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Abstract

The metric for a Reissner–Nordström black hole in the background of the Friedman–Robertson–Walker universe is
Then we verified it and discussed the influence of the evolution of the universe on the size of the black hole. To s
problem of the orbits of a planet in the expanding universe, we rewrote the metric in the Schwarzschild coordinates sy
deduced the equation of motion for a planet.
 2004 Elsevier B.V.

PACS: 04.70.-s; 04.20.Jb; 97.60.Lf

1. Introduction

Black holes have been investigated in great depth and detail for more than forty years. However, al
previous studies have focused on isolated black holes. On the other hand, one cannot rule out the impo
more realistic situation in which black holes are actually embedded in the background of universe. Therefo
holes in non-flat backgrounds form an important topic.

As early as in1933, McVittie[1] found his celebrated metric for a mass-particle in the expanding universe
metric gives us an concrete example for a black hole in the non-flat background. It is just the Schwarzsch
hole which is embedded in the Friedman–Robertson–Walker universe although there was no the notion
hole at that time. In 1993, the multi-black hole solution in the background of de Sitter universe was discove
by Kastor and Traschen[2]. The Kastor–Traschen solution describes the dynamical system of arbitrary n
of extreme Reissner–Nordström black holes in the background of de Sitter universe. In 1999, Shiromizu and G
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extended it into the spinning version[3]. In 2000, Nayak et al.[4,5] studied the solutions for the Schwarzsch
and Kerr black holes in the background of the Einstein universe.

In this Letter, we extend the McVittie’s solution into charged black holes. We first deduce the metric
Reissner–Nordström black hole in the expanding universe; several special cases of our solution are ex
same as some solutions discovered previously. In the previous work[6] we have applied the asymptotic conditio
to derive the Schwarzschild metric in the expanding universe, which is exactly the same as that derived by
by solving the full Einstein equations. That demonstrates the power of this simple and straight-forward appr
this Letter we follow the same procedure to derive the metric for the Reissner–Nordström black holes in Fri
Robertson–Walker universe. We then study the influences of the evolution of the universe on the size of t
hole. Finally, in order to study the motion of the planet, we rewrite the metric from the cosmic coordinates
to the Schwarzschild coordinates system.

2. Derivation of the metric

The metric of Reissner–Nordström black hole in the Schwarzschild coordinates system is given by

(1)ds̃2 = −
(

1− 2M

r̃
+ Q2

r̃2

)
dt̃ 2 +

(
1− 2M

r̃
+ Q2

r̃2

)−1

dr̃2 + r̃2(dθ2 + sin2 θ dφ2),
whereM andQ are the mass and charge of the black hole, respectively.

For our purpose we rewrite the metricEq. (1)in the isotropic spherical coordinates. We assume thatx0 = v and
x1 = x. So make variables transformation

(2)t̃ = 2v, s̃ = 2l, 2r̃ = x

(
1+ M

x

)2

− Q2

x2
,

then we can rewriteEq. (1)as follows

(3)dl2 = −
(
1− M2

x2 + Q2

x2

)2

[(
1+ M

x

)2 − Q2

x2

]2
dv2 +

[(
1+ M

x

)2

− Q2

x2

]2(
dx2 + x2dθ2 + x2 sin2 θ dφ2).

As is known, the metric for the FRW (Friedman–Robertson–Walker) universe is given by

(4)dl2 = −dv2 + a2(v)

(1+ kx2/4)2

(
dx2 + x2 dθ2 + x2 sin2 θ dφ2),

wherea(v) is the scale factor of the universe andk gives the curvature of space–time as a whole.
Taking account of equations(3) and (4), we set the metric for a Reissner–Nordström black hole embedd

the FRW universe as follows

(5)dl2 = −A2(v, x) dv2 + B2(v, x)
(
dx2 + x2 dθ2 + x2 sin2 θ dφ2).

Then from equationG01 = 0 one obtains

(6)A(v, x) = f (v)
Ḃ

2B
,

where “·” denotes the derivative with respect tov.
Compare theg11 terms inEqs. (3) and (5), the possible form for the functionB(v, x) is

(7)B(v, x) =
[
w(v,x) + q(v)

x

]2

− s(v)

x2 .
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We note that the mass and charge of the black hole is concentrated in the singularity. In other words, th
space distribution for mass and charge. Thusq ands which are related to the mass and charge, respectively
only the functions of timev.

InsertingEq. (7)into Eq. (6), we obtain

(8)A(v, x) =
ẇf
w

+ (wq̇ + ẇq)
f

w2x
+ qq̇f

w2x2 − ṡf

2w2x2(
1+ q

wx

)2 − s

w2x2

.

