h # L2(+). Then define & f &II

to be sup [& f &II, + : + # Q]. Three facts about this norm should be men-
tioned. The first is that if ? is a unitary representation of G, then &?+( f )&�
& f &II, + . Thus &|( f )&�& f &II , because &|( f )&=sup [&?+( f )& : ? is a
unitary representation and + # Q]. Next, if ? is the one dimensional trivial
representation and f�0 then &?+( f )&=& f &II, + . It follows that if 0�
f # Mc(G) then

&|( f )&=& f &II .
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A third fact is this: if b # L�(*Q) and f # Mc(G), then for any + # Q we have

&bf &II, +�&b&� & f &II, + ,

so

&bf &II�&b&� & f &II .

Lemma 1.3. If 0� f # Mc(G) and b # L�(*Q), then &|(bf )&�
&b&� &|( f )&.

Proof. Using the three properties of & &II, + mentioned just above, we
have

&|(bf )&�sup [&bf &II, + : + # Q]

�sup [&b&� & f &II, + : + # Q]

=&b&� &|( f )&.

2. MEASURE THEORETIC PREPARATION

A basic lemma is needed for our construction of positive definite func-
tions from completely positive maps in Section 4. After proving that
lemma, we also need to prepare some detailed information about Haar
systems on locally compact groupoids and how they relate to Borel Haar
systems on the associated equivalence relations. Most of that information
comes from [28].

As preparation for the proof of the lemma in question, we recall a basic
fact about measures and function spaces. Suppose that (X, B) is a set with
a _-algebra and that A is a subalgebra of B that generates B as a
_-algebra. Let + be any finite measure defined on B. The measure of the
symmetric difference between two sets is the same as the distance between
their characteristic functions in L1(+), and hence provides a (pseudo)
metric on B. The closure of A in B is a _-algebra that contains A and
hence is B. For us, it is important that the fact of density is independent
of +. This implies similar properties for the set S(A), our notation for the
set of linear combinations of characteristic functions of sets in A using
coefficients from Q[i], which is Q with - &1 adjoined. By looking first at
simple functions, it is easy to show that S(A) is always dense in L1(+). In
the same way, we see that for any f # L1(+),

& f &1=sup {}| f. d+} : . # S(A) and |.|�1= ,
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which is a supremum indexed by a family independent of +. When A can
be taken to be countable, as is the case when X is a standard Borel space,
these facts are particularly useful.

A similar situation arises if X is locally compact. In that case, there is a
countable dense subset S(X) of Cc(X ) that is an algebra over Q[i], and
any such S(X ) is dense in L1(+) for every finite measure + on X.

The next lemma is a generalization of the fact that for two measure
spaces, functions on the product and functions from one measure space to
the functions on the other can be identified. In our setting, the measure on
the image space must be allowed to vary.

Lemma 2.1. Let X and Y be standard Borel spaces and let x [ &x be a
Borel function from X to finite Borel measures on Y. Suppose that f is a func-
tion on X selecting an element f (x) of L1(&x) for each x # X so that the func-
tion x [ f (x) &x is Borel, taking values in the space of complex valued Borel
measures. Then there is a Borel function F on X_Y such that for every x # X
the function F(x, } ) is integrable relative to &x and in the class f (x). The func-
tion F can be chosen so that if f (x) # L�(&x) then F(x, } ) is bounded by
& f (x)&� . It is possible to choose F meeting those conditions and so that if
&x=&x$ and f (x)= f (x$) then F(x, } )=F(x$, } ) (everywhere on Y ).

Remark. If Y is taken to be locally compact, the proof given below can
be modified by replacing S(A) by S(Y ).

Proof. For the proof we must have a way, that does not depend on x
directly, to choose representatives of classes approximating f (x). For this
we choose first a countable algebra, A, of Borel sets in Y that generates the
_-algebra of Borel sets, so we can use the facts mentioned before the state-
ment of the lemma. List S(A) as a sequence, s1 , s2 , ... . For convenience, let
us write xtx$ to mean that &x=&x$ and f (x)= f (x$), and say that such
points are equivalent.

Now we are ready to describe the basic step which will be used
repeatedly in the proof. If =>0 and x # X define j(x, =) to be the least ele-
ment of [i : & f (x)&si &L1(&x)<=]. It is clear that j( } , =) takes the same value
at equivalent points of X, and we will show that j( } , =) is a Borel function.
This will follow if we can show that for each bounded Borel function h on
Y, [x : & f (x)&h&L1(&x)<=] is a Borel set. We can get that from the fact
that norms can be computed as suprema, because for each . # S(A),
� ( f (x)&h) . d&x is a Borel function of x and hence so is its absolute value.

If we define g(x)=sj(x, =) (as an element of L1(&x)) and G(x, y)=
sj(x, =)( y), then g(x)= g(x$) and G(x, } )=G(x$, } ) (everywhere on Y ) when-
ever xtx$. Also, both these functions are Borel.

Apply this process first to f with ==2&1 to obtain G1 and g1 . Then apply
it to f &g1 with ==2&2 to obtain G2 and g2 , etc. For each n the value of the
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function f &(g1+ } } } + gn) at a point x is an element of L1(&x) having norm
<2&n. Thus for n�2, &gn(x)&1<3(2&n). It follows that for each x the sum
�n�1 |Gn(x, y)| is finite for almost all y. Inductively, we see that Gn(x, } )=
Gn(x$, } ) if xtx$. The set N=[(x, y) # X_Y : �n�1 |Gn(x, y)|=�] is a
Borel set in X_Y and the slices of N over x and x$ are the same set if xtx$.
Now change each Gn to be 0 on N. Then the sum is always finite and we still
have Gn(x, } )=Gn(x$, } ) if xtx$.

Define F(x, y)=�n�1 Gn(x, y). Then F is Borel and satisfies the first
and last conclusions of the theorem. Thus the slice of the Borel set
[(x, y) : |F(x, y)|>& f (x)&�] over every point of X is of measure 0 and the
slices of this set are the same over equivalent points of X. Change F to be
0 on that set, and all the desired conditions are satisfied.

Now we are going to present some results on the fine structure of the
Haar system, as developed by Renault in Section 1 of [28]. Renault
decomposes the Haar system * over a Borel Haar system : on R, by
studying the action of G on a special group bundle, and we summarize the
results here. Recall that the isotropy group bundle of G, denoted by G$, is
defined to be [# # G : r(#)=s(#)]=�[xGx : x # X]. This closed in G and
hence locally compact, so the space of closed subsets of G$ is a compact
space in the Fell topology [12]. Let 7(0) be the space of closed subgroups
of the fibers in G$, which is a closed subset of the space of closed subsets.
Then the set 7=[(H, #) # 7(0)_G$ | # # H] is called the canonical group
bundle of 7(0). G acts on 7 and on 7(0) by conjugation: if (H1 , #1) # 7,
# # G, and s(#1)=r(#), then

(H1 , #1) #=(#&1H1 #, #&1#1#),

while if H # 7(0), say H�xGx, and r(#)=x, then H } #=#&1H#. We want
to make a Borel choice of Haar measures on the groups xGx. One way to
do this is to choose a continuous function F0 on G that is non-negative, 1
at each x # X and has compact support on each xG. Then for each x # X
choose a left Haar measure ;x on xGx so the integral of F0 with respect to
;x is 1. Likewise, choose a function F on 7 that is non-negative, 1 at each
point (H, e), and has support that intersects every [H]_H in a compact
set, and make a similar choice of Haar system on 7, ;H.

Form the groupoid 7(0) V G=[(H, #) : s(H)=r(#)] arising from the
action of G on 7(0). Then the essential uniqueness of Haar measures
guarantees the existence of a 1-cocycle, $, on 7(0) V G so that for every
(H, #) # 7(0) V G we have

#&1;H#=$(H, #)&1 ;#&1H#.

Renault proves that $ is continuous. The cohomology class of $ is deter-
mined by G, and Renault calls it the isotropy modulus function of G.
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To shorten some formulas in this context, we write G(x) for xGx.
Renault defines $(#)=$(G(r(#)), #) to get a 1-cocycle, also called $, on G
such that for every x # X, $ | xGx is the modular function for ;x. The pre-
image in 7(0) V G of a compact set in G is compact, so $ and $&1=1�$ are
bounded on compact sets in G. Renault defines ;x

y=#; y if # # xGy. If #$ is
another element of xGy, then #&1#$ # yGy, and since ; y is a left Haar
measure on yGy, it follows that ;x

y is independent of the choice of #. With
this apparatus in place, it is possible to describe a decomposition of the
Haar system * for G over the equivalence relation R=[(r(#), s(#)) : # # G].
This R is the image of G under the homomorphism % (=(r, s)), so it is a
_-compact groupoid. Furthermore, there is a unique Borel Haar system :
for R with the property that for every x # X we have

*x=| ;z
y d:x(z, y).

Now suppose that + # Q so that we can form :+ and *+, getting quasisym-
metric measures. If 2

�
=d:+�d(:+)&1 then $2

�
b % will serve as d*+�d(*+)&1,

i.e., we can always take 2+=$2
�

+ b %. We shall see that sometimes 2
�

+=1 so
2+=$.

For each x, the measure :x is concentrated on [x]_[x] so there is a
measure +x on [x] such that :x==x_+x, where =x is the unit point mass
at x # X�G. Since : is a Haar system, we have +x=+ y if xty, and the
function x [ +x is Borel. If we take +$ to be the measure +z for some z # X,
then +$ is quasiinvariant [26, Proposition 1.3.6]. We give a different proof.
First of all,

:+$=| :x d+$(x)=+z_+z,

so :+$ is symmetric. Hence 2
�

+$=1. Next we consider *+$=�� ;x
y d+z(x) d+z( y).

Since Gz is locally compact, there is a Borel function c : [z] � Gz such that
for every x # [z] we have c(x) # xGz. The value of c(z) can be taken to be
z. We can use c to define a Borel isomorphism � : G |[z] � [z]_G(z)_[z]
by

�(#)=(r(#), c(r(#))&1 #c(s(#)), s(#)).

By the uniqueness of Haar measure, as above, we see that � always carries
;x

y to a positive multiple of =x_;z_= y, and that multiple is a Borel func-
tion of the pair (x, y). Hence � carries *+$ to a measure equivalent to
+z_;z_+z. It follows that *+$ is quasisymmetric, as needed.

Since * is a Haar system, we know that if K is a compact set in G then
the function x [ *x(K) is bounded. We will use the formula for *x in terms
of :x to prove that x [ :x(%(K)) is also bounded, and also that +x is finite
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on compact sets for the quotient topology on [x]. Let F be the function
used above to make a choice of Haar measures ; y. If S is the support of
F, then ; y(S)�1 for every y # X. To prove the boundedness statement
above, let K be a compact subset of G and set K1=K(s(K) S). Because
both factors are compact, so is K1 , so x [ *x(K1) is bounded. For (x, y) #
%(K), choose # # K such that %(#)=(x, y). Then #S�K1 , so ;x

y(K1)�1.
Hence

*x(K1)=| ;x
y(K1) d:x(x, y)

�|
s(xK)

;x
y(K1) d:x(x, y)

�:x(%(K)).

