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Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene

variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 con-

trol subjects of European ancestry. Five non-HLA loci were associated with FL risk: 11q23.3 (rs4938573, p ¼ 5.79 3 10�20) near CXCR5;

11q24.3 (rs4937362, p¼ 6.763 10�11) near ETS1; 3q28 (rs6444305, p¼ 1.103 10�10) in LPP; 18q21.33 (rs17749561, p¼ 8.283 10�10)

near BCL2; and 8q24.21 (rs13254990, p¼ 1.063 10�8) near PVT1. In an analysis of the HLA region, we identified four linked HLA-DRb1

multiallelic amino acids at positions 11, 13, 28, and 30 that were associated with FL risk (pomnibus ¼ 4.203 10�67 to 2.673 10�70). Addi-

tional independent signals included rs17203612 in HLA class II (odds ratio [ORper-allele] ¼ 1.44; p ¼ 4.593 10�16) and rs3130437 in HLA

class I (ORper-allele ¼ 1.23; p¼ 8.233 10�9). Our findings further expand the number of loci associated with FL and provide evidence that

multiple common variants outside the HLA region make a significant contribution to FL risk.
Follicular lymphoma (FL [MIM 613024]) is a common B

cell malignancy characterized by a variable indolent clin-

ical course that can take decades to manifest and, in

some cases, can be followed by transformation to aggres-

sive diffuse large B cell lymphoma (DLBCL).1,2 The previ-

ous genome-wide association studies (GWASs) of relatively

small sample sizes have revealed FL susceptibility loci in

the human leukocyte antigen (HLA) class I and class II re-

gions on 6p21.32-33.3–7 To identify new FL susceptibility

loci, we genotyped 2,301 FL case subjects and 2,854 con-

trol subjects of European descent from 22 studies (NCI FL

GWAS) as part of a larger initiative using the Illumina

OmniExpress Beadchip (Table S1; Figure S1 available on-

line). All studies obtained informed consent from partici-

pants and approval from the respective Institutional

Review Boards for this study. Cases were ascertained from

cancer registries, clinics, or hospitals or through self-report

verified by medical and pathology reports (Table S1). The

phenotype information for all cases was reviewed centrally

at the International Lymphoma Epidemiology Con-

sortium (InterLymph) Data Coordinating Center, and

cases were classified according to the proposed scheme

by the InterLymph Pathology Working Group based on
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(2008) (Table S1). Genotypes were called using Illumina

GenomeStudio software, and quality-control duplicates

showed >99% concordance. All initial data analyses and

management were conducted using the Genotyping Li-

brary and Utilities (GLU), and extensive quality-control

metrics were applied to the data. Specifically, monomor-

phic SNPs and SNPs with call rates <93% were removed,

and samples with call rates %93%, mean heterozygosity

<0.25 or >0.33 based on the autosomal SNPs, or gender

discordance (>5% heterozygosity on the X chromosome

for males and <20% heterozygosity on the X chromosome

for females) were excluded. Unexpected duplicates

(>99.9% concordance) and first-degree relatives on the

basis of identity-by-descent sharing with Pi-hat >0.40

were removed. Ancestry was assessed using the GLU struc-

t.admix module, and participants with <80% European

ancestry were also excluded (Figure S2). After these qual-

ity-control steps, 94% of the participants and 611,844

SNPs remained for analysis (Tables S2 and S3). Genotype

data previously generated on the Illumina Omni2.5

BeadChip8 from an additional 3,536 control subjects

from 3 of the 22 studies (ATBC, CPSII, and PLCO) were
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Table 1. Association Results for Loci and SNPs Associated with Risk of Follicular Lymphoma

Chr
Nearest
Gene(s) SNP Positiona

Risk
Alleleb

Other
Allele RAFc Stage OR (95% CI) p Phetd I2e

Known Locus

6p21.32 HLA region rs12195582
(rs115374828)

