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Abstract

The metric for a Reissner—Nordstrém black hole in the background of the Friedman—Robertson—Walker universe is obtained.
Then we verified it and discussed the influence of the evolution of the universe on the size of the black hole. To study the
problem of the orbits of a planet in the expanding universe, we rewrote the metric in the Schwarzschild coordinates system and
deduced the equation of motion for a planet.
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1. Introduction

Black holes have been investigated in great depth and detail for more than forty years. However, almost all
previous studies have focused on isolated black holes. On the other hand, one cannot rule out the important and
more realistic situation in which black holes are actually embedded in the background of universe. Therefore, black
holes in non-flat backgrounds form an important topic.

As early as inL933, McVittie[1] found his celebrated metric for a mass-particle in the expanding universe. This
metric gives us an concrete example for a black hole in the non-flat background. It is just the Schwarzschild black
hole which is embedded in the Friedman—Robertson—Walker universe although there was no the notion of black
hole at that time. In 1993, the multi-black hole solutionthhe background of de Sitter universe was discovered
by Kastor and Traschef2]. The Kastor—Traschen solution describes the dynamical system of arbitrary number
of extreme Reissner—Nordstrom black holes in thekgemund of de Sitter universe. In 1999, Shiromizu and Gen
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extended it into the spinning versi¢8]. In 2000, Nayak et al4,5] studied the solutions for the Schwarzschild
and Kerr black holes in the background of the Einstein universe.

In this Letter, we extend the McVittie’s solution into charged black holes. We first deduce the metric for a
Reissner—Nordstrom black hole in the expanding universe; several special cases of our solution are exactly the
same as some solutions discovered previously. In the previous[@lorle have applied the asymptotic conditions
to derive the Schwarzschild metric in the expanding universe, which is exactly the same as that derived by McVittie
by solving the full Einstein equations. That demonstrates the power of this simple and straight-forward approach. In
this Letter we follow the same procedure to derive the metric for the Reissner—Nordstrom black holes in Friedman—
Robertson—-Walker universe. We then study the influences of the evolution of the universe on the size of the black
hole. Finally, in order to study the motion of the planet, we rewrite the metric from the cosmic coordinates system
to the Schwarzschild coordinates system.

2. Derivation of the metric

The metric of Reissner—Nordstrom black hole in the Schwarzschild coordinates system is given by

2 2
ds® = —(1— 2 Q—>de + (1— cLn Q—) di? +7%(d6? + sirf 6 dg?), (1)

whereM and Q are the mass and charge of the black hole, respectively.
For our purpose we rewrite the metgg. (1)in the isotropic spherical coordinates. We assumeithat v and

x1 = x. So make variables transformation

2 2
~ M
i=2v, §=2, 2f=x(l+—> —Q—Z, )
X X

then we can rewrit&qg. (1)as follows

_ M2 0? 2
2=_[Ei 2)2+ x;z] dv2+[(1+¥) QZ] (dx?+ x?d6? + x?sirf 0 dp?). (3)

As is known, the metric for the FRW (Friedman—Robertson—Walker) universe is given by
a®(v)
(1+ kx2/4)?

wherea(v) is the scale factor of the universe ahdives the curvature of space—time as a whole.
Taking account of equatior(8) and (4) we set the metric for a Reissner—Nordstrom black hole embedded in
the FRW universe as follows

di? = —dv? + (dx?+ x2do? + x?sir? 6 d¢?), (4)

dI? = —A%(v, x) dv? + B?(v, x)(dx? + x2d6% + x?sir? 0 d¢?). (5)
Then from equatiori;o1 = 0 one obtains
A(v,x) = f(v) B (6)
v =f(w)=—
9 x 2B 9
where “” denotes the derivative with respectio

Compare they11 terms inEgs. (3) and (5)the possible form for the functioB(v, x) is

B(v,x) = |:w(v x) + @] @ (7)
X
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We note that the mass and charge of the black hole is concentrated in the singularity. In other words, there is no
space distribution for mass and charge. Thuends which are related to the mass and charge, respectively, are
only the functions of time.