For the second assertion, suppose that C is a compact set in [x] for the
quotient topology. Since xG is locally compact and s is continuous and
open from xG to [x], there is a compact set K contained in xG whose
image contains C. Then %(K)�xR, so the boundedness result just proves
that +x(s(K))=:x(%(K)) is finite. Hence +x is _-finite.

It is also true that finiteness of +x on compact sets forces *x to be finite
on compact sets, by an argument on page 7 of [28].

Define M%c(R) to be the space of bounded Borel functions on R that
vanish off sets of the form %(K), where K is a compact subset of G. Now
we know that M%c(R)�I(R, *), and it is not difficult to show that M%c(R)
is a V-subalgebra of I(G, *). The definition of this algebra is admittedly
somewhat unusual, but the algebra will serve a useful purpose in proving
the main step along one way to prove the completeness of the Fourier�
Stieltjes algebra of G. The point is that R is a kind of shadow of G, and
we need a convolution algebra on it that is a shadow of the same kind.

3. POSITIVE DEFINITE FUNCTIONS

In this section, we will characterize the functions on a locally compact
groupoid that are diagonal matrix entries of unitary representations as the
functions that are what we call positive definite. For this to be meaningful,
we need a good definition of ``positive definite.'' This is more complicated
than for locally compact groups because unitary representations of locally
compact groupoids can be Borel functions without being continuous. Thus
we make our definition using integrals, and must even identify two func-
tions that agree *Q-almost everywhere, as defined in Section 1. In Section 4,
we will need to construct a positive definite function from a parametrized
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family of functions, each of which is positive definite on a transitive sub-
roupoid. Thus we prove the representation theorem in that broader con-
text. For a locally compact groupoid that has a Haar system, the notion
of positive definite function can be defined in the least restrictive way as
follows:

Definition 3.1. Let G be a locally compact groupoid and let * be a left
Haar system on G. Then a bounded Borel function p on G is called positive
definite iff for each x # X and each f in Cc(G) we have

|| f (#1) f� (#2) p(#&1
2 #1) d*x(#1) d*x(#2)�0. (P)

The set of all such p's will be denoted by P(G). We say that two elements
of P(G) are equivalent iff they agree *Q-almost everywhere.

Remarks. (a) In Section 2, we summarized some results of J. Renault on
the structure of Haar systems, and used it to construct a specific measure
+x # Q in the unique invariant class associated with the orbit [x], so that
xty implies +x=+ y. For each x # X, (P) imposes a condition on the
behavior of p almost everywhere on the set G | [x], with respect to the
measure *+x

. Because of the invariance of the measures +z this measure is
determined by the orbit of x. Any two functions that agree a.e. with respect
to all such measures also agree *Q-a.e. We will prove that every element of
P(G) agrees *Q-a.e. with a diagonal matrix entry of a unitary representa-
tion of G, and after that work always with elements of P(G) in that form.

(b) Since p is bounded, the positivity condition, (P), holds for f in
L1(*x) for every x. Furthermore, (P) can be verified using any dense subset
of each L1(*x).

(c) Condition (P) could be formulated using complex measures
absolutely continuous relative to *x. (P) could be strengthened by allowing
more measures, including discrete ones. Since we are able to work with the
weaker definition, we will do so. In the end we will arrive at diagonal
matrix entries for unitary representations, and these are as well-behaved as
possible.

(d) If G is a Borel groupoid and * is a Borel Haar system, a similar
definition can be made using test functions from the spaces L1(*x).

Since we intend to show that positive definite functions are essentially
the same as diagonal matrix entries of unitary representations, we begin by
showing that such matrix entries are in P(G).
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Lemma 3.2. Let ? be a unitary representation of G on a Hilbert bundle H,
and let ! be a bounded Borel section of H. Define p(#)=(?(#) ! b s(#) | ! b r(#))
for # # G. Then p # P(G).

Proof. Fix x # X and f # Cc(G). Then for ' # H(x),

}| f (#)(?(#) ! b s(#) | ') d*x(#)}�& f &1 &!&� &'&,

so there is an element `(x) # H(x) such that for all ' # H(x) we have

| f (#)(?(#) ! b s(#) | ') d*x(#)=(`(x) | ').

Indeed, this defines a Borel section, `, of H. The Borel character of `
follows from the fact that (?(#) !1 b s(#) | '1 b r(#)) is a Borel function of #
whenever !1 and '1 are Borel sections of H. For this section ` the integral
involved in the condition (P) is equal to (`(x) | `(x)), which is certainly
non-negative.

Lemma 3.3. If p # P(G), the formula

( f | g)x=|| f (#1) g� (#2) p(#&1
2 #1) d*x(#1) d*x(#2) (IP)

defines a semi-inner product on L1(*x). Let H(x) denote the Hilbert space
completion of the resulting inner product space. Then H is a Hilbert bundle
over X. For #1 # G, define ?(#1) from L1(*s(#1)) to L1(*r(#1)) by (?(#1) f )(#)=
f (#&1

1 #). Then ? determines a unitary representation, also denoted by ?, on
the bundle H.

Proof. The form ( f | g)x is clearly linear in f and conjugate linear in g.
Since the vector space is complex the Hermitian symmetry follows from
positive definiteness.

Let N(x)=[ f # L1(*x) : ( f | f )x=0] and set F (x)=L1(*x)�N(x), the
corresponding inner-product space. Write H(x) for the completion of
F (x). Let | |x be the norm (or semi-norm) arising from ( | )x . For
f, g # L1(*x), |( f | g)x |�&p&� & f &1 &g&1 , so | f |x�&p&1�2

� & f &1 . It follows
that the image of Cc(xG), which is the image of Cc(G), is dense in H(x).

Now we want to make a Borel structure on the graph of H, denoted by
1=1H =[(x, !) : x # X, ! # H(x)]. The process used is fairly standard.
First, if f # Cc(G) and x # X, define _( f )(x) to be the element of H(x)
represented by f | xG. This defines a section _( f ) of the graph of H. We
want all _( f )'s to be Borel sections, and that tells us how to define the
Borel structure. For f # Cc(G) define �f on 1 by �f (x, !)=(_( f )(x) | !)x .
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Then give 1 the smallest Borel structure relative to which the projection to
X is Borel along with all the functions �f ( f # Cc(G)). It follows from the
fact that p is Borel and bounded that each section _(g) for g # Cc(G) is
indeed a Borel section. Since G is second countable, there is a countable set
dense in Cc(G). For any countable dense set of f 's, the �f 's would deter-
mine the same Borel structure as [�f : f # Cc(G)], so the latter is standard:
Apply the Gram�Schmidt process in a pointwise manner to a dense
sequence of sections of the form _( f ) to get a sequence g1 , g2 , . . . of Borel
functions such that

(a) gn | xG is always in L1(*x).

(b) if f # Cc(G) and n�1, then x � (_( f ) | _(gn))x is a Borel func-
tion.

(c) for each x the non-zero elements of [_(gn)(x) : n�1] form an
orthonormal basis of H(x).

Then it is easy to show that 1 is isomorphic to the disjoint union of a
sequence of product bundles Xn_Kn , where [X� , X1 , X2 , . . .] is a Borel
partition of X and each Kn is a Hilbert space of dimension n. Thus 1 is
standard because each Xn _Kn is standard.

If f # L1(*x) and #1 : x � y is in G, define ?(#1) f by (?(#1)( f ))(#)=
f (#&1

1 #) for # # yG. Since * is left invariant, ?(#1) f # L1(* y). Notice that
?(#&1

1 ) is the inverse of ?(#1). If g is another element of L1(*x), then

(?(#1) f | ?(#1) g)y =|| f (#&1
1 #2) g� (#&1

1 #3) p(#&1
3 #2) d* y(#2) d* y(#3)

=|| f (#2) g� (#3) p(#&1
3 #2) d*x(#2) d*x(#3)

=( f | g)x .

Hence ?(#1) extends to a unitary operator from H(x) to H( y), for which
we use the same notation.

To work with the bundle and with the representation we need to restrict
to subsets of product spaces where the various operations are defined.
There are two fibered products, 1_$ 1=[(x, !, x, !$) : x # X, !, !$ # H(x)],
a subset of 1_1, and G_$ 1�G_1, defined to be [(#, x, !) : s(#)=x,
! # H(x)]. Let us show that (#, x, !) [ (r(#), ?(#) !) is Borel from G_$ 1
to 1. The composition of this map with the projection to X is clearly Borel.
Let f # Cc(G) and compose the map with �f . The value of the composition
at (#, x, !) is �f (r(#), ?(#) !)=(?(#)&1 (_( f )(r(#))) | !)x . This is the value
of another composition,

G_$ 1 � 1_$ 1 � C,
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where the first function takes (#, x, !) to (s(#), ?(#&1)(_( f )(r(#))) ; x, !) and
the second is the inner product function. The first function is Borel if each
component is, so let us see that the first component is a Borel function of
#. Composition of it with projection is s and hence Borel. If g # Cc(G),

�g(s(#), ?(#&1)(_( f )(r(#)))=|| f� (##2) g(#1) p(#&1
2 #1) d*s(#)(#1) d*s(#)(#2)

=|
G_G_G

F d(=#_*s(#)_*s(#)),

where F is the function that is 0 at (#0 , #1 , #2) unless s(#0)=r(#1)=r(#2)
and then its value is f� (#0#1) g(#2) p(#&1

2 #1) (F is Borel). A fairly standard
argument then shows that # [ �g(s(#)), ?(#&1)(_( f )(r(#))) is Borel, as
desired.

To show that the inner product is Borel on 1_$ 1, we use the functions
gn used to show that the bundle is standard. Indeed,

((x, !) | (x, '))x= :
n�1

�gn(x, !) �� gn(x, ')

which is a Borel function. It follows that (#, x, !) [ �f (r(#), ?(#) !) is
Borel, as needed.

This completes the construction of a unitary representation from a
positive definite function. From now on, subscripts will be used on inner
products and norms associated with such bundles only when necessary to
make clear which space is involved. Our next task is to find a (cyclic) section
!p such that p(#)=(?(#) !p(s(#)) | !p(r(#))) for *Q-almost every # # G.

The argument can be outlined as follows. Given a + # Q we let H(+)
denote the Hilbert space of square integrable sections of H, which is some-
times written L2(+, H). There is no loss of generality in assuming that +
is a probability measure, since changing to an equivalent measure produces
an equivalent representation. The representation ? of G can be integrated
to give a representation of Cc(G) on H(+), denoted by ?+ , using the for-
mulation of Hahn, rather than that of Renault. The definition is given
below. If u1 , u2 , . . . is a symmetric approximate unit for Cc(G), the sequence
of sections _(u1), _(u2), . . . has a subsequence that converges weakly to a
section !+ such that for f # Cc(G) we have ?+( f ) !+=_( f ), and the matrix
entry made from ? and !+ agrees with p a.e. relative to *+. To get a section
!p not depending on +, we observe that if we had such a !p , then for
f # Cc(G) we would get � fp d*x=(_( f ) | !p)x . Thus we consider the set
D( p) of those x # X for which � fp d*x, as a linear function of f in Cc(G),
``extends'' to a bounded linear functional on H(x). We need to know that
D( p) is conull for every + # Q, and this follows from the existence of !+ . We
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let !p(x) be the vector representing that linear functional, and verify that
!p is the section we wanted.