32444544 T C 0.465 NCI 1.88 (1.74–2.02) 3.26 3 10�58 – –

0.498 previous GWAS 1.55 (1.33–1.80) 1.10 3 10�8

0.435 replication 1.75 (1.60–1.90) 1.17 3 10�37

– combined 1.78 (1.69–1.88) 5.36 3 10�100 2.75 3 10�1 19.56

Genome-wide Significant Loci

11q23.3 CXCR5 rs4938573 118741842 C T 0.204 NCI 1.30 (1.19–1.43) 5.97 3 10�9 – –

0.193 previous GWAS 1.37 (1.14–1.64) 0.0008

0.188 replication 1.39 (1.25–1.54) 3.17 3 10�10

– combined 1.34 (1.26–1.43) 5.79 3 10�20 7.69 3 10�1 0.00

11q24.3 ETS1 rs4937362 128492739 T C 0.456 NCI 1.16 (1.08–1.25) 7.01 3 10�5 – –

0.465 previous GWAS 1.33 (1.16–1.54) 5.90 3 10�5

0.467 replication 1.17 (1.08–1.28) 0.0002

– combined 1.19 (1.13–1.25) 6.76 3 10�11 7.52 3 10�1 0.00

3q28 LPP rs6444305 188299902 G A 0.276 NCI 1.16 (1.08–1.27) 0.0002 – –

0.269 previous GWAS 1.30 (1.06–1.59) 0.01

0.281 replication 1.25 (1.14–1.37) 2.21 3 10�6

– combined 1.21 (1.14–1.28) 1.10 3 10�10 4.42 3 10�1 0.00

18q21.33 BCL2 rs17749561 60783211 G A 0.910 NCI 1.43 (1.25–1.61) 2.18 3 10�7 – –

0.908 previous GWAS 1.23 (0.96–1.57) 1.10 3 10�1

0.905 replication 1.28 (1.10–1.49) 0.002

– combined 1.34 (1.22–1.47) 8.28 3 10�10 5.43 3 10�2 49.37

8q24.21 PVT1 rs13254990 129076451 T C 0.315 NCI 1.20 (1.11–1.30) 8.39 3 10�6 – –

0.307 previous GWAS 1.15 (0.98–1.34) 0.08

0.315 replication 1.16 (1.06–1.27) 0.001

– combined 1.18 (1.11–1.24) 1.06 3 10�8 6.99 3 10�1 0.00

Suggestive Loci

17q25.3 C17orf62 rs3751913 80405552 C T 0.121 NCI 1.25 (1.11–1.39) 0.0001 – –

0.126 previous GWAS 1.42 (1.16–1.75) 0.0008

0.121 replication 1.14 (1.01–1.29) 0.04

– combined 1.23 (1.14–1.33) 2.24 3 10�7 2.59 3 10�1 21.50

3q13.33 CD86 rs2681416 121817613 A G 0.311 NCI 1.24 (1.15–1.35) 6.73 3 10�8 – –

0.305 previous GWAS 1.15 (0.99–1.34) 0.06

0.329 replication 1.06 (0.97–1.15) 0.23

– combined 1.16 (1.09–1.22) 2.33 3 10�7 5.54 3 10�4 72.83

18q12.3 SLC14A2 rs11082438 42865210 G T 0.936 NCI 1.39 (1.18–1.61) 4.65 3 10�5 – –

0.941 previous GWAS 1.46 (1.07–1.99) 0.02

0.935 replication 1.22 (1.02–1.46) 0.03

– combined 1.33 (1.19–1.48) 4.01 3 10�7 9.26 3 10�1 0.00

aPosition according to human reference NCBI37/hg19.
bAllele associated with an increased risk of FL.
cRisk allele frequency in controls.
dCochran’s Q test heterogeneity p value.
eI2 heterogeneity index.
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the NCI FL GWAS and stages 1 and 2 com-
bined (red diamond), recombination hot-
spots, and LD plots.
also included, resulting in a total of 2,142 FL case subjects

and 6,221 control subjects for analysis (NCI FL GWAS;

Table S4).

