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Abstract In this study we give the Frenet frames and Frenet invariants of timelike ruled surfaces.

We show that a timelike ruled surface and its directing cone have the same base of Frenet frame. We

define instantaneous rotation vectors of the Frenet frames of timelike ruled surfaces. Also we prove

the Chasles Theorem for timelike ruled surfaces.
� 2012 Ain Shams University. Production and hosting by Elsevier B.V.

All rights reserved.
1. Introduction

Ruled surface is a special surface generated by a continuously
moving of a straight line. Since ruled surfaces have the most

important positions and applications in the study of design
problems in spatial mechanisms and physics, kinematics and
computer aided design (CAD), these surfaces are one of the

most important topics of differential geometry. Because of this
position of ruled surfaces, geometers have studied on these sur-
faces in Euclidean space and they have investigated many
properties of the ruled surfaces [1–4]. Furthermore, the differ-

ential geometry of the ruled surfaces in the Minkowski space
has been studied by several authors [5–10].

The Frenet frames and invariants of skew ruled surface and

of its directing cone have been given by Karger and Novak in
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the Euclidean 3-space [2]. These frames and invariants have an

important role in kinematics and mechanics. Especially, the
kinematic differential geometry of a rigid body is based on
the Frenet frames and Frenet invariants of ruled surfaces.
By paying attention to this fact, Wang, Liu and Xiao have gi-

ven some instantaneous properties of a point trajectory and of
a line trajectory in spatial kinematics and Euler-Savary ana-
logue equations of a point trajectory and of a line trajectory

[11].
Moreover, the Minkowski space is more interesting than

the Euclidean space. In this space, curves and surfaces have

different casual Lorentzian characters such as timelike, space-
like or null (lightlike). Then, ruled surfaces in the Minkowski
space can be classify according to the Lorentzian character

of their ruling and surface normal. The classification of ruled
surfaces in Minkowski 3-space has been given by Kim and
Yoon [9]. They have given all the types of ruled surfaces in
Minkowski 3-space. Furthermore, Küçük has obtained some

results on developable timelike ruled surfaces in the same space
[10].

In this study, we give the Frenet frames, invariants and

instantaneous rotation vectors of the Frenet frames of timelike
ruled surfaces in the Minkowski 3-space. We show that a
ier B.V. All rights reserved.
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timelike ruled surface and its directing cone have the same

base. Also we give and prove the Chasles Theorem for timelike
ruled surfaces.

2. Preliminaries

The Minkowski 3-space IR3
1 is the real vector space IR3

provided with standard flat metric given by

h; i ¼ �dx2
1 þ dx2

2 þ dx2
3;

where (x1,x2,x3) is a standard rectangular coordinate system

of IR3
1. An arbitrary vector ~v ¼ ðv1; v2; v3Þ in IR3

1 can have
one of three Lorentzian causal characters; it can be spacelike
if h~v;~vi > 0 or ~v ¼ 0, timelike if h~v;~vi < 0 and null (lightlike)

if h~v;~vi ¼ 0 and ~v–0. Similarly, an arbitrary curve ~a ¼~aðsÞ
can locally be spacelike, timelike or null (lightlike), if all of
its velocity vectors ~a0ðsÞ are spacelike, timelike or null (light-

like), respectively [12]. We say that a timelike vector is future
pointing or past pointing if the first compound of vector is po-
sitive or negative, respectively. The norm of the vector
~v ¼ ðv1; v2; v3Þ is given by

k~vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jh~v;~vij

p
:

For any vectors ~x ¼ ðx1; x2; x3Þ and ~y ¼ ðy1; y2; y3Þ in IR3
1,

Lorentzian vector product of ~x and ~y is defined by

~x�~y¼
e1 �e2 �e3
x1 x2 x3

y1 y2 y3

������
������¼ðx2y3�x3y2;x1y3�x3y1;x2y1�x1y2Þ:

The Lorentzian sphere and hyperbolic sphere of radius r
and center 0 in IR3

1 are given by

S2
1 ¼ ~x ¼ ðx1; x2; x3Þ 2 E3

1 : h~x; ~xi ¼ r2
� �

and

H2
0 ¼ ~x ¼ ðx1; x2; x3Þ 2 E3

1 : h~x; ~xi ¼ �r2
� �

respectively [13].