Before giving details, we introduce the space L1, 2(*, +), consisting of
those Borel functions f for which

& f &2
1, 2=| \| | f (#)| d*x(#)+

2

d+(x)<�.

Now, begin by taking H(+) as defined above, and observe that for
f # L1, 2(*, +), the section _( f ) is in H(+), and &_( f )&�&p&1�2

� & f &1, 2 , so
that fn � f in L1, 2(*, +) implies _( fn) � _( f ) in H(+). To make the proof
work, we must integrate the representation ? to get ?+ having the property
that for f, g # Cc(G), ?+( f )(_(g))=_( f V g). This can be done if we use the
method of [14], which applies to I(G, *), which is a subspace of L1, 2(*, +)
because + is a probability measure.

For f # I(G, *) we define ?+( f ) by saying that for sections !, ' in H(+)
we have

(?+( f ) ! | ')=| f (#)(?(#) !(s(#)) | '(r(#))) d*+(#).

The integral defines a bounded sesquilinear form, so the formula defines a
bounded operator ?+( f ). It is proved in [14] that ?+ is a bounded represen-
tation of I(G, *). If f # I(G, *) and ! # H(+), then ?+( f ) ! is represented by
a section whose value at almost every x is � f (#) ?(#) !(s(#)) d*x(#), where
the integral is defined weakly. If g # I(G, *), we have

(?+( f ) _(g) | ')=| f (#)(?(#)(_(g)(s(#))) | '(r(#))) d*+(#)

=|| f (#)(?(#)(_(g)(s(#))) | '(x)) d*x(#) d+(x)

=| (_( f V g)(r(#)) | '(r(#)) d*+(#),

because ?(#)(_(g)(s(#))) is represented by a function on r(#) G whose value
at a point #1 is g(#&1#1).

Lemma 3.4. Let G be a locally compact groupoid with a Haar system *.
Suppose that + # Q is a probability measure. If p is a positive definite function
on G and (H, ?) is constructed from p as in the proof of Lemma 3.3, then
there is a section !+ # H(+) such that
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(a) |!+(x)| 2
x�&p&� for x # X

(b) ?+( f ) !+=_( f ) for f # Cc(G)

(c) p(#)=(?(#) !+(s(#)) | !+(r(#))) a.e. d*+(#).

Proof. Let u1 , u2 , . . . be a symmetric approximate unit for G. Then
|_(ui)(x)|�&p&1�2

� for each x and i, so &_(ui)&�&p&1�2
� for each i. Thus

_(u1), _(u2), . . . has a subsequence converging weakly to a vector !+ # H(+).
We may suppose that subsequence is _(u1), _(u2), ... . If, for every Borel set
E in X, P(E) is the projection of H(+) onto the subspace determined by
sections that vanish off E, then P(E) _(un) converges weakly to P(E) !+ ,
which has norm at most (&p&� +(E))1�2. It follows that |!+(x)| 2

x�&p&� for
a.e. x, and we can change !+ to make it true for all x. For f # Cc(G),
f V ui � f uniformly and all these functions vanish off a fixed compact set.
Thus f V ui � f in L1, 2, and _( f V ui) � _( f ) in H(+). Hence ?+( f ) _(ui)
converges to _( f ). We also know that ?+( f ) is a bounded operator, so
?+( f ) _(ui) converges weakly to ?+( f ) !+ . Hence ?+( f ) !+=_( f ), as
elements of H(+).

It follows from this that if f, g # Cc(G), then (_( f ) | _(g))=(?+( f ) !+ |
?+(g) !+) and this can be written as

||| (?(#1) !+(s(#1)) | ?(#2) !+(s(#2))) f (#1) g� (#2) d*x(#1) d*x(#2) d+(x)

which is equal to

||| (?(#&1
2 #1) !+(s(#1)) | !+(s(#2))) f (#1) g� (#2) d*x(#1) d*x(#2) d+(x).

If h # Cc(X ) we can replace f in this calculation by hf =(h b r) f. From this
it follows that if f, g # Cc(G) then for +-almost every x we have

(_( f ) | _(g))x

=|| (?(#&1
2 #1) !+(s(#1)) | !+(s(#2))) f (#1) g� (#2) d*x(#1) d*x(#2).

By the definition of ( | )x , this shows that for +-almost every x,

p(#&1
2 #1)=(?(#&1

2 #1) !+(s(#1)) | !+(s(#2))) (V)

is true for *x_*x-almost all pairs (#1 , #2). For each such x, for *x-almost
every #2 , the formula (V) is true for *x-almost every #1 , i.e., p(#)=
(?(#) !+(s(#)) | !+(r(#))) for *s(#2)-almost all #. Indeed, the set [s(#2) : (V)
holds for *x-almost every #1] is conull in [x].

339FOURIER�STIELTJES ALGEBRAS



File: 580J 308327 . By:DS . Date:13:08:01 . Time:03:46 LOP8M. V8.0. Page 01:01
Codes: 3036 Signs: 1931 . Length: 45 pic 0 pts, 190 mm

Theorem 3.5. Let G be a locally compact groupoid and let * be a Haar
system on G. If p is a positive definite function on G and (H, ?) is the
associated unitary G-bundle over X, then there is a bounded section !p of H

such that if + # Q, then

(a) p(#)=(?(#) !p(s(#)) | !p(r(#))) a.e. d*+(#)

(b) if f # Cc(G), then ?+( f ) !p=_( f ) in H(+).

If p is continuous, then !p can be chosen to be continuous and p(#)=
(?(#) !p(s(#)) | !p(r(#))) for all #.

Proof. Define D=D( p)=[x # X : f [ � fp d*x=*x( fp) extends from
Cc(G) to give a bounded linear functional on H(x) of norm at most
&p&1�2

� ]. For each f # Cc(G), *( fp) and x [ ( f | f )x are Borel functions, and
boundedness can be tested on a countable dense set, so D is a Borel set.
For x # D, there is a unique vector !p(x) # H(x) such that (_( f )(x) | !p(x))x=
*x( fp) for f # Cc(G), and if we let !p(x)=0 for x � D, !p is a Borel section
of H, bounded by &p&1�2

� . We need to show that D is Q-conull, i.e., conull
for each + # Q.

Let + # Q. Then there is a !+ # H(+) satisfying (a), (b), (c) of Lemma 3.4
and thus for each f # Cc(G) we have

(_( f )(x) | !+(x))x=((?+( f ) !+(x) | !+(x))x=*x( fp)

for +-a.e. x. Since bounded linear functionals are determined by their values
on a countable dense set, and since boundedness of a linear functional can
be tested on a countable dense set, there is a +-conull set D+ such that for
x # D+ and f # Cc(G),

(_( f )(x) | !+(x))x=*x( fp).

Thus D+ �D, from which it follows that D is +-conull and !p(x)=!+(x)
+-a.e. This fact and Lemma 3.3 combine to establish the truth of statements
(a) and (b) in the theorem. By the definitions of D and !p , it follows that
!p is bounded by &p&1�2

� .

Remark. This shows that we can replace p(#) by (?(#) !p(s(#)) | !p(r(#)),
i.e., assume p has that form, as for groups.

To complete the proof, we show first that if p is continuous, then D=X.
Again take a + # Q and the section !+ . We have *x( fp)=(_( f )(x) | !+(x))x

for +-a.e. x, and for such x's,

|*x( fp)|�|_( f )(x)|x &!+(x)&

�|_( f )(x)|x &p&1�2
� .
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Since p is continuous, both *( fp) and x [ (_( f ), _( f ))x are continuous, so
this estimate holds on the support of +. The supports of the +'s in Q fill X,
so

|*x( fp)|�|_( f )(x)| &p&1�2
�

for all f in Cc(G) and all x. Thus D=X. Now p(#)=(?(#) !p(s(#)) | !p(r(#)))
a.e. d*+(#) for every +, so it will end the proof if we can show that the
second function is continuous. By a partition of unity argument, this will
follow if we can show that (?(#) !(s(#)) | !(r(#))) is a continuous function
of # for every continuous section ! of compact support. In fact we can
reduce to considering !=_( f ) for f # Cc(G), by using partitions of unity
and uniform limits. Then we have

(?(#) !(s(#)) | !(r(#)))=|| f (#&1#1) f� (#2) p(#&1
2 #1) d*r (#)(#1) d*r (#)(#2).

Continuity of this function of # can be deduced by applying the following
easy lemma and a variant of it using the second coordinate projection,
because the integrands can be extended to functions satisfying the
hypotheses of the lemma.

Lemma 3.6. Suppose G is a locally compact groupoid with a Haar
system * and let F be a continuous complex valued function on G_G. Let
p1 : G_G � G be the first coordinate projection. Suppose that for every com-
pact set C�G the set p&1

1 (C) & supp(F ) is compact. Then, � F(#, #2) d*r(#)(#2)
is a continuous function of #.

We have an existence theorem, but we should show that the results are
essentially the same for any two equivalent elements of P(G).

Theorem 3.7. Suppose that p, q # P(G) and that p=q *Q-a.e. Then the
associated representations (Hp , ?p) and (Hq , ?q) are the same, and the
sections !p and !q agree Q-a.e.

Proof. Let z # X and consider the inner products on L1(*z) defined
using p and q. Denote them by ( | )p and ( | )q respectively. To prove they
are the same, it will suffice to show that p(#&1

2 #1)=q(#&1
2 #1) for *z_*z-

almost every pair (#1 , #2), because the inner products are defined by double
integrals using these functions and measures.

Let +z
1 be a quasiinvariant probability measure equivalent to the measure

+z that was associated with the orbit [z] near the end of Section 2. Let E
be the set of x # X for which p=q a.e. relative to *x. Then +z(E)=1, so
[# : s(#) # E]=GE is *z-conull. If # # zGE, [#1 # zG : p(#&1#1)=q(#&1#1)] is
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conull relative to *z by translation invariance of the Haar system. By the
Fubini Theorem, we get the desired agreement a.e.

This shows that the Hilbert bundles Hp and Hq are identical, and since
the formula for the representation is just left translation in each case, the
representations are the same.

To show that the sections !p and !q agree Q-a.e., we resort to the defini-
tions, namely, !p(x) and !q(x) are determined by the fact that for f # Cc(G)

(_( f ) | !p(x))=*x( fp)

and

(_( f ) | !q(x))=*x( fq).

Let F be the set of x # X for which !p(x)=!q(x). Since the two sections are
Borel, F is a Borel set. We need to show that if + # Q, then +(X"F )=0. We
know that for each f # Cc(G) the two functions *( fp) and *( fq) agree
almost everywhere relative to +. Let C be a countable dense set in Cc(G),
and let N be a +-null set such that x � N and f # C imply *x( fp)=*x( fq).
Since p and q are bounded, this equality is preserved under limits in Cc(G),
so it holds for x � N and all f # Cc(G). Thus F contains the complement of
N, as desired.

Theorem 3.8. Sums and products of positive definite functions are
positive definite.

Proof. This is immediate from the existence of direct sums and tensor
products of representations, because of Theorem 3.5.

