
Physica A 391 (2012) 948–953

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Ising model with spins S = 1/2 and 1 on directed and undirected
Erdös–Rényi random graphs
F.W.S. Lima a,∗, M.A. Sumour b
a Dietrich Stauffer Computational Physics Lab, Departamento de Física, Universidade Federal do Piauí, 64049-550, Teresina - PI, Brazil
b Physics Department, Al-Aqsa University, P.O. Box 4051, Gaza, Gaza Strip, Palestinian Authority

a r t i c l e i n f o

Article history:
Received 13 September 2011
Received in revised form 24 October 2011
Available online 25 November 2011

Keywords:
Monte Carlo simulation
Spins
Networks
Ising
Graphs

a b s t r a c t

Using Monte Carlo simulations, we study the Ising model with spin S = 1/2 and 1 on
directed and undirected Erdös–Rényi (ER) random graphs, with z neighbors for each spin. In
the case with spin S = 1/2, the undirected and directed ER graphs present a spontaneous
magnetization in the universality class of mean field theory, where in both directed and
undirected ER graphs the model presents a spontaneous magnetization at p = z/N(z =

2, 3, . . . ,N), but no spontaneous magnetization at p = 1/N which is the percolation
threshold. For both directed and undirected ER graphs with spin S = 1, we find a first-order
phase transition for z = 4 and 9 neighbors.

© 2011 Elsevier B.V.

1. Introduction

An Erdös–Rényi (ER) random graph is a set of N vertices (sites) connected by B links (bonds) [1,2]. The probability p
that a given pair of sites is connected by a bond is p = 2B/N(N − 1). The connectivity of a site is defined as the total
number of bonds connected to it, that is ki =

∑
j lij, where lij = 1 if there is a link between the sites i and j and lij = 0

otherwise. Random graphs are completely characterized by the mean number of bonds per site, or the average connectivity
z = p(N − 1). In the limit N → ∞, the distribution of connectivities is given by the Poisson distribution. Sumour and
Shabat [3,4] investigated Ising models with spin S = 1/2 on directed Barabási–Albert (BA) networks [5] using the usual
Glauber dynamics. No spontaneous magnetization was found, in contrast to the case of undirected BA networks [6–8] where
a spontaneous magnetization was found below a critical temperature which increases logarithmically with the system
size. For S = 1/2 systems on undirected Small-World networks (SW) [9] with scale-free hierarchical-lattice, conventional
and algebraic (Berezinskii–Kosterlitz–Thouless) ordering, with finite transition temperatures, have been found. Lima and
Stauffer [10] simulated directed square, cubic and hypercubic lattices ranging from two to five dimensions with heat bath
dynamics in order to separate the network effects from directedness. They also compared different spin-flip algorithms,
including cluster flips, for Ising-BA networks. They found a freezing-in of the magnetization similar to the one in Refs. [3,4],
following an Arrhenius law at least in low dimensions. This lack of a spontaneous magnetization (in the usual sense) is
consistent with the fact that if on a directed lattice a spin Sj influences spin Si, then spin Si in turn does not influence Sj, and
there may be no well-defined total energy. Thus, they showed that for the same scale-free networks, different algorithms
give different results. Lima et al. [11] studied the Ising model for spin S = 1, 3/2 and 2 on directed BA network. The Ising
model with spin 1, 3/2 and 2 seemed not to show a spontaneous magnetization and their decay time for flipping of the
magnetization followed an Arrhenius law for heat bath algorithms that agrees with the results of the Ising model for spin
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Fig. 1. Reciprocal logarithm of the relaxation times versus temperature for different probabilities 1/N (sq.), 2/N (×), and 3/N (+); directed ER
with S = 1/2.

S = 1/2 [3,4] on directed BA network. Sánchez et al. [12] on directed SW obtained a second-order phase transition for
values of rewiring probability p = 0.1 and a first-order phase transition for p = 0.9 with pc ≈ 0.65 for the change of
phases. The magnetic properties of Ising models defined on the triangular Apollonian network was investigated by Andrade
and Herrmann [13] and no evidence of phase transition was found. In this work, we have studied the Ising model with
spins S = 1/2 and 1 on directed and undirected ER graphs. Undirected ER graphs with spin S = 1/2 present a spontaneous
magnetization in the universality class of mean field theory and for S = 1, we find evidences of first-order phase transition
for z ≥ 2. Directed ER graphs for spin S = 1/2 and S = 1 present a spontaneous magnetization for z ≥ 2. Here z is the
number of neighbors for each spin.

2. Model and simulation: Ising model on ER graphs

We consider the spin S = 1/2 and 1 Ising models defined by a set of spin variables Si located on every site i, first of
directed ER graphs, with N spins taking the values ±1 and 0 for S = 1, and ±1 for S = 1/2, respectively.

The probability for spin Si to change its state in this directed network is

pi = 1/[1 + exp(−2Ei/kBT )], Ei = −J
−
k

SiSk (1)

and enters the heat bath algorithm; k runs over all nearest neighbors of Si. In this network, each new site added to the
network selects with connectivity z already existing sites as neighbors influencing it; the newly added spin does not
influence these neighbors.

To study the spin 1/2 and 1 Ising models we start with all spins up, a number of spins equal to 2,000,000 and 4,000,000,
and Monte Carlo step (MCS) time up to 200,000 and 2,000,000, respectively. In our simulations, one MCS is accomplished
after all spins are updated, here, with heat bath Monte Carlo algorithm. Then we vary the temperature and study nine
samples. The temperature is measured in units of the critical temperature of the square-lattice Ising model. We determine
the time t after which the magnetization has flipped its sign for the first time, and then take the median value of our nine
samples. So we get different values t for different temperatures. To study the critical behavior of this Isingmodel (with spins
1/2 and 1), we define the variable m =

∑N
i=1 Si/N as normalized magnetization. The Ising model on directed BA networks

has no phase transition and agrees with the modified Arrhenius law for relaxation time, 1/ ln t ∝ T + · · ·, Lima et al. [11].