Definition 2.1 [17].

(i) Hyperbolic angle: Let~x and~y be future pointing
(or past pointing) timelike vec-

tors in IR3
1. Then there is a

unique real number h P 0
such that h~x;~yi ¼ �k~xkk~yk
cosh h. This number is called
the hyperbolic angle between
the vectors~x and ~y [14].

(ii) Central angle: Let ~x and ~y be spacelike vec-

tors in IR3
1 that span a timelike

vector subspace. Then there is
a unique real number h P 0

such that h~x;~yi ¼ k~xkk~yk
cosh h. This number is called
the central angle between the

vectors~x and ~y.
(iii) Spacelike angle: Let ~x and ~y be spacelike vec-

tors in IR3
1 that span a space-

like vector subspace. Then
there is a unique real number
h P 0 such that h~x;~yi ¼ k~xkk
~yk cos h. This number is called

the spacelike angle between the
vectors~x and ~y.

(iv) Lorentzian timelike angle: Let~x be a spacelike vector and
~y be a timelike vector in IR3

1.
Then there is a unique real
number h P 0 such that h~x;~yi
¼ k~xkk~yk sinh h. This number

is called the Lorentzian time-
like angle between the vectors
~x and ~y.

Definition 2.2 [15]. A surface in the Minkowski 3-space IR3
1 is

called a timelike surface if the induced metric on the surface is
a Lorentz metric and is called a spacelike surface if the induced

metric on the surface is a positive definite Riemannian metric,
i.e., the normal vector on spacelike (timelike) surface is a time-
like (spacelike) vector.
3. Timelike ruled surfaces in Minkowski 3-space

Let I be an open interval in the real line IR. Let ~k ¼ ~kðuÞ be a
curve in IR3

1 defined on I and ~q ¼ ~qðuÞ be a unit direction vec-

tor of an oriented line in IR3
1. Then we have following param-

etrization for a timelike ruled surface N:

~rðu; vÞ ¼ ~kðuÞ þ v~qðuÞ: ð1Þ
The parametric u-curve of this surface is a straight line of the

surface which is called ruling. For v= 0, the parametric v-
curve of this surface is ~k ¼ ~kðuÞ which is called base curve or
generating curve of the surface. In particular, if the direction

of ~q is constant, then the ruled surface is said to be cylindrical,
and non-cylindrical otherwise.

The distribution parameter (or drall) of the timelike ruled
surface in (1) is given as

d ¼ j
_~k;~q; _~qj
h _~q; _~qi

; ð2Þ

where
_~k ¼ d~k

du
; _~q ¼ d~q

du
. If j _~k;~q; _~qj ¼ 0, then normal vectors are

collinear at all points of same ruling and at non-singular points
of the surface N, the tangent planes are identical. We then say

that tangent plane contacts the surface along a ruling. Such a
ruling is called a torsal ruling. If j _~k;~q; _~qj–0, then the tangent
planes of the surface M are distinct at all points of same ruling

which is called non-torsal [16].

Definition 3.1. Atimelike ruled surfacewhose all rulings are torsal
is called a developable timelike ruled surface. The remaining

timelike ruled surfaces are called skew timelike ruled surfaces.

Theorem 3.1 ([5,10]). A timelike ruled surface is developable if
and only if the distribution parameter of the surface is equal to
zero, i.e., d = 0.