Now let us consider the enlarging the space from which we construct the
fibers of the Hilbert bundle Hp using the positive definite function p. In
later sections it will be convenient to replace the algebra Cc(G) by the
larger algebra Cc(G, X� ), an algebra of kernels introduced in Section 1, and
we will need to know that using the latter in our construction does not
change the fibers in that bundle.

Definition 3.9. Let G be a locally compact groupoid and let * be a left
Haar system on G. Then a bounded Borel function p on G is called strictly
positive definite if for each x # X and each & in Cc(G, X� ) we have

|| p(#&1
2 #1) d&x(#1) d&� x(#2)�0. (P$)

The set of all such p's will be denoted by P$(G). Two functions p, q # P$(G)
will be called equivalent iff they agree *Q-almost everywhere on G and their
restrictions to X agree Q-almost everywhere.
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Remark. Equivalence of two elements of P$(G) just guarantees that
they lead to the same semi-inner products on Cc(G, X� ). Part of the proof
of this is given by Theorem 3.7, and the other follows from the fact that the
rest of inner product involves integration over X at least once.

Of course we have P$(G)�P(G), and would like to know that the sets
are equal. Strictly speaking, this is not true because a function p can satisfy
condition (P) and be negative everywhere on X unless there is a + # Q such
that *+(X )>0. Actions by non-discrete groups give rise to groupoids for
which Q contains no such +. However, we have proved that every equiv-
alence class in P(G) contains a diagonal matrix entry. Thus a kind of
reverse of the containment would follow from the analog of Lemma 3.2,
namely Lemma 3.11 below showing that diagonal matrix entries are in
P$(G). This meaning of the reverse containment would be that every class
in P(G) contains an element of P$(G), or that diagonal matrix entries are
in P$(G).

However, there is another natural question that also should be answered.
If two diagonal matrix entries are equivalent in P(G), are they equivalent
in P$(G)? The affirmative answer is given in Lemma 3.13.

Lemma 3.10. Let ? be a unitary representation of G on the Hilbert bundle K,
and let ! be a bounded Borel section of K. Define p(#)=(?(#) ! b s(#) | ! b r(#))
for # # G. Then p # P$(G).

Proof. As in the proof of Lemma 3.2, for f # Cc(G), there is a section,
`, of the bundle such that for each x # X and every ' # K (x) we have

| f (#)(?(#) ! b s(#) | ') d*x(#)=(`(x) | ').

If g # C(X� ), x # X, and ' # K (x), then

| g(#)(?(#) ! b s(#) | ') d=x(#)= g(x)(!(x) | ').

If &= f*+ g=, these show that the integral involved in the condition (P$) is
equal to (`(x)+ g(x) !(x) | `(x)+ g(x) !(x)), which is certainly non-negative.

Corollary 3.11. Every equivalence class in P(G) contains an element
of P$(G).

Lemma 3.12. Let (H, ?) be a representation of G, let u1 , u2 , . . . be a
symmetric approximate unit [20], as described in Theorem 1.1, and let ! be
a bounded Borel section of H. Suppose that + # Q, and let ?+ be the
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integrated form of ? as defined just before the statement of Lemma 3.3. Then
?+(un) ! � ! as n � �.

Proof. By construction of the functions un , &un &I�1 for each n, so
every ?+(un) has norm at most 1. Hence it suffices to find a dense set of vec-
tors satisfying the conclusion. Each vector of the form ?+(g) ' satisfies the
conclusion, and hence vectors in the linear span of the set of such vectors
do also. That linear span is dense.

Lemma 3.13. Suppose that ? and ?1 are representations of G on bundles
K and K1 , and that ! and !1 are bounded Borel sections of K and K1 . If
(?(#) ! b s(#) | ! b r(#))=(?1(#) !1 b s(#) | !1 b r(#)) for almost every # relative
to *Q, then (!(x) | !(x))=(!1(x) | !1(x)) for almost every x # X relative to Q.

Proof. Since ! and !1 are Borel sections the set E of x # X for which
(!(x) | !(x))=(!1(x) | !1(x)) is a Borel set. We need to prove that for + # Q,
+(E)=1. The hypothesis implies that for f # Mc(G) we have (?+( f ) ! | !)=
(?1, +( f ) !1 | !1), these being inner products associated with the integrated
forms using Hahn's method (cf. Lemma 3.4, and the paragraph before it).
Let . and .1 be the representations of C(X� ) by multiplication on the sec-
tions of K and K1 . Then it follows from the discussion following the state-
ment of Theorem 1.2 that for h # C(X� ) and f # Cc(G)

(.(h) ?+( f ) ! | !)=(.1(h) ?1, +( f ) !1 | !1).

Now for the f # Cc(G) take the terms of a symmetric approximate unit, to
see that for all h # C(X� ),

(.(h) ! | !)=(.1(h) !1 | !1).

This means that for all h # C(X� ),

| h(x)(!(x) | !(x)) d+(x)=| h(x)(!1(x) | !1(x)) d+(x).

Thus E is indeed +-conull.

After this, we will always take elements of P(G) or P$(G) to be diagonal
matrix entries, and understand that they are determined a.e. on X as well
as on G.

4. COMPLETE POSITIVITY

In this section we introduce second and third ways to view elements of
P(G), namely in terms of completely positive mappings. Theorem 4.1 is a
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first step toward getting Banach algebras of completely bounded maps on
M*(G) and on C*(G). In Section 1 we obtained C*(G) by completing
Cc(G), and defined | to be the direct sum of the (cyclic) representations of
C*(G) that arise from normalized positive linear functionals on C*(G). Let
H| be the Hilbert space of |. By a theorem of Renault, stated in Section 1,
each representation of Cc(G) can be gotten by integrating a unitary
representation of G. Thus | | Cc(G) is also a direct sum of certain represen-
tations ?+. The process of integration allows us to regard each ?+, and
hence |, as a representation of either Mc(G) or Cc(G). We call | the
universal representation of G. We also defined M*(G) to be the operator
norm closure of |(Mc(G)), and notice that C*(G) is isomorphic to the
norm closure of |(Cc(G)). If G is a group, of course M*(G)=C*(G), but
these two algebras can be different for groupoids.

Theorem 4.1. Let p be a positive definite function on G. Let | be the
universal representation of G, and define Tp(|( f ))=|( pf ) for f # Mc(G). Then
Tp extends to a completely positive map of M*(G) to M*(G) with completely
bounded norm equal to the Q-essential supremum of [ p(x) : x # X].

Proof. (We modify a proof from [37], for groupoids.) We remind the
reader that this Q-essential supremum is the infimum of [B: if + # Q, then
p�B +-a.e.]. Also, in working with | we will use its construction as a
direct sum.

We will need to find a formula for Tp , in order to prove that the map-
ping is completely positive. For this we begin with two vectors !, ' in one
summand of H| given by an integrated representation ?+. This means that
we begin with a measure + # Q and a Hilbert bundle K over X. The sub-
space of H| in question is L2(+ ; K), and the restriction of | to this sub-
space is the integrated form of a representation, ?, of G. We are using
Renault's form here, as described in Section 1: take &=� *x d+(x) and
&0=2&1�2

+ &. Then for f # Mc(G),

(Tp|( f ) ! | ')=(|( pf ) ! | ')

=| p(#) f (#)(?(#) !(s(#)) | '(r(#))) d&0(#)

=(?+( pf ) ! | ').

By Theorem 3.4 there are a Hilbert bundle Kp on X, a (unitary) Borel
representation ?p of G on Kp and a bounded Borel section !p of Kp such
that p(#)=(?p(#) !p b s(#) | !p b r(#)) for *+-a.e. # # G. By Theorem 3.7, ?p is
unique, and the section !p is determined Q-a.e. Thus we can continue the
calculation from above as follows:
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=| f (#)(?p(#) !p b s(#) | !p b r(#))(?(#) ! b s(#) | ' b r(#)) d&0(#)

=| f (#)((?p �?(#))(!p �!) b s(#) | (!p �') b r(#)) d&0(#)

=((?p �?)( f )(!p �!) | !p �')

=((?p �|)( f )(!p �!) | !p �').

Here !p �! and !p �' are in L2(+ ; Kp �K). In summary we have

(Tp|( f ) ! | ')=((?p �|)( f ) Vp, +, K ! | Vp, +, K '),

where Vp, +, K : L2(+ ; K) � L2(+ ; Kp �K) is defined by Vp, +, K !=!p �!.
This is a bounded operator because the section !p is bounded and the usual
techniques for multiplication operators apply. If we let Vp be the direct
sum of the operators Vp, +, K over all pairs (+, K), we have Tp|( f )=
Vp*(?p �|)( f ) Vp . A theorem of Stinespring, [21, 32], shows that Tp is
completely positive with completely bounded norm equal to &Vp&2. But Vp

is given by a tensor multiplication which behaves like a scalar multiplica-
tion operator, so

&Vp&2=ess sup[&!p(x)&2 : x # X]=ess sup[ p(x) : x # X].

The proof of Theorem 4.1 also proves this:

Theorem 4.2. Let p be a positive definite function on G, let + # Q and let
? be a representation of G. Define T $p(?+( f ))=?+( pf ) for f # Mc(G). Then
T $p extends to a completely positive map of the norm closure of ?+(Mc(G))
to itself, this being the quotient of the Tp defined in Theorem 4.1. The com-
pletely bounded norm of Tp as an operator on cl(?+(Mc(G))) is the +-essen-
tial supremum of [ p(x) : x # X].

Although the norm on the Fourier�Stieltjes algebra of a groupoid comes
from its representation by completely bounded maps rather than as the
Banach space dual of the C*-algebra as it does for groups, the latter fact
has a remnant. Here we prove just one lemma regarding that remnant.

Lemma 4.3. Let p be a positive definite function on G, and let + be a
probability measure in Q. Define �p, +(|( f ))=� f (#) p(#) d&(#) for f # Cc(G),
where &=� *x d+(x) (Section 1). Then �p, + extends to a positive linear func-
tional on C*(G) whose norm is at most the Q-essential supremum of p.

Proof. From the definition of ?+ in Section 3, it follows that the integral
in question is equal to (?+( f ) ! | !), where ? is the unitary representation
of G derived from p and ! is the associated section of the Hilbert bundle.
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Thus this linear functional is clearly positive, and its norm is at most &!&2,
the square of the norm of ! in H(+), but this is at most &!&2

� which is the
Q-essential supremum of p.

Next we present a third way to think about P(G). It depends on using
the decomposition described in Section 2 of the Haar system of G over the
equivalence relation R associated to G. This decomposition is relative to
the mapping %=(r, s) of G onto R. Since G is _-compact it follows that R
is _-compact in the quotient topology. The decomposition of the Haar
system involves two families of measures. First of all there is a measure ;x

y

concentrated on xGy for every pair (x, y) in R, such that each ; y
y is a Haar

measure on yGy and ;x
y is a translate of ; y

y . Then there is a Borel Haar
system : for R so that for every x # X we have

*x=| ;z
y d:x(z, y).

