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Abstract The classical functions of bile acids include acting as detergents to facilitate the digestion and
absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose
homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in
compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation
that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary
compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size,
and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid
signaling and their downstream metabolic targets. This review discusses recent advances in our
understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic
consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR)
and the G-protein-coupled bile acid receptor (TGR5).
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Figure 1 Bile acid (BA) mediated activation of FXR and TGR5
pathways in the enterohepatic circulation and systemic tissues. In the
hepatocyte, bile acid activation of FXR increased SHP expression, which
can decrease expression of SREBP1c and lipogenesis. Hepatic SHP
activation can also lead to decreased expression of G6Pase and PEPCK,
and reduced gluconeogenesis. FXR regulation of lipid metabolism and
transport may involve decreasing the expression of fatty acid synthase
(FAS) and apolipoproteins such as ApoAI, and inducting PPARα. FXR
also controls bile acid transport by titrating the expression of NTCP
(import) and BSEP (export) in the hepatocyte, and ASBT, OSTα-OSTβ,
and IBABP in ileal enterocytes. FXR stimulation in the intestine increases
the production of FGF15/19, which can have systemic effects on acetyl-
CoA carboxylase 2 (ACCII), SREBP1c and PPAR expression in white
adipose. TGR5 stimulation in the brown adipose (and skeletal muscle, not
pictured) can stimulate deiodinase (DIO2) expression, which leads to
increased energy expenditure and metabolic rate. TGR5 activation in the
colon (not shown) can also increase release of glucagon-like polypeptide-1
(GLP-1), leading to improved glucose disposition and increased insulin
sensitivity.
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1. Introduction

Research over the past 80 years has yielded considerable insight
into the role of bile acids in intestinal fat absorption, hepatic bile
formation, and cholesterol homeostasis1. However more recently,
it has become apparent that bile acids also serve as signaling
molecules with metabolic effects that extend beyond their
control of hepatobiliary and intestinal function1–3. This has
generated considerable renewed interest in bile acids and their
metabolism. Bile acids are steroid acids synthesized from choles-
terol in the liver4. Following their synthesis, bile acids are secreted
along with other biliary constituents into the small intestine.
After functioning in the proximal intestine to promote nutrient
digestion and absorption, bile acids travel down the length
of the small intestine to the terminal ileum for absorption. The
bile acids are then carried in the portal circulation back to the
liver for uptake and re-secretion into bile. The process of
intestinal absorption is very efficient and about 95% of the bile
acids secreted into the small intestine are reclaimed. Those bile
acids that escape absorption pass into the colon and can be
eliminated in the feces. Specialized membrane transporters
expressed on the apical and basolateral membranes of the
hepatocyte and ileal enterocyte largely mediate the movement of
charged plasma membrane-impermeant bile acids molecules across
those cell barriers5. For hepatocytes, the major transporters are the
Naþ-taurocholate cotransporting polypeptide (NTCP; SLC10A1)
and members of the organic anion transporting polypeptide
(OATP) family (OATP1B1 and OATP1B3 in humans) on the
sinusoidal membrane and the bile salt export pump (BSEP;
ABCB11) on the canalicular membrane. For the ileal enterocyte,
the major transporters are the apical sodium dependent bile
acid transporter (ASBT; SLC10A2) on the brush border
membrane and the heteromeric organic solute transporter
alpha-beta (OSTα-OSTβ; SLC51A, SLC51B) on the basolateral
membrane6,7. In this paradigm, the ASBT and OSTα-OSTβ
function as major gatekeepers for the intestinal compartment of
the enterohepatic circulation of bile acids. However, in addition to
being important for determining the fate of bile acids, i.e., their
absorption versus their excretion in the feces, bile acid uptake
by the ileal enterocyte is important for gut-liver signaling
and regulation of bile acid synthesis. During transit through the
ileal enterocyte, bile acids activate the nuclear receptor farne-
soid X nuclear receptor (FXR), and increase transcription of
the polypeptide hormone, fibroblast growth factor-19 (mouse
ortholog, FGF15). FGF15/19 is then released from the intestine
and travels to the liver where it signals through its cell surface
receptor, a complex of the fibroblast growth factor receptor-4
(FGFR4) and its protein co-receptor β-Klotho, to repress tran-
scription of the microsomal cytochrome P450 gene cholesterol
7α-hydroxylase (Cyp7a1) and inhibit hepatic bile acid synthesis8.
Although a major function of the FXR-FGF15/19 pathway
is to control hepatic bile acid synthesis and prevent bile acid
accumulation, there is also evidence that this pathway can impact
lipid, carbohydrate, and energy metabolism9–11. Bile acids are
being viewed increasingly as metabolic regulators, and this has
opened the door to targeting bile acid-related pathways as
potential therapies for nonalcoholic fatty liver disease and other
metabolic disorders2,12,13. This review focuses on the crosstalk
between the enterohepatic cycling of bile acids and the metabolic
consequences of signaling via bile acid-activated receptors
such as FXR and TGR5 (the G-protein-coupled bile acid receptor)
(Fig. 1).
2. Bile acid signaling pathways and metabolic regulation