3. Results and discussion

3.1. Spin 1/2 Ising model

We take different probabilities for different number of nodes N = 2,000,000 with different temperatures in Fig. 1.
There we check the first time after which the magnetization changes sign, take the median from nine samples, and plot
the reciprocal of the time for three probabilities p = z/N (z = 1, 2, and 3) in Fig. 1. The figure shows nicely the difference
between probability 1/N (= percolation threshold) and larger probabilities. This figure shows that there is a spontaneous
magnetization at p = 2/N for the left curve and at p = 3/N for the right curve, but no spontaneous magnetization at
p = 1/N which is the percolation threshold. This is substantiated by the fact that in case p = 1/N , there is not a phase
transition at temperature greater than zero, but for the other cases we see that the system tends to a finite temperature
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Fig. 2. Squared normalized magnetization versus temperatures, S = 1/2, p = 4/N , for different sizes N of the undirected ER graph (top) and directed ER
graph (bottom).

as the system size grows, where we have approximate values of T ≈ 0.22 and 0.78 for p = 2/N (×) and p = 3/N (+),
respectively. In Fig. 2, we show the dependence of the magnetization M on the temperature, obtained for directed and
undirected ER graphs with S = 1/2; we use only one probability equal p = 4/N , because it gives a clear answer compatible
with themean-field universality class, as expected because of the infinite range of the symmetric interaction. For undirected
ER graphs, if A is a neighbor of B then, in contrast to the directed case, also B is a neighbor of A. From our simulation we
see that the undirected version has a spontaneous magnetization, to which the system relaxes similarly to the standard
Ising square lattice. Then we plot the square of normalized magnetization versus temperature in Fig. 2. For T below Tc we
have a spontaneous magnetization and above Tc we do not have one as we see in Fig. 2 (part (a)). In equilibrium there
is a Curie temperature. The squared magnetization vanishes at this Tc ≈ 3.5J/KB linearly in temperature. This behavior
corresponds, not unexpectedly, to a mean field critical exponent. Unexpectedly, this same behavior occurs also for directed
ER graphs (part (b)) that do not present an infinite range of the symmetric interaction as occurs with undirected ER graphs.
The squared magnetization vanishes at this Tc ≈ 1.2J/KB. These results show that the behaviors of S = 1/2 Ising model
spin on ER graphs are similar, whether these networks are directed or undirected.

3.2. Spin 1 Ising model

Fig. 3 is analogous to Fig. 1 except that now S = 1 instead of 1/2 for N = 4,000,000 up sites. In Fig. 4, we show
magnetization versus temperature on directed ER networks (part (a)) and also on undirected ER networks (part (b)) for
different probabilities p = z/N with z = 4 (left) and 9 (right) for system size N = 16,000 sites. The shapes of these
figures show qualitatively that they present evidence of first-order phase transition and also show that the behaviors of
magnetization versus temperature are identical for the same probabilities regardless of whether the networks are directed
or undirected. In order to verify the order of the transition, we apply finite-size scaling (FSS) for N = 250, 500, 1000, 2000,
4000, 8000, and 16,000 sites. Initially we search for the minima of the energetic fourth-order cumulant:
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Fig. 3. The same behavior Fig. 1, but now with S = 1 for different probabilities p = z/N with z = 2(+) and 9(×), N = 4,000,000.

Fig. 4. Magnetization versus temperature for spin S = 1 on directed (top) and undirected (bottom) ER graphs.

B = 1 −

[
⟨e4⟩

3⟨e2⟩2

]
av

(2)

where e = E/N is the energy per spin. It is known that this parameter takes aminimum value Bmin at the effective transition
temperature Tc(N). One can show [14] that for a second-order transition limN→∞(2/3 − Bmin) = 0, even at Tc , while at
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Fig. 5. Energetic Binder cumulant Bmin versus 1/N for z = 9.

Fig. 6. Energy versus temperature on ERD graphs for z = 9.

a first-order transition the same limit is different from zero (≠ 0). In Fig. 5, we plot the Binder minimum parameter Bmin
versus 1/N (Eq. (2)) for z = 9, and several system sizes. The Binder parameter goes to a value which is different from 2/3.
This is a sufficient condition to characterize a first-order transition. The order of transition can be confirmed by plotting
the values of energy versus temperature (see Fig. 6), where we present a jump when system sizes increase. This behavior is
evidence for a first-order phase transition for z = 9; this same behavior occurs also for z = 4.

4. Conclusion

In conclusion, we have presented the Ising model for spins S = 1/2 and 1 on directed ER and undirected ER graphs,
because our main objective in this paper was to verify the existence or not of phase transitions and also the kind of phase
transition.

For spin S = 1/2 Ising models, both directed or undirected ER graphs have a phase transition temperature below which
a spontaneous magnetization exists, where ER graphs have a spontaneous magnetization in the universality class of mean
field theory. For spin S = 1 Ising models, on directed and undirected ER graphs the results are identical, i.e., are independent
of the nature of the graphs studied here and have both a good evidence of a first-order phase transition different from spin
S = 1/2. Our results agreewith the results of nonequilibriummodel on directed and undirected ER graphs studied by Pereira
and Brady [15] and Lima et al. [16].
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