InsertingEq. (7)into Eq. (6) we obtain

wf : p f 99/ Sf
wo + (wq + wQ)m + w2 2wei2 (8)

2
(1+35)" — ==

In the case ob = const and the asymptotically flat conditiomsv = constx) should be reduced to thg'—goo
term inEqg. (3) Thus comparindeq. (8)with the \/—goo term inEq. (3) we infer the following identities should
always hold

wrf_

w

A(v,x) =

1’

(wi + ibg)—5- =0,
wex

. 2
a9/ _ (4
w2x?2 wx )’

sf s
T 2w2x2 T w2x? ©)
namely
wf=w, qf =—q, sf=-—2s. (20)
FromEqg. (10)we obtain
b(v) b M 0?
wzi, f:—,’ = —, S:—, (11)
J1+kx2/4 b =% b?

whereM andQ are two integration constant which are related to the mass and charge of the blaék holean
arbitrary function which is related to the scale factor of the universe; the fommisfobtained by inspecting the
McVittie'’s solution,

a a2
( Ja _M/f)

4
2 X M .
A2 = _ Y 2dv2+( Ve /ﬁ) (dx? 4+ x2d6? + x2sif0dg?),  (12)
(\/ iy M) V1+kx2/4 x
1+kx2/4

wherea = a(v).
Substitutingegs. (7), (8), (11)n Eq. (5) we obtain our final metric for the Reissner—Nordstrom black hole in
the background of FRW universe
2 2 2
[1- 25+ kx?/8)]"+ 55 (1+ kx?/4)
[(1+ M /11 kx2/4)? — 951+ kx2/4)]°
2 2 2 2
a M 0 .
—— |1+ =1+ kx2/4 ) — S (14 kx?/4) | (dx®+ x2d6? + x2sir? 0 d¢?
* (1+kx2/4)2|:< +ax At/ ) azxz( ks )} (" s ¢ )’(13)

where we have made a variable replacenént? — a(v). Eq. (13)is derived fromEq. (7)and whenu (v) = const,
k =0 Eq. (13)restorekq. (3) SoEq. (3)satisfiesEq. (7)

UZ

di*> = —
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For the Reissner—Nordstrém—de Sitter metric, we haxee’, k = 0, SOEq. (13)becomes

1_ M 0% 12 2 2 72
d12= _ [ a2x?2 a2x2] dv2+a2 1+ M _ Q_ (dx2+x2d92+x28in29d¢2). (14)
M2 02 712 ax a2x2
[(1+3)" - 5]

We will show in the next section th&q. (14)can be reduced to the familiar form in Schwarzschild coordinates.
WhenH = 0, Eq. (14)restores the Reissner—Nordstrém metric as giveladpy3) WhenQ = 0, Eq. (13)becomes

(- M)
(/)

2 4
a M
— 14+ —\/14+kx2/4 ) (dx?+x°d6? + x°sir? 0 dp?). 15
+(1+kx2/4)2< +ax +x/>(x+x + x“si ¢) (15)

It is just the McVittie solution. Another special case of our solution is for the extreme Reissner—Nordstrém black
hole,M = Q, in the de Sitter universe. In this cagay. (14)is reduced to a special case of the Kastor and Traschen
solution [2] for a single black hole,

di? =

1 2M\? :
di? = ————— dv® +a®( 1+ == ) (dx?+x2d6? + x?sir? 6 d¢?). (16)
(1 + 2_M)2 ax

In Eq. (16) a = ¢'"". It describes one extreme Reissner—Nordstrém black hole in the de Sitter universe.

3. Further discussion on the metric

In this section we will verify thatEq. (13) satisfies Einstein—Maxwell equations. The Einstein—Maxwell
equations may be written as

G = 87T(T/1,v + Euv),

Fuv=Au —Avp,

FIV =0, 17)
whereT,,, andE,, are the energy momentum for the perfect fluid @fectromagnetic fields, respectively, which
are defined by

Ty =(p+pUU, + pguv,

1 1
E;w:E(F;ng_ZgquaﬂFaﬁ)y (18)

wherep andp are the energy density and pressiifg.is the 4-velocity of the particles,, andA, are the tensor
and the potential for electromagnetic fields.