There is a Borel homomorphism $ from G to the positive reals such that
for every + # Q the modular homomorphisms 2+ for G and 2� + for R satisfy
2+=$2� + b %. For each x # X let +x be the measure on X so that :x==x_+x.
Then xty implies +x=+ y. Thus :+x

=+x_+x, so 2� +x=1.
Let M%c(R) be the space of bounded Borel functions on R supported on

images under % of compact subsets of G. Then M%c(R) is a V -algebra under
convolution, using the Borel Haar system : (see Section 2). We also extend
this algebra to include M(X ), as done in Section 1 for Mc(G) and M(X ),
obtaining M%c(R, X ) in this case.

If + is a quasi-invariant measure on X, i.e., + # Q, earlier we introduced
the notation *+ for � *x d+(x) and we define :+ similarly. Now we want to
shorten the notation, so we write &=*+, &~ =:+, 2=2+ , and 2� =2� + .

To integrate a unitary representation of G relative to + to make a
V-representation of Mc(G, X), we use the measure &0=2&1�2& and to
integrate a representation of R we use the measure &~ 0=2� &1�2&~ . For
example, in the first case we have

(?+( f ) ! | ')=| f (#)(?(#) ! b r(#) | ' b s(#)) d&0(#)

whenever f # Mc(G) and !, ' are L2 sections of the bundle on which ?
represents G. This is the formulation of [26]. From what we have above,
it follows that &0=� $&1�2;x

y d&~ 0(x, y), so there is a convenient relationship
between the two measures.

For each unitary representation ? of R, and each + # Q(R), we can ask
whether the representation ?+ is cyclic, and we can define |~ to be a direct
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sum formed using for summands one representative from each equivalence
class of a cyclic ?+. Then we can write M*(R) for the norm closure of
|~ (M%c(R)). These ?+'s extend to M%c(R, X ), so |~ does also, and we let
M*(R, X ) be the norm closure of |~ (M%c(R, X )). As stated before, the
algebra M*(R, X ) is present only for its utility in proving results about G,
and the slightly strange definition is just suited to that purpose.

If p # P(G), we define a pairing of p with an element f # Mc(G) to give
a function on R by

( f, p)(x, y)=| fp$&1�2 d;x
y .

Since p and $&1�2 are Borel functions and bounded on compact sets, we
always have ( f, p) # M%c(R). We must show that this mapping is deter-
mined by the equivalence class of p. If p= p$ a.e. relative to *Q, then for
:+-almost every pair (x, y) the functions p and p$ agree a.e. with respect to
;x

y , so for every f # Mc(G) we have ( f, p) =( f, p$) a.e. with respect to :+.
Furthermore, we represent p and p$ as matrix entries, and these have
restrictions to X that agree a.e. with respect to Q. We will show that the
mapping of f to ( f, p) gives rise to a completely positive map Sp from
M*(G) to M*(R).

There is another property of Sp we use, and its statement requires a little
background. Recall from Section 1 that Cc(G) and Mc(G) are bimodules
over C(X� ), where h # C(X� ) acts via multiplication by h b r and h b s. Recall
also that every representation ? of the V -algebra Cc(G) has an associated
representation . of Cc(X) such that ?(hf )=.(h) ?( f ) and ?( f h)=?( f ) .(h)
for all f and h, i.e., so that ? is a bimodule map. Hence every representation
of Mc(G) also has such an associated representation of Cc(X). We can
extend . to M(X), getting a representation that preserves monotone limits
and hence maintaining the bimodule property.

We notice that M(X) also has natural actions defined the same way on
M%c(R) and by pointwise multiplication on each L2(+ ; K), rendering |~ a
bimodule map from M%c(R) to M*(R). The main properties of Sp are
established in the next theorem.

Theorem 4.5. If p # P(G), there is a completely positive operator
Sp : M*(G) � M*(R) that extends the operator defined by Sp(|( f ))=
|~ (( f, p) ) for f # Mc(G). This mapping is an M(X )-bimodule map. If
we define Sp(|(g=))=|~ ( pg=) for g # M(X ) and use linearity, we get an
extension of the original Sp to a completely positive M(X )-bimodule map of
M*(G, X� ) to M*(R, X� ) that takes |(=) to an element of |~ (M(X )). The
completely bounded norm of Sp is equal to &p&� .
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Proof. We need another formula for Sp , first on Mc(G, X� ). To find one,
we first work with a subrepresentation of |~ acting on a space of the form
L2(+ ; K).

The positive definite function p determines a unitary representation ?p of
G on a Hilbert bundle Kp over X, as well as a bounded section !p of Kp

for which we have p(#)=(?p(#) !p b s(#) | !p b r(#)) for almost all # relative
to *Q. Then we may replace p by the matrix entry. Indeed, we must make
that replacement in order to make sense of the values of p on X. Suppose
that ! and ' are in L2(+, K), and compute

(Sp(|( f )) ! | ')

=(|~ (( f, p) ) ! | ')

=| ( f, p)(x, y)(|~ (x, y) !( y) | '(x)) d&~ 0(x, y)

=|| f (#) p(#) $(#)&1�2 (|~ b %(#) !( y) | '(x)) d;x
y(#) d&~ 0(x, y)

=| f (#)(?p(#) !p b s(#) | !p b r(#))(|~ b %(#) ! b s(#) | ' b r(#)) d&0(#)

=(((?p �|~ b %)( f )) !p �! | !p �').

We also have

(|~ ( pg=) ! | ')=( pg! | ')

=| (!p(x) | !p(x)) g(x)(!(x) | '(x)) d+(x)

=((?p �|~ b %)(g=) !p �! | !p �').

Now define Vp, +, K : L2(+ ; K) � L2(+ ; Kp �K) by Vp, +, K !=!p �!
and let V be the direct sum of all the operators Vp, +, K . The calculations
just done show that for all f # Mc(G) and g # M(X ) we have

Sp(|( f*+ g=))=V*((?p �|~ b %)( f*+ g=)) V.

Since ?p �|~ b % is a V -representation, Stinespring's Theorem [21, 32]
shows that Sp is completely positive. This representation also gives a for-
mula for the extension of Sp to M*(G, X) and shows that it is an extension
by continuity. It is not difficult to show that the norm of Sp is the essential
supremum norm of !p , and that is the same as &p&� .
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From the definition of V we see that it intertwines the natural actions of
M(X ) on L2(+ ; K) and L2(+ ; Kp �K). The restrictions of these natural
actions to Cc(X ) are the representations of Cc(X ) associated with the given
representations of Cc(G) in the proof of Renault's Theorem. This makes it
clear that Sp is also a bimodule map.

Now we want to prepare the way for the proof of the converse of the last
theorem. We need less hypothesis than we had conclusion, namely we only
need to deal with the transitive quasiinvariant measures on X.

We use the measures +x on X such that :x==x_+x, as described in
Section 2. For each x we have :+x

=+x_+x, which is symmetric, so 2� +x is
trivial. That means that 2+x=$. Since these modular functions are all the
same, we will denote them by the single letter 2.

Let \x be the representation of I(R, :) gotten by integrating the trivial
representation of R on the one-dimensional bundle, relative to the measure
+x. Since M%c(R)�I(R, :), the representation \x can be restricted to
M%c(R), and we denote the restriction the same way. Define \x on M(X )
to be the representation by multiplication on L2(+x). We combine these
two definitions to get a representation \x of M%c(R, X� ) on Hx . Let |~ t

denote the direct sum of all these ``transitive'' representations \x , so the
representation space of |~ t is HX , the direct sum of all the Hilbert spaces
Hx . Write Mt*(R, X� ) for the norm closure of the image of M%c(R, X� ) under
|~ t . Then Mt*(R, X) is a quotient of M*(R, X ) as a C(X� )-bimodule, as well
as a compression of M*(R, X). We also write Mt*(R) for the closure of the
image of M%c(R).

It is not true that every completely bounded map is a linear combination
of completely positive maps, unless the range algebra is injective [21;
Notes to Chapter 7]. In our setting, the domain and range are closely
related and very special. We can circumvent the problems caused by lack
of injectivity, but to do so and even to deal with completely positive maps
themselves, we need to think of Mt*(R, X ) as acting on a space of Borel
sections. We now begin to arrange that.

Observe that the Hilbert spaces Hx are the fibers in a Hilbert bundle
over X, i.e., the graph of H, 1H , has a natural Borel structure with all the
necessary properties. In fact, for each x the space Hx is easily identifiable
with L2(:x), and we simply transport the usual Borel structure for the
latter bundle to H.

If g # M%c(R), define a section of 1 H by letting !g(x) be the class of
g(x, } ) in L2(+x). Countably many of these sections can be chosen so that
their values at a point x always form a dense set in Hx . Thus we can also
choose a countably generated subalgebra of M(X ) so that the module of
sections over it generated by the countably many !g 's determines the Borel
structure on 1H . Note also that xty implies that +x=+ y so Hx=Hy .
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Theorem 4.6. Let � be a completely positive C(X� )-bimodule map from
C*(G, X� ) to M*(R, X ), and suppose that �(|(=)) | HX # |~ t(M(X )). Then
there is a p # P(G) such that �=Sp , and &p&��&�&c.b. .

Proof. There is no loss of generality in taking � to have completely
bounded norm at most 1. Next we restrict � b | to Cc(G, X� ), getting a com-
pletely positive map, �$, of Cc(G, X� ) into M*(R, X ). For each x # X,
f # Cc(G), and g # C(X� ), define �$x( f*+ g=)=�$( f*+ g=) | Hx . For each x,
�$x is a completely positive bimodule map into L(Hx) of completely
bounded norm at most 1, and xty implies �$x=�$y .

Outline of the Proof

The proof consists mainly of accumulating sufficient information about
the mappings �$x and objects constructed from them to assemble the
desired positive definite function p. Using the Stinespring Theorem for
completely positive maps and analyzing the equipment it provides enables
us to show that each �$x is of the form Spx . Then it is necessary to merge
the separate px 's into one p, using the fact that xtx$ implies �$x=�$x$ from
which we prove that px= px$ a.e. Several more improvements in the
behavior of the functions px finally allow us to produce a matrix entry that
serves as the desired function p. We hope that naming the major steps in
the proof will help the reader maintain some sense of the organization of
the proof.

Step 1. The Borel Behavior of x [ �$x

If f, h # M%c(R) we want to see that

x [ \x( f )(!h(x))

is a Borel section of 1H . To do this it is sufficient to show that if
f, h, k # M%c(R) then the function x [ (\x( f ) !h(x) | !k(x)) is Borel. Such
an inner product is given by an integral, according to the definition of \x ,
namely

|| f ( y, z) h(x, z) k� (x, y) d+x(z) d+x( y).

This integral defines a Borel function of x since the measures +x_+x

depend on x in a Borel manner. By the definition of Mt*(R), every \x is
defined on Mt*(R) and for a # M t*(R) the function x [ \x(a) is a uniform
limit of functions of the form x [ \x( f ) for f # M%c(R). Hence for
a # Mt*(R) and h # M%c(R) the section x [ \x(a)(!h(x)) is Borel.

If we define �� to be the direct sum of all the �$x 's, then �� is also the com-
pression of �$ to HX . Thus �� maps Cc(G, X� ) into M t*(R, X ) and
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\x b �� =�$x . From this it follows that if f # Cc(G) and h # M%c(R) then the
section x [ �$x( f )(!h(x)) of 1 H is Borel. If g # C(X� ) there is a function
g1 # M(X ) such that �� (g=)=|~ t(g1) because �� (=) # |~ t(M(X )) and �� is a
C(X� )-bimodule map. Hence for a # Cc(G, X� ) and h # M%c(R) the section
x [ �$x(a)(!h(x)) is Borel.