To evaluate population substructure, a principal compo-

nents analysis was conducted using the GLU struct.pca

module. Plots of the top principal components are shown

in Figure S3. Association testing was conducted assuming

a log-additive genetic model adjusted for age, sex, and sig-

nificant principal components. A quantile-quantile plot

of the association results revealed an enrichment of

SNPs with small p values even after removal of all SNPs

in the HLA region, which has been previously reported

to be associated with FL (lambda ¼ 1.018, Figure S4). In

addition to the HLA region, one locus on 11q23.3 reached

genome-wide statistical significance (p < 5 3 10�8)

(Figure S5).

To increase power to detect associations in stage 1, we

added data on 586 FL case subjects and 1,537 control sub-

jects from two independent previously published GWASs

(UCSF24 and SCALE3) to the newly genotyped NCI FL

GWAS (Tables S1 and S4; Figure S1). Because different gen-

otyping platforms were used (Table S2), we imputed all

three GWASs (NCI, UCSF2, SCALE) using the 1000

Genomes Project (1kGP) v.3 (March 2012 release) refer-

ence panel9 and IMPUTE2.10 The genotype data under-

went rigorous quality control filters before imputation
The American Journal of Human Ge
(Table S2), and association testing

was conducted separately for each

study using SNPTEST v.2 adjusted

for age, sex, and significant principal

components.

Association results from the NCI FL

GWAS and the two previously geno-

typed GWASs (totaling 2,728 case

subjects, 7,758 control subjects in

stage 1) were analyzed in a meta-anal-

ysis using a fixed-effects inverse-vari-

ancemethod based on the b estimates

and standard errors from each study.

Only SNPs with information scores

>0.3 were included in the meta-

analysis. In the stage 1 meta-analysis,

we identified three non-HLA loci

(11q23.3, 11q24.3, and 3q13.33)

that reached genome-wide signifi-

cance (p < 5 3 10�8). To confirm

these loci and discover additional

loci, 11 non-HLA SNPs with p < 5 3

10�6 from the stage 1 meta-analysis
were chosen for replication in stage 2. Only SNPs with a

MAF > 1% were considered for replication, and no SNPs

were taken forward for replication in regions where they

appeared to be singletons or obvious artifacts. Stage 2 repli-

cation was undertaken in a new set of 1,795 FL case sub-

jects and 5,586 control subjects, which included 119 case

subjects and 349 control subjects from another GWAS

(UCSF1/NHS) genotyped on the OmniExpress microarray

and imputed using IMPUTE210 and the 1kGP data,9 and

1,676 cases and 5,237 controls with de novo genotyping

(Tables S1, S2, and S4). All 11 SNPs were either directly

genotyped or had a high imputation information score

(average information score ¼ 0.92). Genotyping of these

11 SNPs by TaqMan (Applied Biosystems) in 470 subjects

from the NCI GWAS yielded >88.9% concordance with

the imputed dosages (median concordance¼ 99.6%), indi-

cating that imputation accuracy was high. Association

testing was conducted for each study using either GLU

(de novo genotyping) or SNPTEST (UCSF1/NHS), adjusting

for relevant factors.