In the case ofv = const and the asymptotically flat conditions,A(v = const, x) should be reduced to the
√−g00

term inEq. (3). Thus comparingEq. (8)with the
√−g00 term inEq. (3), we infer the following identities shoul

always hold

ẇf

w
= 1,

(wq̇ + ẇq)
f

w2x
= 0,

qq̇f

w2x2 = −
(

q

wx

)2

,

(9)− ṡf

2w2x2 = s

w2x2 ,

namely

(10)ẇf = w, q̇f = −q, ṡf = −2s.

FromEq. (10)we obtain

(11)w = b(v)√
1+ kx2/4

, f = b

ḃ
, q = M

b
, s = Q2

b2 ,

whereM andQ are two integration constant which are related to the mass and charge of the black hole;b(v) is an
arbitrary function which is related to the scale factor of the universe; the form ofω is obtained by inspecting th
McVittie’s solution,

(12)dl2 = −
( √

a√
1+kx2/4

− M/
√

a
x

)2

( √
a√

1+kx2/4
+ M/

√
a

x

)2
dv2 +

( √
a√

1+ kx2/4
+ M/

√
a

x

)4(
dx2 + x2 dθ2 + x2 sin2 θ dφ2),

wherea = a(v).
SubstitutingEqs. (7), (8), (11)in Eq. (5), we obtain our final metric for the Reissner–Nordström black hol

the background of FRW universe

dl2 = −
[
1− M2

a2x2 (1+ kx2/4)
]2 + Q2

a2x2 (1+ kx2/4)[(
1+ M

ax

√
1+ kx2/4

)2 − Q2

a2x2 (1+ kx2/4)
]2 dv2

(13)

+ a2

(1+ kx2/4)2

[(
1+ M

ax

√
1+ kx2/4

)2

− Q2

a2x2

(
1+ kx2/4

)]2(
dx2 + x2 dθ2 + x2 sin2 θ dφ2),

where we have made a variable replacementb(v)2 → a(v). Eq. (13)is derived fromEq. (7)and whena(v) = const,
k = 0 Eq. (13)restoresEq. (3). SoEq. (3)satisfiesEq. (7).
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For the Reissner–Nordström–de Sitter metric, we havea = eHt , k = 0, soEq. (13)becomes

(14)dl2 = −
[
1− M2

a2x2 + Q2

a2x2

]2

[(
1+ M

ax

)2 − Q2

a2x2

]2
dv2 + a2

[(
1+ M

ax

)2

− Q2

a2x2

]2(
dx2 + x2dθ2 + x2 sin2 θ dφ2).

We will show in the next section thatEq. (14)can be reduced to the familiar form in Schwarzschild coordina
WhenH = 0,Eq. (14)restores the Reissner–Nordström metric as given byEq. (3). WhenQ = 0,Eq. (13)becomes

dl2 = −
(
1− M

ax

√
1+ kx2/4

)2

(
1+ M

ax

√
1+ kx2/4

)2 dv2

(15)+ a2

(1+ kx2/4)2

(
1+ M

ax

√
1+ kx2/4

)4(
dx2 + x2dθ2 + x2 sin2 θ dφ2).

It is just the McVittie solution. Another special case of our solution is for the extreme Reissner–Nordström
hole,M = Q, in the de Sitter universe. In this case,Eq. (14)is reduced to a special case of the Kastor and Tras
solution [2] for a single black hole,

(16)dl2 = − 1(
1+ 2M

ax

)2
dv2 + a2

(
1+ 2M

ax

)2(
dx2 + x2 dθ2 + x2 sin2 θ dφ2).

In Eq. (16), a = eHt . It describes one extreme Reissner–Nordström black hole in the de Sitter universe.

3. Further discussion on the metric

In this section we will verify thatEq. (13) satisfies Einstein–Maxwell equations. The Einstein–Maxw
equations may be written as

Gµν = 8π(Tµν + Eµν),

Fµν = Aµ;ν − Aν;µ,

(17)F
µν

;ν = 0,

whereTµν andEµν are the energy momentum for the perfect fluid and electromagnetic fields, respectively, whi
are defined by

Tµν = (ρ + p)UµUν + pgµν,

(18)Eµν = 1

4π

(
FµαFα

ν − 1

4
gµνFαβFαβ

)
,

whereρ andp are the energy density and pressure.Uµ is the 4-velocity of the particles.Fµν andAµ are the tenso
and the potential for electromagnetic fields.