The fact that �� maps into Mt*(R, X ), and the Borel property derived
above are essential for completing the proof.

Step 2. The Stinespring Construction

For each x we represent �$x by Stinespring's Theorem: We get a
representation ?x of Cc(G, X� ) on a Hilbert space Kx and an operator Vx

from Hx to Kx , such that for a # Cc(G, X� ) we have

�$x(a)=V*x ?x(a) Vx .

We will use the details of the construction, so we repeat it here. For
Stinespring's proof, it suffices to have the domain of the completely positive
map to be a V -algebra with identity, so Cc(G, X� ) can be used. The space
Kx is taken to be the Hilbert space constructed from the algebraic tensor
product Cc(G, X� )�Hx using the semi-inner product whose value on two
elementary tensors is given by (a�! | b�')=(�$x(b*a) ! | '). Let qx be
the quotient map from Cc(G, X� )�Hx to its quotient modulo vectors of
norm 0. The image of qx is identified with a dense subspace of Kx . (Since
Cc(G, X� ) and Hx are separable, so is Kx .) The representation ?x is deter-
mined by having ?x(a)(q(b�!))=qx(ab�!) for a, b # Cc(G, X� ) and
! # Hx . The operator Vx is determined by setting Vx(!)=qx(1�!) for
! # Hx . A calculation of inner products shows that &Vx&2=&�$x(1)&.

Since �x , ?x , Kx , and Vx are Borel in x and constant on equivalence
classes, we get a Hilbert bundle over X that is constant on equivalence
classes. The pair (?x , Vx) is minimal in the sense that ?x(Cc(G, X� )) Vx(Hx)
is dense in Kx .

Step 3. Getting px from the Stinespring Representation

Now we study this structure for a fixed x # X. By Theorem 1.2 we know
that ?x can be obtained by integrating a representation, ?$x , of G on a
bundle Kx relative to a quasiinvariant measure +x , i.e., Kx=L2(+x ; Kx).
Let .x be the representation of C(X� ) on Kx associated with ?x as a
representation of Cc(G, X� ). In terms of the representation of Kx , .x is the
natural representation by multiplication on sections of Kx [27]. We also
have .x=?x | C(X� ), where C(X� ) is regarded as a subalgebra of Cc(G, X� ).
We denote the natural representation of C(X� ) on Hx by %x ; again this is
a representation by multiplication.
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We need to show that +x can be taken to be +x. The first step is to show
that Vx intertwines %x and .x . Take h # C(X� ), b # Cc(G, X� ), and !, ' # Hx .
Then the definition of the inner product and the fact that �$x is a
C(X� )-bimodule map gives

(1�h! | b�')=(�$x(b*) h! | ')

=(�$x(b*h) ! | ')

=(h�! | b�').

Hence qx(h�!)=qx(1�h!). Using the bimodule property of �$x , the
definition of ?x , and the inner product on Kx , we compute that

(Vx(h!) | qx(b�'))=(qx(h�!) | qx(b�'))

=(?x(h=) qx(1�!) | qx(b�')).

Hence, Vx(h!)=.x(h)Vx(!).
From the theory of representations of Cc(X ) or of projection valued

measures based on X, there is a bounded section of Kx, which we denote
by `x , such that for ! # Hx , the pointwise product !`x is a section of Kx

representing the element Vx(!) in Kx . Such a section can be gotten as
follows: let g be any strictly positive Borel function on X that represents an
element of Hx , let `1 be a section that represents Vx(g), and set
`x=(1�g)`1. Then `x need not be a square integrable section, but will be if
+x is finite so that the function 1 is an element of Hx .

We can write Vx(!)=!`x , using the usual identification of functions with
their equivalence classes. Then for ! # Hx we have

| |!| 2 |`x | 2 d+x�| |!| 2 d+x, (V)

because &Vx&�1. It follows that +x is not singular relative to +x, so that
+x gives positive measure to [x]. It also follows that |`x | is zero a.e. off
[x], so that `1= g`x is in the subspace of Kx=L2(+x ; Kx) consisting of
functions that vanish off [x]. By the way we integrate representations of G
to get representations of Cc(G), we see that this latter subspace is invariant
for Cc(G) and hence for Cc(G, X� ). From the fact that g is cyclic in Hx , it
follows that g`x=Vx(g) is cyclic for Cc(G, X� ) in Kx , so the subspace under
discussion is in fact all of Kx . That implies that +x is in fact equivalent to
+x, so we may as well take +x to be equal to +x. That may require multi-
plying the original `x by some positive function, but now we assume that
to have been done. We write &x for *+x

, getting a measure concentrated on
G | [x].
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In this situation, the inequality (V) implies that |`x | is bounded by 1. We
define

px(#)=(?$x(#) `x(s(#)) | `x(r(#)))

getting a positive definite function on G | [x]. Now the sup-norm of `x is
the same as the operator norm of Vx , and that is the same as the square
root of the completely bounded norm of �$x , so the sup-norm of px is at
most the completely bounded norm of �$x .

Step 4. px Gives Rise to �$x

We know that xty implies �$x=�$y , so ?x=?y and Vx=Vy . Hence
?$x(#)=?$y(#) for &x-almost every #, and `x(z)=`y(z) for +x-almost every z,
so that px= py a.e. relative to &x, and their restrictions to X agree a.e.
relative to +x.

To see that �$x is the compression of Spx to Hx , we begin by setting
&x=*+x

and &~ x=:+x
, as above, so that 2� =1 and 2=$. Then we calculate

for f # Cc(G), and !, ' # Hx :

(�$x( f ) ! | ')=(?x( f ) Vx! | Vx')

=| f (#)(?x(#)(!`x)(s(#)) | ('`x)(r(#))) 2&1�2(#) d&x(#)

=|| f (#) px(#) $&1�2(#) d; y
z (#) !(z) '� ( y) d&~ x( y, z).

This shows that �$x( f )=Spx( f ) | Hx . Next we find a formula for �$x(=) by
computing

(�$x(=) ! | ')=(?x(=) Vx! | Vx')

=(!`x | '`x)

=| px( y) !( y) '� ( y) d+x( y)

from which it follows that �$x(=)=\x( px | X ). Since �$x is a C(X� )-bimodule
map, we see that �$x(g=)=\x(gpx) for g # C(X� ). This completes the proof
that �$x is the compression of Spx to Hx .
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Step 5. Applying Lemma 2.1 to the Functions px

Take functions h, k # M%c(R) from which we make sections !h and !k of
H. Let !=!h(x) and '=!k(x) in the calculations above to see that if
g # Cc(G), then

(�$x(g) !h(x) | !k(x))=| g(#) px(#) h(x, s(#)) k� (x, r(#)) $&1�2(#) d&x(#).

If = is the identity in C(X� ), we also get

(�$x(=) !h(x) | !k(x))=| px(#) h(x, y) k� (x, y) d+x( y).

Here it is important that the functions of x on the left hand sides of these
two formulas are Borel functions.

To apply Lemma 2.1 as it is formulated, we must have a Borel family of
finite measures. We begin by considering a compact set K contained in G.
The function y [ * y(K) is bounded on X, and for every x # X we have
+x(s(xK))<�. Hence, for x # X the measure given by the integral

|
s(x, K)

(/K* y) d+x( y)

is finite.
Notice that a pair (x, y) # X_X is in %(K) iff x # r(Ky) iff y # s(xK). If h

is the characteristic function of %(K), it follows that h(x, r(#))=1 iff
r(#) # s(xK), and h(x, s(#))=1 iff s(#) # s(xK). Thus the set L, defined to be
[(x, #) # X_G : # # K and h(x, s(#)) h(x, r(#))=1] is a Borel set in X_G,
and the same as [(x, #) # X_G : # # K, s(#) # s(xK) and r(#) # s(xK)]. From
the preceding paragraph, it follows that every x-section Lx of L has finite
measure for &x.

Choose compact sets K1 /K2 / } } } whose union is G, and for each n
define hn=/%(Kn) and then Ln=[(x, #) # X_G : # # Kn , s(#) # s(xKn) and
r(#) # s(xKn)]. Define D1=L1 and for n�2, let Dn=Ln"Ln&1. For each
n # N and x # X, let &x

n=(/(Dn)x) &x. This gives a Borel family of finite
measures on G. Notice that the sets Dn partition [(x, #) # X_G :
# # G | [x]].

Now define fx on G for x # X by fx(#)= px(#) $&1�2(#) for # # G | [x] and
0 for other #'s. If g # Cc(G) and x # X, then

| g(#) fx(#) d&x
n(#)=(�$x(g) !hn(x) | !hn(x)),
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which is a Borel function of x. Hence there is a Borel function Fn on X_G
such that for each x, Fn(x, } )= fx a.e. relative to &x

n . Set

F= :
n�1

/Dn Fn .

Then F is Borel and for each x # X, F(x, } )= fx a.e. relative to &x.
A similar analysis using +x shows that we can also choose F so that

F(x, y)= fx( y) for +x-almost every y.
Hence there is a Borel function P on X_G such that for every x we have

P(x, } )= px a.e. Also, xty implies that P(x, } )=P( y, } ) a.e. relative to
either &x or & y (these are the same measure) and also relative to either +x

or + y when restricted to X. Furthermore, |P(x, } )| is bounded by the
completely bounded norm of �$x , so |P| is bounded by 1.

Step 6. Improving the Behavior of P

Recall the probability measures +x
1=s(*x

1) on X obtained from the Borel
family of normalized Haar measures on G. We have +x

1 t+ y
1 if xty. Define

a new function P1 on X_G by

P1(x, #)=| P( y, #) d+x
1( y).

Make a function of three variables from P and use the Borel character of
P and the measures +x

1 to show that P1 is also Borel. We need to know that
P1 also essentially replicates every function px , and is even more invariant
than P under changing x to an equivalent point of X.

To begin with we limit ourselves to one orbit, and denote it by S. We
write +S for a choice of one of the measures +x0

1 for x0 # S. We know that
for x and y in S the functions P(x, } ) and P( y, } ) agree a.e. relative to *+S

,
so they agree a.e. relative to *z for +S-almost every z. Since *z and *z

1 have
the same null sets, P(x, } ) and P( y, } ) agree a.e. relative to *z iff the com-
plex measures P(x, } ) *z

1 and P( y, } ) *z
1 are the same. We have two Borel

mappings from S3 to the standard Borel space of complex Borel measures
on X� , so the set ES on which they agree is Borel, allowing us to use Fubini
arguments.