Results from the stage 1 and 2 studies were then meta-

analyzed using a fixed effects model. In the combined

meta-analysis, we found five non-HLA loci that achieved

genome-wide significance (p < 5 3 10�8) at 11q23.3

(rs4938573, p ¼ 5.79 3 10�20), 11q24.3 (rs4937362, p ¼
6.76 3 10�11), 3q28 (rs6444305, p ¼ 1.10 3 10�10),
netics 95, 462–471, October 2, 2014 465
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18q21.33 (rs17749561, p ¼ 8.28 3 10�10), and 8q24.21

(rs13254990, p ¼ 1.06 3 10�8); and three suggestive loci

(p < 5 3 10�7) at 17q25.3 (rs3751913, p ¼ 2.24 3 10�7),

3q13.33 (rs2681416, p ¼ 2.33 3 10�7), and 18q12.3

(rs11082438, p ¼ 4.01 3 10�7) (Table 1). Two of the

five loci that reached genome-wide significance in the

stage 1 and 2 meta-analysis (11q23.3 and 11q24.3) were

genome-wide significant in the stage 1 meta-analysis and

were robustly replicated in stage 2 (p ¼ 3.17 3 10�10 and

p ¼ 0.0002, respectively). The remaining three loci

achieved genome-wide significance after inclusion of the

stage 2 data and therefore would benefit from further vali-

dation in other independent samples.

rs4938573 at 11q23.3 maps 12.6 kb upstream of the

chemokine (c-x-c motif) receptor 5 gene (CXCR5 [MIM

601613]) (Figure 1). The 11q24.3 locus marked by

rs4937362 (p ¼ 6.76 3 10�11) is approximately 35 kb

upstream of v-ets avian erythroblastosis virus E26 onco-

gene homolog 1 (ETS1 [MIM 164720]) (Figure 2). The

3q28 locus marked by rs6444305 maps to a region that

overlaps the LIM domain containing preferred transloca-

tion partner in lipoma (LPP [MIM 600700]) and is

836.4 kb upstream of BCL6 (MIM 109565) (Figure 3).

rs17749561 in 18q21.33 is located 7.4 kb downstream

of the antiapoptotic oncogene, B cell CLL/lymphoma 2

(BCL2 [MIM 151430]) (Figure 4); and rs13254990 at
466 The American Journal of Human Genetics 95, 462–471, October 2, 2014
8q24.21 maps near the oncogene,

plasmacytoma variant translocation

1 gene (PVT1 [MIM 165140]) (Fig-

ure 5). Characteristics of these loci

are presented in Table S5. The sug-

gestive SNP rs3751913 is in chromo-

some 17 opening reading frame 62

(C17orf62); rs2681416 is in CD86

molecule (CD86) (MIM 601020); and

rs11082438 is in solute carrier 14A2

(SLC14A2 [MIM 601611]) (Table 1,

Figure S6). Using the Cochran’s Q

test and by estimating the I2 heteroge-

neity index, no substantial heteroge-

neity was observed among the studies

for any SNP (pheterogeneity R 0.05)

except for the suggestive locus,

rs2681416 at 3q13.33 (Table 1).

Although the p value for heterogene-

ity for rs13254990 was borderline

significant, all of the effect esti-

mates for the individual studies were

above 1.0.
To explore potential functional roles for associated SNPs

and their surrogates (r2 > .80) and to assess the B cell-spe-

cific chromatin dynamics of regions overlapping with the

associated SNPs, we conducted HaploReg11 and ChroMoS

analyses.12,13 Here we found that three loci, 11q23.3,

3q13.33, and 8q24.21, were annotated as overlapping

enhancers in the lymphoblastoid cell line GM12878,14

suggesting that our GWAS signals map to variants that

overlap within regions of active chromatin state in B cells

(Table S6; Figure S7). However, an expression quantitative

trait loci (eQTL) analysis using publicly available RNA

sequencing data on lymphoblastoid cell lines (available

from the Gene Expression Omnibus [GEO] repository

under accession number GSE16921) yielded no notable

(FDR < 0.05) associations of the selected SNPs with gene

expression levels. Additional analysis using microarray

data (GEO accession number GSE8052) did not reveal

any significant eQTL associations for the genome-wide

significant loci, although the suggestive SNP, rs3751913,

was associated with C17orf62 expression (data not

shown). Thus, further work is needed to identify and

characterize the biological basis of these FL susceptibility

alleles.