For the unit normal vector ~m of a timelike ruled surface we
have

~m ¼ ~ru �~rv
k~ru �~rvk

¼ ð _~kþ v _~qÞ �~qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_~k;~q

D E2

� ~q;~qh i _~kþ v _~q;
_~kþ v _~q

D E����
����

s : ð3Þ



Figure 1 Asymptotic plane and central plane
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From (3) at the points of a non-torsal ruling u= u1 we have

~a ¼ lim
v!1

~mðu1; vÞ ¼
_~q�~q
k _~qk

: ð4Þ

The plane of skew timelike ruled surface N which passes
through its ruling u1 and is perpendicular to the vector ~a is
called asymptotic plane a. The tangent plane c passing through
the ruling u1 which is perpendicular to the asymptotic plane a
is called central plane. The point at which the unit normal ~m is
perpendicular to~a is called the striction point (or central point)
C on the ruling u1 (Fig. 1). The set of central points of all rul-

ings is called striction curve of the surface. The straight lines
which pass through point C and are perpendicular to the
planes a and c are called central tangent and central normal,

respectively.
Using the perpendicularity of the vectors ~q; _~q and relation

(4), representation of unit vector ~h of the central normal is gi-
ven by

~h ¼
_~q

k _~qk
: ð5Þ

Substituting the parameter v of central point C into equation
(3) we get ~h� ~m ¼ 0 and thus

_~q� _~kþ v _~q
� �

�~q
h i

¼ _~q;
_~k

D E
_~kþ v _~q

� �
þ v _~q; _~q
D E

~q ¼ 0: ð6Þ

From (6) we obtain

v ¼ �h
_~q;

_~ki
h _~q; _~qi

: ð7Þ

Thus, the parametrization of the striction curve ~c ¼~cðuÞ on a

timelike ruled surface is given by

~cðuÞ ¼ ~kðuÞ þ v~qðuÞ ¼ ~k� h
_~q;

_~ki
h _~q; _~qi

~q: ð8Þ

So that, the base curve of the timelike ruled surface is its stric-
tion curve if and only if h _~q;

_~ki ¼ 0.

The orthonormal system fC;~q; ~h;~ag is called Frenet frame
of the ruled surface N. Here C is the central point of ruling
of timelike ruled surface N and~q; ~h;~a are unit vectors of ruling,
central normal and central tangent, respectively.

Let now consider ruled surface N with non-null Frenet vec-
tors and their non-null derivatives. According to the Lorentzian
characters of ruling and central normal, we can give the follow-

ing classifications of the timelike ruled surface N as follows:

(i) If the central normal vector~h is spacelike and~q is time-
like, then the ruled surface N is said to be of type N�.

(ii) If the central normal vector ~h and the ruling ~q are both
spacelike, then the ruled surface N is said to be of type
N+ [9,16].

In these classifications we use subscript ‘‘+’’ and ‘‘�’’ to
show the Lorentzian casual character of ruling. By using these

classifications, parametrization of timelike ruled surface N can
be given as follows:

~rðu; vÞ ¼ ~kðuÞ þ v~qðuÞ;

where h~q;~qi ¼ eð¼ �1Þ; h~h; ~hi ¼ 1; h~a;~ai ¼ �e. Then, the tan-

gent plane c is a timelike plane and the asymptotic plane a is
spacelike (resp. timelike) if the surface is of the type N+ (resp.
N�), i.e. it has the same Lorentzian character with the vector~q.

Let us pay attention to geometrical interpretation of distri-

bution parameter. Let the generating curve of a timelike ruled
surface be its line of striction and let unnormed normal vector
of the surface at the point (u,0) which is striction point be ~m0.

Then by (3) we have

~m0 ¼ _~k�~q: ð9Þ

Since ~h� ~m0 ¼ 0, we have

_~k�~q ¼ b _~q; ð10Þ

where ~b ¼~bðuÞ is a scalar function. This implies that

h _~k�~q; _~qi ¼~bh _~q; _~qi: ð11Þ

Hence (2) yields b = d and finally,
_~k�~q ¼ d _~q. For v fi1 the

normal vector is ~m1 ¼ _~q�~q and from (10) it is clear that
~m0 ? ~m1. By (3), unnormed normal vector of timelike ruled

surface is

~�m ¼ ð _~k�~qÞ þ vð _~q�~qÞ ¼ ~m0 þ v~m1; ð12Þ

and depends along the ruling u on the parameter v only. Let
now h be the angle between �m and ~m0. Then we have

followings:

(i) If the timelike ruled surface N is of the type N+, then

h~�m; ~m0i ¼ k~�mkk~m0k cosh h;

h~�m; ~m1i ¼ k~�mkk~m1k sinh h;

(
ð13Þ

where h is central angle. Then from (13) we get

tanh h ¼ � v

d
: ð14Þ

(ii) If the timelike ruled surface N is of the type N�, then we

have

h~�m; ~m0i ¼ k~�mkk~m0k cos h;

h~�m; ~m1i ¼ k~�mkk~m1k sin h;

(
ð15Þ

where h is spacelike angle. Then from (15) we get

tan h ¼ v

d
: ð16Þ
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So that, we give the following theorem which is known as

Chasles Theorem for timelike ruled surfaces.

Theorem 3.2. Let the base curve of a timelike ruled surface be
its striction curve. For the angle h between tangent plane of
timelike ruled surface at the point (u,v) of a non-torsal ruling u

and central plane we have

(i) tanh h ¼ � v
d, if the timelike ruled surface N is of the type

N+,
(ii) tan h ¼ v

d, if the timelike ruled surface N is of the type
N�.

Here d is the distribution parameter of ruling u and central
point has the coordinates (u, 0).

4. Frenet equations and Frenet invariants of timelike ruled

surfaces

Let fC;~q; ~h;~ag be the Frenet frame of timelike ruled surface N.
For this frame we have

~q� ~h ¼ e~a; ~h�~a ¼ �e~q;~a�~q ¼ �~h: ð17Þ

The set of all bound vectors ~qðuÞ at the point O constitutes

directing timelike cone of the timelike ruled surface N. If
e = �1 (resp. e = 1), then end points of the vectors ~qðuÞ drive
a spherical spacelike (resp. timelike) curve k1 on hyperbolic

unit sphere H2
0 (resp. on Lorentzian unit sphere S2

1), called
the hyperbolic (resp. Lorentzian) spherical image of the ruled
surface N, whose arc is denoted by s1.

Let now define the Frenet frame of the directing timelike
cone by the orthonormal frame fO;~q;~n;~zg where

~n ¼ d~q

ds1
¼ ~q0: ð18Þ

Since we have

~q0 ¼
_~q

k _~qk
¼ ~h; ð19Þ

by the aid of Eq. (5), we see that tangent planes of directing
cone are parallel to the asymptotic planes of timelike ruled sur-
face. Finally, we have

~z ¼ ~q� ~h ¼ e~a: ð20Þ

From (18)–(20) we have the following theorem:

Theorem 4.1. Frenet frame of the directing timelike cone has the
same base of Frenet frame of the timelike ruled surface N.

Let now compute the derivatives of the vectors ~h and~a with
respect to the arc s1 of generating curve k1. We have h~h; ~hi ¼ 1,
thus h~h; ~h0i ¼ 0 where ~h0 ¼ d~h

ds1
. Consequently we may write

~h0 ¼ b1~qþ b2~a; ð21Þ

where b1, b2 are functions of s1. From h~h;~qi ¼ 0, it follows that

h~h0;~q i þ h~h;~q0i ¼ eb1 þ 1 ¼ 0; ð22Þ

and if we put b2 = j we get

~h0 ¼ �e~qþ j~a; ð23Þ

where j is called the conical curvature of the directing cone.
From h~h;~ai ¼ 0 we have
h~h0;~ai þ h~h;~a0i ¼ �ejþ h~h;~a0i ¼ 0; ð24Þ

and thus we get

h~h;~a0i ¼ ej: ð25Þ

Further, h~a;~ai ¼ �e and h~a;~qi ¼ 0 imply the relations
h~a;~a0i ¼ 0 and

h~a0;~qi þ h~a;~q0i ¼ h~a0;~qi ¼ 0: ð26Þ

This implies that the vector ~a0 is collinear with spacelike vector
~h, i.e. ~a0 ¼ b3~h, here b3 is a function of s1. By the equality (25)

we get

h~h;~a0i ¼ b3 ¼ ej; ð27Þ

and thus

~a0 ¼ ej~h: ð28Þ

For the spherical curve k3 with arc s3 circumscribed by bound

vector ~a at the point O we have

ds3
ds1
¼ k~a0k ¼ j: ð29Þ

Thus, with (19), (23) and (28) we have the following theorem.