Input the components of the metrkeg. (13) to the Maple software package, we obtain the Einstein teGigor
and the energy momentum tenggy, andE,,, for the perfect fluid and the electromagnetic fields

2(14kx2/4
2nE8=2nE%= GRS x2/)2 )
Yaf[(1+ 2L/1+kx?/4)" — 551+ kx?/4)]
0%(1+ kx?/4)

(19)

27TE§ = 27TE§= —

4af[(1+ M T1 kx2/8)* — 951+ ka2/]"
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Substituting the above components of elegtagnetic tensor in the second equatiorEgf (18) we obtain the
non-vanishing components of electromagnetic ted&gor
FOL_ 1+ kx?/4)3%20
- 2 2
x2a3[1— M5 (1+ kx2/4) + $5 (1 + kx2/4))
1
X .
[(1+ X /15 ka2/8)? — LA+ ka2
Then substitutind=q. (20)in the second equation &q. (17) we obtain the non-vanishing components of the
potentialA,,

(20)

Ap= f FO%o0g11dx. (21)

Itis a straightforward work to verify thd&q. (20)also satisfies the last equatiorinq. (17) Sincer‘v” =0 always
holds, thus from Einstein equations we have @!," + E!.”. On the other hand, we have the relation

1 1
4rEL) =F'F, + F"F,) — Eg““F“/’Fag =FIF). + EgW’F””(F,,g;V — Fpuo — Foup)
=—F*J,=0. (22)

So both7),, and E,,, satisfy Bianchi identity. We therefore conclude tlzj. (13)is an exact solution of the
Einstein—Maxwell equations.

To show how the two parameted$ and Q are related to the mass and charge of the black hole, we assume
the evolution of the universe is much slower and apprately adopt the mass formula for the stationary space—
time[8] (to our knowledge, we can ontlefine the mass for the stationarydeasymptotically flaspace—time). We
find the mas9g and charge)g of the black hole are given by

M

_7
a

1
Mo = _S_/Eabcdvcgd =
7T
S

1
Qo= o / €abea F = %- (23)

N

Thus for the observer in the infinity, the black hole’s mass and charge will decrease with the expansion of the
universe and increase with the contraction of the universe. We will return to this point in the following discussion
again.

Let us now consider the two typical surfaces of the blagle in the cosmic coordit@s system. We obtain the
radius of the time-like limit surface (TL33]

M2 2
”TLSZ‘/—z—Q—z, (24)
a a

and the time derivative of the radius of the event horii8jn

M2 02
alrfy  aPrgy

a[(1+ L) - 2

areH TEH

FEH=+ (25)

where two signs 4" and “—" correspond to the expanding and the contracting universe, respectively. Since the
event horizon is always in the inner of TLS, we hagg < 0 for expanding universe angy > 0 for contracting
universe.
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Egs. (24), (25})ell us the typical scales of the black hole aresdly related to the evolution of the universe.
They shrink with the expansion of the universe and expand with the contracting of the universe. For asymptotically
flat backgroundg = 1 andregy = 0, these two kind of surfaces coincide

rrts = ren= /M7= G2 @9)

Comparingeq. (26)with Eg. (24) we find that the black hole in the expanding universe has the Mass M /a
and charg&o/a. They are both dependent on the scale of the universe and not a constant.
FromEqg. (23) one obtain the lifetime of a black hole

~—, 27
T (27)
It is approximately the age of the universe.

4. Equation of motion of a planet

In this section, we turn to the discussion of the problem of the orbit for a planet in the expanding universe.
Current measurements of the microwave background radiation show that our universe is highly likely flat in
space[7]. So in the next we consider the local dynamics in the space-flat space case=.8.,Eq. (13)is
then reduced to

1_ M2 +Q_2 2 M 2 2 2
ar =\ o azxz)zdvz—i-az[(l—i——) - gz] (dx? + x2d0? + x2sin? 0 d¢?). (28)
[(1+2)7 - %] O
asx

In order to study the motion of a planet, we should rewEtg (28)in the Schwarzschild or solar coordinates
system. Similar tdeq. (2) make variables transformation as follows