2.1. Effects of hepatic FXR on metabolism

FXR was established as the primary bile acid nuclear receptor in
199914,15. Although expressed in a variety of tissues such as white
adipose, kidney and adrenal, FXR is expressed at highest levels in
the liver and intestine and is best known for its role in maintaining
bile acid homeostasis. This is accomplished in part by regulating
the expression of bile acid transporters such as BSEP, OSTα-
OSTβ and NTCP, and the expression of transcription factors such
as small heterodimer partner (SHP), which is involved in the
repression of CYP7A1. However, FXR also regulates the meta-
bolism of other lipids, either directly or indirectly via its effects on
bile acid metabolism. For example, FXR-mediated repression of
hepatic bile acid synthesis also reduces the catabolism and
elimination of cholesterol as a result of the cholesterol-bile acid
precursor-product relationship4,16. Through such direct or indirect
mechanisms, FXR has been associated with a myriad of effects on
lipid metabolism. With regard to triglyceride metabolism, activa-
tion of FXR by the natural agonist cholic acid reduces hepatic
triglyceride levels by decreasing sterol regulatory element binding
protein-1c (SREBP1c)-stimulated lipogenesis in a mechanism
involving SHP17. These effects of FXR on SREBP1c expres-
sion and triglyceride synthesis may be mediated in part by the
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peroxisome proliferator-activated receptor gamma coactivator 1
alpha (PGC1α)18. In humans, FXR can induce expression of the
nuclear receptor peroxisome proliferator-activated receptor alpha
(PPARα), a master regulator of fatty acid metabolism19.
In this way, activation of FXR could lead to increased lipolysis,
increased fatty acid oxidation, and decreased lipogenesis. FXR's
list of actions also encompasses effects on lipoprotein metabo-
lism20. For example, studies have shown that FXR can affect
plasma lipid transport by decreasing expression of the apolipo-
proteins (Apo) as ApoAI and ApoCII, and increasing ApoCIII;
FXR also induces expression of the very low density lipoprotein
(VLDL) receptor to contribute to lipoprotein clearance21–25.

In addition to its role in lipid metabolism, FXR may regulate
glucose metabolism26,27. FXR induction of SHP expression can
decrease expression of hepatocyte nuclear factor-4 alpha (HNF4α)
targets such as the gluconeogenic genes glucose-6-phosphatase
(G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK)28.
This may be accomplished in part by FXR modulation of hepatic
PGC1α to repress expression of these gluconeogenic genes29.
Activation of FXR also stimulates expression of pyruvate dehy-
drogenase kinase, which may further suppress glycolysis and
enhance fatty acid oxidation30. Finally, activation of Akt and
effects on insulin secretion and signaling by FXR suggest that
multiple pathways may be mediating its effects on glucose
metabolism31.
2.2. Effects of intestinal FXR on metabolism