Theorem 4.2. For the derivatives of the Frenet vectors of
timelike ruled surface N and of its directing timelike cone with
respect to the arc s1, we have following Frenet formulae

d~q=ds1

d~h=ds1

d~a=ds1

2
664

3
775 ¼

0 1 0

�e 0 j

0 ej 0

2
64

3
75

~q

~h

~a

2
64
3
75: ð30Þ

The Frenet formulae can be interpreted kinematically as
follows: If a moving line ~q makes a motion along a curve in

such a way that s1 is the time parameter, then the moving
frame f~q; ~h;~ag moves in accordance with (30). This motion
contains, apart from an instantaneous translation, and instan-

taneous rotation with angular velocity vector given by the
Darboux vector or instantaneous rotation vector ~w1 ¼
ej~q�~a. Thus, for the derivatives in (30) we can write

~q0 ¼ ~w1 �~q; ~h0 ¼ ~w1 � ~h; ~a0 ¼ ~w1 �~a:

Let now s be the arc of striction curve of timelike ruled sur-
face N. Furthermore, we call the first curvature ds1

ds
¼ j1 and the

second curvature ds3
ds
¼ j2 of timelike ruled surface N or rather

of its directing cone then we have

j2 ¼ jj1: ð31Þ

Timelike ruled surfaces for which j1j2 „ 0 and j = (j2/j1)
= constant have a timelike cone of revolution as their directing

cone. If j1 „ 0, j2 = 0, then we obtain a directing timelike
plane instead of a timelike directing cone and these timelike ru-
led surfaces, satisfying j1 „ 0, j2 = 0, are called timelike

conoids.
Multiplying (30) by the first curvature ds1

ds
¼ j1 we have the

following theorem.

Theorem 4.3. For the derivatives of vectors of Frenet frame

fO;~q; ~h;~ag of timelike ruled surface N and of its directing
timelike cone with respect to the arc of striction curve of surface
we have
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d~q=ds

d~h=ds

d~a=ds

2
64

3
75 ¼

0 j1 0

�ej1 0 j2

0 ej2 0

2
64

3
75

~q
~h

~a

2
64
3
75; ð32Þ

where j1 ¼ ds1
ds
; j2 ¼ ds3

ds
and s1, s3 are the arcs of the spherical

curves k1, k3 circumscribed by the bound vectors ~q and ~a,
respectively.

For the derivatives of vectors of Frenet frame fC;~q; ~h;~ag
with respect to the arc of striction curve of the surface, the

instantaneous rotation vector can be given by ~w2 ¼ ej2~q� j1~a.
Thus, for the derivatives in (32) we can write

d~q

ds
¼ ~w2 �~q;

d~h

ds
¼ ~w2 � ~h;

d~a

ds
¼ ~w2 �~a:

Now, we will show that the tangent of striction curve of
timelike ruled surface at central point C is perpendicular to
the vector ~h. By differentiating the equation of the striction
curve given in (8), we have

d~c

du
¼ _~c ¼ _~kþ v _~qþ _v~q;

and further by using (5) and (7) we get

h~h; _~ci ¼ h~h; _~ki þ hv _~q; ~hi ¼ h
_~k; _~qi
k _~qk

� h
_~k; _~qih _~q; _~qi
k _~qkh _~q; _~qi

¼ 0:

Now, we can deal from two conditions whether the striction
curve ~c is timelike or spacelike.