Consistent with previous smaller reports, the strongest

effects on FL risk were observed in the HLA region at

6p21.32-33, where 8,104 SNPs achieved genome-wide
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significance (p < 5 3 10�8) in the stage 1 meta-analysis

(Figure S8). One top SNP, rs12195582, was carried forward

for replication in stage 2 and reached a combined p ¼
5.36 3 10�100 in stages 1þ2 (Table 1). To further refine

the association of HLA variants with FL risk and determine

whether specific coding variants within HLA genes

contributed to the diverse association signals, we imputed

classical HLA alleles and amino acids (AAs) at seven loci

(HLA-A [MIM 142800], HLA-B [MIM 142830], HLA-C

[MIM 142840], HLA-DQA1 [MIM 146880], HLA-DQB1

[MIM 604305], HLA-DRB1 [MIM 142857], and HLA-

DPB1 [MIM 142858]) on the four GWAS data sets from

stages 1þ2 (NCI, USCF2, SCALE, UCSF1/NHS) using

SNP2HLA15 and a reference panel from the Type 1 Diabetes

Genetics Consortium (T1DGC) consisting of genotype

data from 5,225 individuals of European descent that

were typed for classical HLA alleles. The imputation accu-

racy of HLA types was high (>95.23%) when compared

to HLA sequencing data on a subset of NCI and UCSF2

samples scanned as part of this study.16,17 Due to the

limited number of SNPs (7,253) in the T1DGC reference

set, imputation of HLA SNPs was conducted with IMPUTE2

and the 1kGP reference set. A total of 68,488 SNPs, 201

classical HLA alleles (two- and four-digit resolution), and

1,038 AA markers including 103 AA positions that were
The American Journal of Human Ge
‘‘multiallelic’’ with three to six

different residues present at each

position, were successfully imputed

(information score > 0.3 for SNPs

or r2 > 0.3 for alleles and AAs) and

available for downstream analysis.

Association testing was conducted

using PLINK,18 where multiallelic

markers were analyzed as binary

markers (e.g., allele present or ab-

sent). A meta-analysis was conducted

where we tested SNPs, HLA alleles,

and AAs across the HLA region for as-

sociation to FL. Among the imputed

AAs and HLA alleles tested, the top

associated signal mapped to a DRb1

AA at position 28 that carries three

possible amino acids: Glu, Asp, and

His. Asp was associated with low

(OR ¼ 0.53; p ¼ 6.1 X 10�72) and

Glu with high (OR ¼ 1.86; p ¼
7.99 3 10�69) FL risk (Table S7).

Global omnibus tests of position 28

(2.49 3 10�67 % p % 3.84 3 10�67)
and other nearby DRb1 AA positions at 11, 13, and 30

yielded statistically similar associations with FL risk (Table

S9). These results support the previously reported associa-

tion between FL and DRb1 position 13 in a small study

of Europeans.19 However, due to the high LD between po-

sitions 11, 13, 28, and 30, we were unable to determine the

significance of one position at the exclusion of the other

through reciprocal conditional analyses. The most signifi-

cant imputed two- or four-digit HLA allele in our analysis

was DRB1*01 (OR ¼ 1.85; p ¼ 2.573 10�42) (Table S7), en-

coded by Glu28, Cys30, Phe13, and Leu11 (Table S9). An

association with FL risk was found for HLA-DRB1*07:01

that is also encoded by residues at 11, 13, 28, and 30

(p ¼ 1.59 3 10�20) (Table S9). Positions 11, 13, 28, and

30 reside in the middle of the HLA-DR heterodimer mole-

cule in the peptide binding cleft (Figure S9) that specif-

ically impact binding pockets 4, 6, and 7. These are key

peptide binding anchors in DRb120 that influence binding

preferences of alleles,21 suggesting an important role for

DRb1 peptide presentation in follicular lymphomagenesis.