FXR activation in the intestine, specifically the ileum, has a major
role in bile acid homeostasis. FXR regulates expression of the ileal
bile acid transporters, ASBT, OSTα-OSTβ and the cytosolic ileal
bile acid binding protein IBABP (FABP6)5. However in addition
to control of bile acid flux and systemic exposure to bile acids,
intestinally expressed FXR may affect metabolism via regulation
of FGF15/19 production. Evidence indicates that the actions of
FGF15/19 extend beyond its effects on bile acid metabolism, and
include regulation of lipid and glucose metabolism11. For example,
transgenic overexpression of FGF19 or treatment with recombi-
nant FGF19 reduces adiposity and increases metabolic rate and
levels of the satiety hormone leptin32. FGF19 has been shown to
inhibit hepatic fatty acid synthesis by decreasing the expression of
SREBP1c through indirect mechanisms33. It is also important to
note that FGF19 can signal through FGF receptors in addition to
FGFR4, and may act through these receptors in the central nervous
system to alter lipid and glucose homeostasis34–36. Since many of
these studies rely on use of exogenous recombinant FGF19, the
question of whether these effects are physiological or pharmaco-
logical has been raised9. However, there is very strong genetic
evidence from mouse models supporting endogenous FGF15's
ability to elicit similar metabolic effects37,38. These studies suggest
that FGF15 acts in parallel with insulin to maintain normal
glycogen levels by using an alternate Ras-ERK-p90RSK path-
way37. In addition, FGF15/19 negatively regulates PGC1α and
suppresses hepatic gluconeogenesis38. It has also been suggested
that FGF15 may affect expression of forkhead box protein O1
(FOXO1), a regulator of gluconeogenesis39. Interestingly, Fgfr4
deficiency or administration of FGFR4 antisense oligonucleotides
improves hyperlipidemia, adiposity, and insulin resistance cha-
racteristic of fatty liver and diet-induced obesity, further support-
ing the hypothesis that FGF receptors in addition to FGFR4 are
involved in the metabolic effects of FGF15/1940,41.
2.3. Effects of TGR5 on metabolism

TGR5 was identified as a bile acid-activated G-protein coupled
receptor in 200342. With the growing appreciation of bile acids as
signaling molecules, considerable study is being directed towards
understanding the physiological functions of TGR543. For exam-
ple, bile acid activation of TGR5 can regulate gallbladder filling,
intestinal motility, and may have a role in bile acid-induced itch
and the analgesia associated with cholestatic liver disease44–46.
There are also metabolic effects associated with TGR5 signaling in
brown adipose, muscle, and macrophages10. As with FXR, there is
increasing interest in TGR5 as a potential therapeutic target for a
variety of metabolic diseases12,13,47. For example, administration
of the TGR5-selective synthetic agonist (INT-777) to mice
attenuated diet-induced obesity and improved glucose tolerance48.
The metabolic benefits may be due in part to increased metabolic
rate and energy expenditure, secondary to TGR5-mediated
increases in expression of deiodinase 2 (DIO2) and increased
production of thyroid hormone (thyroxine, T4)49,50. These meta-
bolic effects may also be mediated through bile acid activation of
TGR5 on enteroendocrine L-cell in the distal small intestine and
colon. In that mechanism, TGR5 signals to increase production
and release of GLP-1, the incretin hormone that promotes insulin
sensitivity, and thereby improves glucose disposition51,52. Thera-
pies targeting GLP-1 are currently used to treat diabetes, and
strategies that augment GLP-1 production, half-life, or activity
may have benefit in other disorders such as hepatic steatosis and
cardiac hypertrophy53. Finally, it should be noted that bile acids
signal through other receptors and pathways in addition to FXR
and TGR5, and additional research is needed to understand their
contribution to the metabolic effects of bile acids2,3,43,54.
3. Metabolic effects associated with altered intestinal absorption
of bile acids