2 2
M
T =2v, s =2, 2r=ax(l+—> —%. (29)
ax acx
ThenEg. (28)becomes
2M Q2 2mM o2\
ds® = —<1— . Q—2 —Hzrz)dT2+ (1— —— Q—z) dr?
r r r r
2M  Q%\ Y2 .
—2rH<1— — 4 Q—2> dT dr + r?(d6? + sir? 0 d¢?), (30)
r r
whereH = %j—? is the Hubble parameter. The coordinate systeTof, 0, ¢) is hot orthogonal. We can eliminate
the coefficient ot/ T dr by introducing a new time coordinate,The form ofEq. (30)suggests we set
2M 02\ Y2 2M Q2 -1
dt = F(T,r)dT + F(T, r)rH(l— — 4 Q—Z) (1— ———— Q—z — Hzrz) dr, (31)
r r r r
whereF (T, r) is a perfect differential factor and it always exists. Tl (29)can be written as
2M Q2 2M Q2 -1
ds® = —(1— —+ Q—2 - H2r2) F2dr* + (1 -+ Q—2 — H2r2) dr?+r2d?, (32)
r r r r

whereH and F are both the functions of variablesandr. If p = p =0, we haveH = 0. Egs. (30) and (32)oth
turn into the static Reissner—Nordstrém solution.M 2- — 0 andQ?/r2 — 0, Eq. (32)represents the solution for
the Friedman—Robertson—Walker univeis Schwarzschild or solar coordinate system. For the de Sitter universe,
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H is a constantEq. (31)tells us we may choosé&(z,r) = 1. ThenEqg. (32)is just the well-known Reissner—
Nordstrom—de Sitter space—time. It is a static space—tifnes The geodesic is time-independent. In other words,
the orbit of the planet does not vary in the background of de Sitter universe.

In general,H is the function ofr andr. SoEq. (32)is a non-stationary space—time and the geodesic in this
space—time is generally time-dependent. Thus we conc¢hateuniverse expansion wallinfluence the orbit of
planet. However, the effect ter#?,2 is very small. Since

_ H%? P P
= oMir T MJ@nr33) T 5 (33)

where p is the universe energy density apds the energy density within the regienwhere the energy is
distributed. The ratio of to 5 varies from 4x 1034 for Mercury—Sun system (In detail represents the distance
from the Sun to Mercury an® is the mass of the Sun. The mass of the planet is much smaller than the Sun.),
1.8 x 1028 for Neptune—Sun system to 10for Galaxy.

Keep this in mind or regar@l as a constant, we obtain the motion equation of a planet

M 2 H?
u”+u=——2+3Mu2—2Q2u3—

L2 L2 L2y3’ (34)

whereu = 1/r and the prime denotes differentiation with respeapid. is the angular momentum of the planet.
The termM/L? is the most significant one. The two termaf82 and H?/(L?u®) come from the GR (general
relativity) effect and CE (cosmic expansion) effect, respectiv@Ru /L2 and—202u? are related to the charge of
the sourcekq. (34)tells us the orbit of the test body will be influenced by the expansion of the universe. Since
H?/(L?u®) o {8 x 10734, for Mercury, (35)
M/L2 7 |36x10728 for Neptune

so the influence is related to the ratiowfo p. It is very small and negligible.

5. Conclusion and discussion

In conclusion, we have presented the metric for the Reissner—Nordstrom black hole in the background of FRW
universe. It extends McVittie’s solution, Reissner—Nordstrom—de Sitter solution and the special case for a single
black hole of the Kastor and Traschen solution. Assume the evolution of the universe is much slower and adopt the
formulas for computing the mass and charge of statipspace—time, we find that both the mass and charge of the
black hole decrease with the expansion of the universe and increase with the contraction of the universe. We also
find that the two typical scales, the time-like surface and the event horizon, of the black hole both shrink with the
expansion of the universe and expand with the contraction of the universe. This is due to the fact that the mass and
charge of the black hole are both varying with the evolution of the universe.

To obtain the equation of motion of a planet, we rewrote the metric from the cosmic coordinate system to the
Schwarzschild or solar coordinate system and deduced the geodesic equation. The equation shows that the orbil
of the planet in the Reissner—Nordstrom field embedded in the FRW universe will be influenced by the evolution
of the universe. The magnitude of influence depends on thegdigween the energy density of the system and
the energy density of the universe. Since the rati® extremely small, varying from # 10-34 for Mercury—Sun
system, 18 x 1028 for Neptune—Sun system to 10for Galaxy, the influence of the expansion of the universe is
very small and negligibl§9].
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