Hence, for every x # S, the set [( y, z) # S2 : P( y, } )=P(x, } ) a.e. d*z] is a
Borel set whose complement has measure 0 for +S_+S. Therefore, there is
a conull Borel set Zx of points z in S such that for +S-almost every y we
have P( y, } )=P(x, } ) a.e. relative to *z. Thus, for z # Zx it is true that for
*z-almost every # we have P( y, #)=P(x, #) for +S-almost every y. It follows
that if z # Z, then P1(x, #)=P(x, #) for *z-almost every #. Hence, for every
x # S we have P1(x, } )=P(x, } ) a.e. In particular, P1 also replicates every
px , since S is a general orbit.
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In the last paragraph, we enountered points # # G for which P( y, #) is
essentially constant in y because it is almost always equal to a particular
P(x, #). We need to know more about the set H=[# # G : y [ P( y, #) is
essentially constant]. If A is a countable algebra that generates the Borel
sets in C, it is not difficult to show that

H= ,
A # A

[# # G : +r (#)
1 _=#(P&1(A)) # [0, 1]].

Thus H is a Borel set. Hence the set C=[x # X : *x
1(H)=1] is also a Borel

set. From the preceding paragraph, it follows that C is conull in every
orbit. For z # C, the function P1( } , #) is constant for *z-almost every # # zG.
In particular, for z # C it is true that x, y # [z] implies that P1(x, } ) *z

1=
P( y, } ) *z

1 .
The last conclusion is the additional invariance needed, and now we change

notation and simply write P for P1 , since it does everything we need.

Step 7. Making a Borel Family of Representations from P
Again, take a particular orbit, S, in X. For every pair (x, y) # S2, we

have P(x, } )=P( y, } ) a.e. relative to *z for +S-almost every z. Take an
arbitrary z # S. Then for *z-almost every #2 it is true that P(x, } )=P( y, } )
a.e. relative to #&1

2 } *z=*s(#2). Hence P(x, #&1
2 #1)=P( y, #&1

2 #1) for *z_*z-
almost every pair (#1 , #2). (The mapping taking the pair to #&1

2 #1 carries
*z

1 _*z
1 to a measure equivalent to *+z

.)
Now return to studying general points of X. For f, g # Cc(G) and

(x, y) # R, define

( f | g)(x, y)=|| f (#1) g� (#2) P(x, #&1
2 #1) d* y(#1) d* y(#2).

The formula defines an inner product on Cc(G), and we write K (x, y) for
the resulting Hilbert space. For each f, g # Cc(G) the function (x, y) [
( f | g)(x, y) is a Borel function on R that is constant on sets of the form
[ y]_[ y], so K defines a Hilbert bundle on R that is constant on the
same sets. For f # Cc(G), let _( f ) denote the section of K (or 1K ) that it
determines.

For each x, the bundle K (x, } ) supports a unitary representation: here
we denote it by ?x rather than ?P(x, } ) (see Section 3). We know that xtx$
implies that ?x=?x$ , which means that for # # G | [x] we have ?x(#)=
?x$(#) (they are on the same space). We want to show that (x, #) [ ?x(#)
is Borel on X_$ G=[(x, #) : # # G | [x]]. It will help to look at R_$ G=
[(x, y, #) : # # G | [x]]. The function

(x, y, #) [ || f (#&1#1) g� (#2) P(x, #&1
2 #1) d* y(#1) d* y(#2)

357FOURIER�STIELTJES ALGEBRAS



File: 580J 308345 . By:DS . Date:13:08:01 . Time:03:46 LOP8M. V8.0. Page 01:01
Codes: 3280 Signs: 2240 . Length: 45 pic 0 pts, 190 mm

is Borel on R_$ G, so (x, #) [ (?x(#) _( f )(x, s(#)) | _(g)(x, r(#))) is Borel
on X_$ G.

Step 8. Finding a Borel Section That Represents P

Let D be the set of pairs (x, y) # R for which the linear functional
f [ * y( fP(x, } )) is bounded relative to the seminorm &_( f )(x, y)& on Cc(G).
The boundedness can be tested using a countable dense subset of Cc(G), so
D is Borel, and hence so is the set DC. For each x # X, we have
xD=[x]_Dx so that xD is conull with respect to :x. Notice that wtx
implies that C & Dx=C & Dw , and this set is conull in the orbit. Hence
xDC and wDC have the same conull image in [x] under s.

Now, for (x, y) # D define `(x, y) to be the vector in K (x, y) such that
(_( f )(x, y) | `(x, y))=* y( fP(x, } )) for every f # Cc(G), and for (x, y) � D,
let `(x, y)=0. The formula makes it clear that ` is Borel.

If y # C and wtxty, then (w, y) # D iff (x, y) # D, so y # C implies that
Dy=[ y]_[ y]. Also, w, x # [ y] implies that P(w, } ) and P(x, } ) agree a.e.
with respect to * y and that K (w, y)=K (x, y). Together, these imply that
`(w, y)=`(x, y). Then for every # # G | [ y],

(?x(#) `(x, s(#)) | `(x, r(#))=(?w(#) `(w, s(#)) | `(w, r(#)).

Thus both of these functions agree a.e. on G | [x] with P(x, } ). Thus we
can define

p(#)=(?s(#)(#) !(s(#), s(#)) | `(s(#), r(#)))

for # # %&1(DC) and 1 for other #'s to get a Borel function on G that agrees
a.e. with P(x, } ) on G | [x].

From Step 4 it follows that �� and the compression of Sp to HX are the
same.

Step 9. The Compression Map from L(H|) to L(HX)

To complete the proof, need to show that the compression map C from
L(H|) to L(HX) is one-one when restricted to |~ (M%c(R, X� )). Then it will
follow that � and Sp agree on Cc(G, X� ), forcing them to be the same.

Suppose that f:+ g= # M%c(R, X ) and |~ ( f:+ g=){0. Then there is a repre-
sentation ? of R and a probability measure + # Q such that ?+( f:+ g=){0.
We need to use this to find a z # X such that \z( f:+ g=){0, which
will imply |~ t( f:+ g=){0. There is no loss of generality in assuming that
there is a probability measure +$ on X such that +=� +x

1 d+$(x). Set
A=[(x, y) # R : x{ y, and f (x, y){0], and consider two cases: :+(A)=0
and :+(A){0. In the first case, ?+( f )=0 unless :+(X )>0, in which case
we have f:= f= relative to :+. Thus there is an h # M(X ) such that
0{?+( f:+ g=)=?+(h=). Then +([h{0])>0 so there is a z # X such that
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+z([h{0])>0, and it is easy to show that \z(h=){0, i.e., \z( f:+ g=){0.
In the second case, there is a z # X such that :+z

(A)>0, and we will show
that \z( f:+ g=){0. Recall that :+z

=+z_+z. Set R0=R"[(x, x) : x # X].
Then sets of the form (E_F ) & R0 , where E and F are disjoint Borel sets
in X, generate the Borel sets in R0 , so there must be such a pair for which

0<|
E_F

f d(+z_+z)<�.

If we set h1=/F and h2=/E we get elements of M(X) which we think of as
elements of Hz , and then the displayed integral is (\z( f ) h1 | h2). On the other
hand, (\z(g=) h1 | h2)=0 because gh1h� 2=0. Thus \z( f:+ g=){0, as needed.

5. COMPLETELY BOUNDED BIMODULE MAPS

Recall that B(G) is defined to be the linear span of P(G). Because we
know that P(G) consists of diagonal matrix entries of unitary representa-
tions we can form direct sums of representations to show that elements of
B(G) are also matrix entries that need not be diagonal. In this section we
will provide B(G) a normed algebra structure. One way to compute the
norm of an element b of B(G) is in terms of the positive definite functions
on a larger groupoid for which b can appear as an ``off diagonal part.'' This
is the groupoid version of the well known 2_2 matrix method, and has
been exploited by Renault for the same purpose [29]. This permits using
the completeness of P(G) for a general locally compact groupoid to prove
the completeness of B(G).

We can also formulate B(G) as an algebra of completely bounded
C(X� )-bimodule maps on M*(G), and as a space of completely bounded
C(X� )-bimodule maps from C*(G, X� ) to M*(R, X ). Since the completely
positive elements in the latter set are all given by positive definite functions,
and the completely positive bimodule maps form a complete set, we get one
way to prove that B(G) is complete.

Recall that | is the direct sum of all cyclic representations of C*(G). We
can construct each cyclic representation as an integrated representation of
G, and, as such, it can be taken as a representation of Mc(G), and we
use the same notation. For each a # C*(G), &|(a)&=&a& is the same as
sup [&?(a)& : ? is a cyclic representation of C*(G)]. Also recall, from
Section 1, the norms & &II, + and & &II and their properties.

Theorem 5.1. If b # B(G), the operator Tb , taking |( f ) to |(bf ) for
f # Mc(G), extends to a completely bounded map of M*(G) to itself and
&Tb&cb�&b&Q .
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Proof. By Theorem 4.1, if p # P(G) then Tp is completely positive, so
for b # B(G) the operator Tb is completely bounded. Set M=&b& Q and
suppose 0<:<1. Since : is arbitrary, the proof will be complete if we find
an f # Mc(G) such that |( f ){0 and &Tb|( f )&�M:2 &|( f )&. To find
such an f first notice that there is a + # Q such that the L�(*+)-norm of b
is greater than M:, so there exist a b0 # C and a '>0 such that the set
A=[# : |b(#)&b0 |<'] has positive measure for *+ and |b0 |&'>M:.
Then there is a compact set C�A such that *+(C)>0. We take f =/C .

By the definition of & &II , there is a +$ # Q such that & f &II, +$>: & f &II . By
the properties of & &II from Section 1, if ? is the one-dimensional trivial
representation of G, we have &?+$( f )&>: &|( f )&. Now let _=?+�?+$. We
have &_( f )&�&?+$( f )&>: &|( f )&.

We can find g1 and g2 in Cc(X ), �0, and >0 on r(C) _ s(C). These can
be regarded as sections of the bundle for ?, and it is clear that
(?+( f ) g1 | g2)>0 from the integral formula for the inner product. Thus
?+( f ){0, so _( f ){0 and |( f ){0.

Since _(b0 f )=b0_( f ), it will suffice to show that &_((b&b0) f &�' &_( f )&,
because then we get ( |b0 |&') &_( f )&�&_(bf )&, so (|b0 |&') : &|( f )&�
&_(bf )&�&|(bf )&=&Tb(|( f ))&, giving the desired inequality. Now f is a
characteristic function, so (b&b0) f=((b&b0) f ) f. Also, &(b&b0) f &��',
so the inequality we wanted on _ can be obtained by applying the second
inequality before Lemma 1.3 to both + and +$. Thus the proof is complete.

Again we use the algebra C(G, X� ) to study B(G), and need the one-one
correspondence between its representations and those of Cc(G) and hence
those of G. We still use | for the direct sum of all cyclic representations of
C(G, X� ), each of them given as an integrated representation of G. We use
|~ for the direct sum of all the cyclic representations of Mc(R, X) that can
be obtained by integrating a representation of R. Recall that C*(G, X� ) is
the operator-norm closure of |(C(G, X� )) and M*(R, X� ) is the operator
norm closure of |~ (Mc(R, X )). If x # X, use Hx for L2(+x) as before, and HX

for the direct sum of all the Hx 's. Let |~ t be the subrepresentation of |~
obtained by restricting to HX .