Input the components of the metric,Eq. (13), to the Maple software package, we obtain the Einstein tensorGµν

and the energy momentum tensorTµν andEµν for the perfect fluid and the electromagnetic fields

T 0
0 = ρ, T 1

1 = T 2
2 = T 3

3 = p,

2πE0
0 = 2πE1

1 = Q2(1+ kx2/4)

x4a4
[(

1+ M
ax

√
1+ kx2/4

)2 − Q2

a2x2 (1+ kx2/4)
]4

,

(19)2πE2
2 = 2πE3

3 = − Q2(1+ kx2/4)

x4a4
[(

1+ M
√

1+ kx2/4
)2 − Q2

2 2 (1+ kx2/4)
]4

.

ax a x
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Substituting the above components of electromagnetic tensor in the second equation ofEq. (18), we obtain the
non-vanishing components of electromagnetic tensorFµν

F 01 = (1+ kx2/4)3/2Q

x2a3
[
1− M2

a2x2 (1+ kx2/4) + Q2

a2x2 (1+ kx2/4)
]

(20)× 1[(
1+ M

ax

√
1+ kx2/4

)2 − Q2

a2x2 (1+ kx2/4)
]2

.

Then substitutingEq. (20)in the second equation ofEq. (17), we obtain the non-vanishing components of
potentialAµ

(21)A0 =
∫

F 01g00g11dx.

It is a straightforward work to verify thatEq. (20)also satisfies the last equation inEq. (17). SinceGµν
;ν = 0 always

holds, thus from Einstein equations we have 0= T
µν

;ν + E
µν

;ν . On the other hand, we have the relation

4πE
µν

;ν = FµαFν
α;ν + F

µα

;ν F ν
α − 1

2
gµνFαβFαβ = FµαFν

α;ν + 1

2
gµρF νσ (Fρσ ;ν − Fρν;σ − Fσνρ)

(22)= −FµαJα = 0.

So bothTµν andEµν satisfy Bianchi identity. We therefore conclude thatEq. (13) is an exact solution of th
Einstein–Maxwell equations.

To show how the two parametersM andQ are related to the mass and charge of the black hole, we as
the evolution of the universe is much slower and approximately adopt the mass formula for the stationary spa
time [8] (to our knowledge, we can only define the mass for the stationary and asymptotically flat space–time). We
find the massM0 and chargeQ0 of the black hole are given by

M0 ≡ − 1

8π

∫
S

εabcd∇cξd = M

a
,

(23)Q0 ≡ 1

4π

∫
S

εabcdF cd = Q

a
.

Thus for the observer in the infinity, the black hole’s mass and charge will decrease with the expansio
universe and increase with the contraction of the universe. We will return to this point in the following disc
again.

Let us now consider the two typical surfaces of the blackhole in the cosmic coordinates system. We obtain th
radius of the time-like limit surface (TLS)[8]

(24)rTLS =
√

M2

a2 − Q2

a2 ,

and the time derivative of the radius of the event horizon[8]

(25)ṙEH = ±
1− M2

a2r2
EH

+ Q2

a2r2
EH

a
[(

1+ M
arEH

)2 − Q2

a2r2
EH

]2
,

where two signs “+” and “−” correspond to the expanding and the contracting universe, respectively. Sin
event horizon is always in the inner of TLS, we haveṙEH < 0 for expanding universe anḋrEH > 0 for contracting
universe.
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Eqs. (24), (25)tell us the typical scales of the black hole are closely related to the evolution of the univers
They shrink with the expansion of the universe and expand with the contracting of the universe. For asymp
flat background,a = 1 andṙEH = 0, these two kind of surfaces coincide

(26)rTLS = rEH =
√

M2 − Q2.

ComparingEq. (26)with Eq. (24), we find that the black hole in the expanding universe has the massM0 = M/a

and chargeQ0/a. They are both dependent on the scale of the universe and not a constant.
FromEq. (23), one obtain the lifetime of a black hole

(27)τ � 1

H
.

It is approximately the age of the universe.

4. Equation of motion of a planet

In this section, we turn to the discussion of the problem of the orbit for a planet in the expanding un
Current measurements of the microwave background radiation show that our universe is highly likely
space[7]. So in the next we consider the local dynamics in the space-flat space case, i.e.,k = 0. Eq. (13) is
then reduced to

(28)dl2 = −
(
1− M2

a2x2 + Q2

a2x2

)2

[(
1+ M

ax

)2 − Q2

a2x2

]2
dv2 + a2

[(
1+ M

ax

)2

− Q2

a2x2

]2(
dx2 + x2dθ2 + x2 sin2 θ dφ2).

In order to study the motion of a planet, we should rewriteEq. (28)in the Schwarzschild or solar coordinat
system. Similar toEq. (2), make variables transformation as follows

(29)T = 2v, s = 2l, 2r = ax

(
1+ M

ax

)2

− Q2

a2x2 .