3.1. Bile acid sequestrants and bile acid transporter inhibitors

Emerging research examining the effects bile acid sequestrants
(bile acid binding resins) suggests a metabolic benefit associated
with blocking intestinal absorption of bile acid beyond its well-
characterized plasma cholesterol-lowering actions55. Bile acid
sequestrants were originally used to treat hypercholesterolemia
and bile acid malabsorption in the 1960s55,56. Disruption of the
enterohepatic circulation of bile acids by blocking their intestinal
absorption stimulates hepatic de novo bile acid synthesis from
cholesterol. The hepatic demand for cholesterol is met by
increasing hepatic cholesterol synthesis and plasma clearance of
lipoproteins such as low density lipoprotein (LDL)57. Although
not widely used to treat hypercholesterolemia after introduction of
the HMG CoA reductase inhibitors (statins), bile acid sequestrants
operating through this mechanism had shown benefit with regard
to lowering plasma cholesterol levels and reducing cardiovascular
disease in studies such as the Lipid Research Clinics Coronary
Primary Prevention Trial58. However, in addition to their plasma
cholesterol lowering properties, there is evidence that bile acid
sequestrants can improve glycemic control, and the underlying
mechanisms of action are being explored55–61. Various mecha-
nisms have been thus far been implicated. Decreasing bile acid
enterohepatic cycling will reduce the pool of bile acids available
for micellar solubilization of lipids in the intestinal lumen, and is
predicted to reduce lipid absorption in the proximal small intestine.



Figure 2 Predicted regulatory and metabolic effects of blocking ileal apical membrane (Asbt null mice) versus ileal basolateral membrane (Ostα
null mice) bile acid transport. The arrows indicate the direction of predicted changes in Asbt null mice or Ostα null mice relative to wild type mice
for the indicated physiological processes or pathways.
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Indeed, treatment with a bile acid sequestrant has been shown to
increase the incorporation of sterols and fatty acids into bile and
feces, and alter lipid metabolism through excretion62. In addition,
by blocking the apical uptake of bile acid into the ileal enterocyte,
bile acid sequestrants block activation of the FXR-FGF15/19
pathway. This will increase hepatic CYP7A1 expression and bile
acid synthesis, altering the composition of the bile acid pool.
In mouse models treated with a bile acid sequestrant, it has been
proposed that the increased synthesis of bile acids via the CYP7A1
pathway increases entry of natural TGR5 agonists (such as cholic
acid and cholic acid derivatives) into the systemic circulation. This
leads to increased energy expenditure in muscle and brown
adipose tissue50. Blocking intestinal absorption also increases the
flux of bile acids into the colon and can increase the TGR5-
mediated release of GLP-1, which would act to promote insulin
sensitivity51,52. Not surprising, administration of a small molecule
inhibitor of the ASBT has effects similar to those described for
bile acid sequestrants. For example, ASBT inhibitors reduced LDL
cholesterol levels in various animal models63–65. Triglyceride and
glucose metabolism has also been studied in animal models treated
with ASBT inhibitors66,67.

3.2. Knockout models of defective intestinal bile acid absorption

Although loss of either the ASBT or OSTα-OSTβ transporters
impairs intestinal bile acid absorption, characterization of the Asbt
and Ostα-Ostβ null mice is beginning to reveal important
phenotypic differences in bile acid homeostasis that could affect
lipid and glucose metabolism68,69. For the parameters examined to
date, the Asbt null mice display a similar metabolic phenotype to
that described for treatment with bile acid sequestrants or ASBT
inhibitors66. Inactivation of the ASBT increases hepatic CYP7A1
and also reduces SREBP1c, improving triglyceride metabolism.
With induction of hepatic bile acid synthesis and an enhanced flux
of bile acids into the colon, there is also the potential for increased
activation of TGR550,67. The phenotype of the Ostα null model is
more complicated. Bile acids are internalized by the ileocyte, but
cannot exit the cell due to loss of Ostα. This leads to activation of
the FXR-FGF15/19 pathway and subsequent repression of
CYP7A1 expression and a decrease in bile acid synthesis7,68,70.
Similar to the Asbt null model, there is a decrease in intestinal lipid
absorption due to a reduction in the bile acid pool size. However,
the potential for TGR5 activation is predicted to be less in the Ostα
null mice. Candidate mechanisms and predicted metabolic con-
sequences of blocking ileal apical versus basolateral bile acid
transport are summarized in Fig. 2.
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