Theorem 5.2. Let b # B(G). There is a completely bounded
C(X� )-bimodule map Sb : C*(G, X� ) � M*(R, X ) such that Sb(|( f ))=
|~ (( f, b) ) for f # Cc(G) and Sb(|(g=))=|~ (bg=) for g # C(X� ). For this
operator we have

&Sb&cb�&b& Q ,

and

Sb(|(=)) | HX # |~ t(M(X )).
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Proof. The operator Sb is a linear combination of four operators Sp

for p # P(G), and these are completely positive bimodule maps by
Theorem 4.5.

For the norm inequality, we proceed as in the proof of Theorem 5.1. Let
M=&b&Q and 0<:<1. It will suffice to find f # Mc(G) such that |( f ){0
and &Sb |( f )&�M:2 &|( f )&. Choose +, b0 , ', A and C as in Theorem 5.1,
and take f =/C .

We take ? to be the trivial one-dimensional representation, and choose
+$ and _ as before. The proof that |( f ){0 used before works here also.

Let ?~ denote the one-dimensional trivial representation of R, and form
its integral with respect to +, ?~ +. Likewise form ?~ +$, and let _~ =?~ +�?~ +$. It
will suffice to prove that &_~ (( f, 1) )&>: &|( f )&.

For this purpose, we need to see that &( f, 1)&II, +=& f &II, + . This follows
from the fact that f�0 together with the relationship between &0 and &~ 0 .
Then we see that

&( f, b&b0)&II, +�&(b&b0) f &Q & f &II, +<' & f &II, +

using the fact that f is a characteristic function.
Both the equality and the inequalities also hold for +$, and since ? and

?~ are the one-dimensional trivial representations, they transfer to the
corresponding equality and inequalities for _ and _~ . Hence

&|~ (( f, b) )&�&_~ (( f, b) )&

�&_~ (( f, b0) )&&&_~ (( f, b&b0) )&

�|b0 | &_~ (( f, 1) )&&' &_~ (( f, 1) )&

�M: &_~ (( f, 1) )&

�M:2 &|( f )&.

In order to provide the norm on B(G) in a way that will be convenient
for proving completeness, we introduce a way to enlarge the groupoid G as
it was done in [29]. Write T2 for the transitive equivalence relation on the
two element set [1, 2], so that T2 has four elements. It will be convenient
to have a shorter notation for matrix coefficients: If ? is a unitary represen-
tation of G and ! and ' are bounded Borel sections of the bundle H on
which ? acts, we can write [?, !, '] for the matrix coefficient, namely

[?, !, '](#)=(?(#) ! b s(#) | ' b r(#)).

Theorem 5.3. A bounded Borel function b on G is in B(G) if and only
if there is a function p$ # P(G_T2) such that for # # G we have b(#)=
p$(#, (1, 2)). The function b can be expressed as a matrix coefficient using
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sections of sup norm at most 1 if and only if there is an associated p$ that
can be expressed as a diagonal matrix coefficient using a section of sup norm
at most 1.

Proof. The proof of the first assertion will be given in terms of matrix
coefficients and will include the proofs of the facts about sup norms. Let
X$=X_[1, 2] be the unit space of G$=G_T2 .

Suppose that ? is a unitary representation of G on a bundle H and that
! and ' are Borel sections of H of sup norm at most 1 such that
b=[?, !, ']. Define a Hilbert bundle H$ over X$ by setting H$(x, i)=
H(x) for i=1, 2. For #$=(#, (i, j)) in G$ notice that s(#$)=(s(#), j) and
r(#$)=(r(#), i). That means that we can define a representation ?$ of G$ on
H$ by ?$(#$)=?(#). Define a section `$ of H$ by setting `$(x, i)='(x) when
i=1 and `$(x, i)=!(x) when i=2. Then the sup norm of `$ is at most 1
and for every # # G we have b(#)=[?$, `$, `$](#, (1, 2)) as required.

For the converse, suppose we begin with H$, ?$, and `$. Then for x # X
define H(x)=H$(x, 1)�H$(x, 2) and set '(x)=(`$(x, 1), 0) and !(x)=
(0, `$(x, 2)). For # # G define ?(#) to take (!1 , !2) to

(?$(#, (1, 1)) !1+?$(#, (1, 2)) !2 , ?$(#, (2, 1)) !1+?$(#, (2, 2)) !2),

thus acting as a matrix by left multiplication on column vectors. The
sections ! and ' have sup norm at most 1, and we have b=[?, !, '].

6. B(G) IS A BANACH ALGEBRA

Because of the results of Sections 3, 4 and 5 we can now complete the
task we set ourselves at the beginning of the paper, as indicated by the sec-
tion heading. Recall that for b # B(G), Tb is the operator on M*(G) deter-
mined by multiplication by b on Mc(G), and that we sometimes work with
B(G) as an algebra of functions, even though the elements are actually
equivalence classes.

Theorem 6.1. B(G) is a Banach algebra with pointwise operations for
the algebraic structure and with the norm defined by

&b&=&Tb&cb

for b # B(G).

Proof. Theorem 3.8 shows that B(G) is an algebra under pointwise
operations, and equals P(G)&P(G)+iP(G)&iP(G). Any function that is
0 for *Q-almost every point of G represents the 0 element of M*(G), so for
b # B(G) the operator Tb depends only on the equivalence class of b. Thus
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b [ Tb is well defined from the space of equivalence classes of functions in
B(G) to the space of completely bounded operators on M*(G). Since
&Tb&cb�&b&� , we see that b [ Tb is also one-one. Thus the norm makes
B(G) a commutative normed algebra.

To prove that B(G) is complete, let b1 , b2 , . . . be a sequence in B(G)
such that the norms &Tbn &cb are summable. Then Theorem 5.3 says that
we can construct positive definite functions p$1 , p$2 , . . . on the groupoid
G$=G_T2 of Section 5 such that for every # # G and every n we have
bn(#)= p$n(#, (1, 2)), and for every n we have &p$n&�=&bn &� . Two forms of
the completeness of P(G$) can be used to complete the proof. We let
cn=b1+ } } } +bn .

In the first proof, we notice that the sequence Sp$1
, Sp$2

, . . . of completely
positive C(X� $)-bimodule maps from C*(G$, X� $) to M*(R$X$) is summable.
The sum is also a completely positive C(X� $)-bimodule map, so by
Theorem 4.6 it is of the form Sp$ for a p$ # P(G$). Then the function b
defined on G by b= p$( } , (1, 2)) is in B(G) by Theorem 5.3. We also get
&Sp$n& p$&cb�&Scn&b &cb�&cn&b&� by Theorem 5.3 and Theorem 5.2, so
&cn&b&� � 0. We need to prove that &cn&b& � 0 as n � �.

To do this begin with f�0 in Mc(G). Then Lemma 1.3 says that

&|((cn&b) f )&�&cn&b&� &|( f )&.

Hence Tcn(|( f )) � Tb(|( f )) in M*(G). The f 's span a dense set in M*(G),
and the Tcn 's are uniformly bounded, so it follows that Tcn � Tb pointwise
on M*(G). Now the fact that the completely bounded operators on M*(G)
are complete implies that the sequence Tcn has a limit, T $ in the completely
bounded sense, which is automatically also a pointwise limit on M*(G).
Hence T $=Tb , so that &Tcn&b &cb � 0, and by Theorem 5.1 that is equiv-
alent to saying &cn&b& � 0 as n � �.

For the other proof of completeness, we notice that p$1 , p$2 , . . . is sum-
mable in the Q-essential supremum norm as functions on G$. Hence there
is a Borel function p$ that is the sum in that norm. By the Dominated Con-
vergence Theorem, p$ # P(G$). Again we take b= p$( } , (1, 2)). Theorems 5.3
and 5.2 once again show that &cn&b&� � 0, and we complete the proof as
before.

Since B(G) is a Banach algebra, any closed subalgebra of it is a Banach
algebra. Convergence in the completely bounded norm implies convergence
in L�(*Q), so certain subalgebras are easily seen to be closed. Among these
are B(G), defined to be [b # B(G) : b is continuous], and B(G, X ), defined
to be the set of elements b # B(G) such that b | X is continuous
and vanishes at �. The subalgebra B(G, X) is defined to be B(G) &
B(G, X ).
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Theorem 6.2. B(G), B(G, X ), and B(G, X) are closed subalgebras of
B(G) and hence Banach algebras.

7. COUNTER EXAMPLES

The first example is a groupoid on which the linear span of the
continuous positive definite functions is not complete and there exist
continuous elements of B(G) that cannot be expressed as a difference of
continuous positive definite functions.

Let X=[(x, y) : (x, y) has polar coordinates (r, %) with 0�r�1,
% # [0, 1, 1�2, 1�3, . . .]] and set G=X_Z. This is a bundle of groups, and
(x, n)+(x$, n$) is defined iff x=x$, and then it equals (x, n+n$). Write
P(G) for the set of Borel positive definite functions on G and P(G) for the
set of continuous elements of P(G). Let B(G) be the linear span of P(G),
let B1(G) be the linear span of P(G) and let B(G) be the set of continuous
elements of B(G). A bounded function p is in P(G) iff it is a Borel function
and p(r, %, } ) is positive definite on Z for each point of X. Since positive
definite functions on Z are in one-one correspondence with positive
measures on T via the Fourier transform, we can also think of P(G) as
consisting of Borel functions from X to the positive measures on T.

Define

p(r, %, n)={ei%(1+r) n

0
if r>0
if r=0

and

q(r, %, n)={ei%(1&r) n

0
if r>0
if r=0.

We can also think of these as taking values that are point masses at ei%(1+r)

and ei%(1&r), or the 0 measure at the origin. We have p&q # B(G). Suppose
that u # P(G) and &u�p&q�u where the inequalities indicate the
pointwise order in the space of measure-valued functions. This is the same
as the natural order in B(G) in which elements of P(G) are positive. Since
p(r, %), } ) is the point mass at ei%(1+r), u(r, %, } ) dominates the point mass
at that point. By continuity, u(0, 0, } ) dominates the point mass at ei%. This
means that u(0, 0, } ) has infinite norm, so there is no such u. Thus we have
a continuous element of B(G) that is not a difference of continuous
positive definite functions.

With more effort, a worse example can be made. Choose n angles, and
begin with p and q restricted to the radii with those angles. The limit at the
origin of both of them exists, the limits are the same, and it is a sum of n
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point masses. To make elements of P(G) we take that value at the origin
and at all other points of X. Let b be the difference of these elements of
P(G). Any element of P(G) that dominates b must have a value at the
origin that dominates that sum of n point masses. Observe that b is 0
except on the original chosen radii, and that the total variation norm of
each value of b is at most 2.

Now partition the angles in X into sets with 2k elements, for k=1, 2, ...,
and use the construction just described to make elements bk in B1(G). Then
let b=��

k=1 2&kbk . This converges in the completely bounded norm since
each bk has completely bounded norm 2. Hence it also converges in
uniform norm, so that b # B(G). Also b is in the closure of B1(G). However,
the domination arguments used above show that b is not in B1(G).

The next example shows that locally compact groupoids can have
unitary representations that are Borel but not continuous.

Consider an action of the integers on the circle by an irrational rotation,
and form the transformation group groupoid, G=T_Z. If u is a unitary
valued Borel function on T, there is a unitary representation U such that
for all { # T, u({)=U({, 1). If u is not continuous, neither is U.
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