ThenEq. (28)becomes

ds2 = −
(

1− 2M

r
+ Q2

r2 − H 2r2
)

dT 2 +
(

1− 2M

r
+ Q2

r2

)−1

dr2

(30)− 2rH

(
1− 2M

r
+ Q2

r2

)−1/2

dT dr + r2(dθ2 + sin2 θ dφ2),
whereH ≡ 1

a
da
dT

is the Hubble parameter. The coordinate system of(T , r, θ,φ) is not orthogonal. We can elimina
the coefficient ofdT dr by introducing a new time coordinate,t . The form ofEq. (30)suggests we set

(31)dt = F(T , r) dT + F(T , r)rH

(
1− 2M

r
+ Q2

r2

)−1/2(
1− 2M

r
+ Q2

r2
− H 2r2

)−1

dr,

whereF(T , r) is a perfect differential factor and it always exists. ThenEq. (29)can be written as

(32)ds2 = −
(

1− 2M

r
+ Q2

r2
− H 2r2

)
F 2 dt2 +

(
1− 2M

r
+ Q2

r2
− H 2r2

)−1

dr2 + r2 dΩ2,

whereH andF are both the functions of variablest andr. If ρ = p = 0, we haveH = 0. Eqs. (30) and (32)both
turn into the static Reissner–Nordström solution. If 2M/r → 0 andQ2/r2 → 0,Eq. (32)represents the solution fo
the Friedman–Robertson–Walker universe in Schwarzschild or solar coordinate system. For the de Sitter univ
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H is a constant.Eq. (31)tells us we may chooseF(t, r) = 1. ThenEq. (32)is just the well-known Reissner
Nordström–de Sitter space–time. It is a static space–time. Thus the geodesic is time-independent. In other wo
the orbit of the planet does not vary in the background of de Sitter universe.

In general,H is the function oft and r. SoEq. (32)is a non-stationary space–time and the geodesic in
space–time is generally time-dependent. Thus we concludethat universe expansion would influence the orbit o
planet. However, the effect termH 2r2 is very small. Since

(33)ε ≡ H 2r2

2M/r
= ρ

M/(4πr3/3)
= ρ

ρ̃
,

whereρ is the universe energy density andρ̃ is the energy density within the regionr where the energyM is
distributed. The ratio ofρ to ρ̃ varies from 4× 10−34 for Mercury–Sun system (In detail,r represents the distanc
from the Sun to Mercury andM is the mass of the Sun. The mass of the planet is much smaller than the
1.8× 10−28 for Neptune–Sun system to 10−7 for Galaxy.

Keep this in mind or regardH as a constant, we obtain the motion equation of a planet

(34)u′′ + u = M

L2 − Q2u

L2 + 3Mu2 − 2Q2u3 − H 2

L2u3 ,

whereu ≡ 1/r and the prime denotes differentiation with respect toφ. L is the angular momentum of the plan
The termM/L2 is the most significant one. The two terms 3Mu2 andH 2/(L2u3) come from the GR (genera
relativity) effect and CE (cosmic expansion) effect, respectively.Q2u/L2 and−2Q2u2 are related to the charge
the source.Eq. (34)tells us the orbit of the test body will be influenced by the expansion of the universe. Sin

(35)
H 2/(L2u3)

M/L2 = 2ε =
{

8× 10−34, for Mercury,

3.6× 10−28, for Neptune,

so the influence is related to the ratio ofρ to ρ̃. It is very small and negligible.

5. Conclusion and discussion

In conclusion, we have presented the metric for the Reissner–Nordström black hole in the background
universe. It extends McVittie’s solution, Reissner–Nordström–de Sitter solution and the special case for
black hole of the Kastor and Traschen solution. Assume the evolution of the universe is much slower and a
formulas for computing the mass and charge of stationary space–time, we find that both the mass and charge o
black hole decrease with the expansion of the universe and increase with the contraction of the universe
find that the two typical scales, the time-like surface and the event horizon, of the black hole both shrink w
expansion of the universe and expand with the contraction of the universe. This is due to the fact that the m
charge of the black hole are both varying with the evolution of the universe.

To obtain the equation of motion of a planet, we rewrote the metric from the cosmic coordinate system
Schwarzschild or solar coordinate system and deduced the geodesic equation. The equation shows tha
of the planet in the Reissner–Nordström field embedded in the FRW universe will be influenced by the ev
of the universe. The magnitude of influence depends on the ratioε between the energy density of the system
the energy density of the universe. Since the ratioε is extremely small, varying from 4× 10−34 for Mercury–Sun
system, 1.8× 10−28 for Neptune–Sun system to 10−7 for Galaxy, the influence of the expansion of the univers
very small and negligible[9].
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