To identify independent HLA variants controlling for

DRb1 28 (used as a surrogate for the 11, 13, 28, and 30

group), we included all genotyped and imputed HLA

SNPs, AAs, and alleles in a forward stepwise analysis. The

most significant variant after controlling for DRb1 28 was
netics 95, 462–471, October 2, 2014 467
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rs17203612 (p ¼ 4.59 3 10�16), an intergenic SNP 39.2 kb

and 99.7 kb downstream of HLA-DRA (MIM 142860) and

HLA-DRB1, respectively (Figure 6; Table S10). A conditional

analysis on DRb1 28 and rs17203612 revealed that the

next most statistically significant variant was rs3130437

(p ¼ 8.23 3 10�9) located 15.6 kb downstream of HLA-C

in HLA class I (Figure 6; Table S10). After controlling for

DRb1 28, rs17203612, and rs3130437, no additional sig-

nals with p < 5 3 10�8 were observed (Figure 6). Of note,

we did see a residual signal (p ¼ 8.18 3 10�6) at the func-

tionally relevant DPb1 Glu84 position,22 a reported risk

locus for Hodgkin lymphoma.23 A conditional analysis of

DRb1 28, rs17203612, and rs3130437 eliminated the

majority of residual effects for the previously reported

HLA SNPs and alleles associated with FL (Table S11).

We conducted a series of preliminary bioinformatics

analyses to explore the potential functional relevance of

rs17203612 and rs3130437 using publicly available RNA

sequencing expression and methylation data and found

significant (FDR < 0.05) gene expression and methylation

differences associated with rs17203612- and rs3130437-

linked SNPs (Tables S12 and S13). Specifically, we found

significant gene expression changes associated with

rs12194148, a proxy for rs17203612, in class II (HLA-

DRB5 [MIM 604776], HLA-DRB6, HLA-DRB1, HLA-DQB1,

HLA-DQB2 [MIM 615161], HLA-DQA1, HLA-DQA2 [MIM
468 The American Journal of Human Genetics 95, 462–471, October 2, 2014
613503], BTNL2 [MIM 606000],

C6orf25); and with rs3130439, a

proxy for rs3130437, in HLA class I

(PSORS1C2, PSORS1C3, DPCR1 [MIM

613928]) (Table S12). Of note, ten

of the rs17203612-linked SNPs that

showed correlation with higher

HLA-DQB1 expression also showed

correlation with lower HLA-DQB1

methylation levels (Table S12) that

further supports the potential role

of HLA class II FL-associated SNPs

in HLA-DQB1 regulation.24,25 Addi-

tional eQTL analyses using micro-

array data also suggested potential

eQTL associations with HLA-C,

TCF19 (MIM 600912), and HLA-B

expression (Table S14). However, we

did not observe significant enrich-

ment of particular regulatory markers

within these associated regions,

although overlap with some regulato-

ry signals was observed (Table S15).
In summary, our study identified five non-HLA suscepti-

bility alleles that were robustly associated with FL risk.

Moreover, our work highlights the important role of HLA

structural variants and regulatory SNPs in the etiology of

FL, advances the catalog of HLA and non-HLA genetic var-

iants associated with FL risk, and provides further evidence

for a role of DRb1 peptide presentation in FL. Functional

studies will be required to elucidate the biological basis

of these loci and to determine their role in follicular

lymphomagenesis.
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Web Resources

The URLs for data presented herein are as follows:

1000 Genomes, http://browser.1000genomes.org

ChroMoS, http://epicenter.immunbio.mpg.de/services/chromos

Gene Expression Omnibus (GEO), http://www.ncbi.nlm.nih.gov/

geo/

glu-genetics, https://code.google.com/p/glu-genetics/

HaploReg, http://www.broadinstitute.org/mammals/haploreg/

haploreg.php

IMPUTE2, http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

Online Mendelian Inheritance in Man (OMIM), http://www.
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PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/
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