Case 1: Line of striction~c is timelike

Let ~c be a timelike curve and u 2 IR be an angle between
striction curve and ruling, i.e. u]~q~t, where~t is the tangent vec-
tor of line of striction. Then we can write

~t ¼ d~c

ds
¼ lðuÞ~qþ gðuÞ~a; ð33Þ

where

lðuÞ ¼
sinhu; if N is of the type Nþ;

coshu; if N is of the type N�;

(
and

gðuÞ ¼
coshu; if N is of the type Nþ;

sinhu; if N is of the type N�:

(

Thus, while the equation of the timelike ruled surface is

~rðs; vÞ ¼~cðsÞ þ v~qðsÞ; ð34Þ

the equation of the striction curve is

cðsÞ ¼
Z
½lðuÞ~qþ gðuÞ~a�ds: ð35Þ

For the parameter of distribution, using (2) and (32) we have

d ¼
~q; d~q

ds
; d~c
ds

�� ��
d~q
ds
; d~q
ds

� 	 ¼ j~q; ~h;~tj
j1

: ð36Þ

From (33) and (36) it follows that

gðuÞ ¼ h~a;~ti ¼ eh~q� ~h;~ti ¼ ej~q; ~h;~tj ¼ ej1d: ð37Þ

Let s1 be the arc of spherical curve k1 of the direction cone

of timelike ruled surface. By (33) and (37), Frenet formulae of
timelike ruled surface are
d~c
ds1
¼ lðuÞ

j1
~qþ gðuÞ

j1
~a ¼ f~qþ ed~a;

d~q
ds1
¼ ~h;

d~h
ds1
¼ �e~qþ j~a;

d~a
ds1
¼ ej~h:

8>>>>>><
>>>>>>:

ð38Þ
Case 2: Line of striction~c is spacelike

Let now ~c be a spacelike curve and h 2 IR be an angle be-
tween striction curve and ruling, i.e. u]~q~t, where ~t is the tan-

gent vector of striction curve. Then we can write

~t ¼ d~c

ds
¼ lðhÞ~qþ gðhÞ~a; ð39Þ

where

lðhÞ ¼
cosh h; if N is of the type Nþ

sinh h; if N is of the type N�



and

gðhÞ ¼
sinh h; if N is of the type Nþ

cosh h; if N is of the type N�:




Then making the similar calculations given in Case 1 and con-
sidering (30) Frenet formulae of timelike ruled surface are gi-

ven as follows

d~c
ds1
¼ lðhÞ

j1
~qþ gðhÞ

j1
~a ¼ f~qþ ed~a;

d~q
ds1
¼ ~h;

d~h
ds1
¼ �e~qþ j~a;

d~a
ds1
¼ ej~h:

8>>>>>><
>>>>>>:

ð40Þ

The functions f(s1), d(s1), j(s1) are the invariants of timelike
ruled surface and they determine the timelike ruled surface un-
iquely up to its position in the space.

Example 4.1. Conoid of the 2nd kind. Let consider the

timelike ruled surface N defined by

~rðu; vÞ ¼ ðv cosh u; cos u; v sinh uÞ:

This parametrization defines a non-cylindrical ruled surface

of the type N� which is said to be a conoid of the 2nd kind in
IR3

1 (Fig. 2) [9]. The base curve and ruling of N are

~kðuÞ ¼ ð0; cos u; 0Þ and ~qðuÞ ¼ ðcosh u; 0; sinh uÞ;

respectively. The distribution parameter of N is d= sin u „ 0.
So that, the surface N is a skew timelike ruled surface. The
striction curve of N is given by

~cðuÞ ¼ ~kðuÞ ¼ ð0; cos u; 0Þ:

Since k _~cðuÞk ¼ sin u–1, u is not the arc parameter of striction
curve. By changing the parameter, the arc parameter of the
striction curve is u = arccos(1 � s). Thus, the striction curve

and Frenet vectors of N with respect to the arc parameter s are

~cðsÞ ¼ ð0; 1� s; 0Þ;
~qðsÞ ¼ ðcoshðarccosð1� sÞÞ; 0; sinhðarccosð1� sÞÞÞ;
~hðsÞ ¼ ð� sinhðarccosð1� sÞÞ; 0;� coshðarccosð1� sÞÞÞ;
~aðsÞ ¼ ð0; 1; 0Þ:



Figure 3 A conoid of the 3rd kind

Figure 2 A conoid of the 2nd kind
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Then the derivative of Frenet vectors with respect to the arc
parameter s are

d~q

ds
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s� s2
p ðsinhðarccosð1� sÞÞ; 0; coshðarccosð1� sÞÞÞ;

d~h

ds
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s� s2
p ð� coshðarccosð1� sÞÞ; 0;� sinhðarccosð1� sÞÞÞ;

d~a

ds
¼ ð0; 0; 0Þ:

Thus we have

d~q
ds

d~h
ds
d~a
ds

2
64

3
75 ¼

0 � 1ffiffiffiffiffiffiffiffi
2s�s2
p 0

� 1ffiffiffiffiffiffiffiffi
2s�s2
p 0 0

0 0 0

2
64

3
75 ~q

~h

~a

2
4
3
5:

So that, for the curvatures of the timelike ruled surface we

have j1 ¼ � 1ffiffiffiffiffiffiffiffi
2s�s2
p ; j2 ¼ 0. It means that timelike directing

cone of the surface is a directing timelike plane. Moreover,

Darboux vector of the Frenet frame is ~w2 ¼ 1ffiffiffiffiffiffiffiffi
2s�s2
p ~a.

Example 4.2 (Conoid of the 3rd kind). Let consider the
timelike ruled surface N of type N+ defined by

~rðu; vÞ ¼ ðcosðuþ 1Þ; v cos u; v sin uÞ:

which is said to be a conoid of the 3rd kind in IR3
1 (Fig. 3) [9].

The base curve and ruling ofN are ~kðuÞ ¼ ðcosðuþ 1Þ; 0; 0Þ and
~qðuÞ ¼ ð0; cos u; sin uÞ, respectively. The distribution parameter
of N is d = �sin(u+ 1). So that, the surface N is a skew time-
like ruled surface. The striction curve of N is given by

~cðuÞ ¼ ~kðuÞ ¼ ðcosðuþ 1Þ; 0; 0Þ:

Then, arc parameter of the striction curve is u= arc-
cos(�s � cos 1) � 1. Thus, the striction curve and the Frenet
vectors of N are

~cðsÞ¼ ð�s� cos1;0;0Þ;
~qðsÞ¼ ð0;cosðarccosð�s�cos1Þ�1Þ;sinðarccosð�s�cos1Þ�1ÞÞ;
~hðsÞ¼ ð0;�sinðarccosð�s�cos1Þ�1Þ;cosðarccosð�s�cos1Þ�1ÞÞ;
~aðsÞ¼ ð1;0;0Þ:
The derivatives of Frenet vectors are

d~q

ds
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðsþ cos 1Þ2
q ð0;� sinðarccosð�s� cos 1Þ � 1Þ;

cosðarccosð�s� cos 1Þ � 1ÞÞ;
d~h

ds
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðsþ cos 1Þ2
q ð0;� cosðarccosð�s� cos 1Þ � 1Þ;

� sinðarccosð�s� cos 1Þ � 1ÞÞ;
d~a

ds
¼ ð0; 0; 0Þ:

Thus we get

d~q
ds

d~h
ds

d~a
ds

2
64

3
75 ¼

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðsþcos 1Þ2
p 0

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðsþcos 1Þ2
p 0 0

0 0 0

2
664

3
775

~q
~h

~a

2
64
3
75:

So that, for the curvatures of the timelike ruled surface and

instantaneous rotation vector of the Frenet frame we get

j1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðsþcos 1Þ2
p ; j2 ¼ 0, and ~w2 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ðsþcos 1Þ2
p ~a, respec-

tively. Since j1 „ 0, j2 = 0, the directing cone of the surface

is a timelike plane.

5. Conclusions

Ruled surfaces have an important role in some areas such as
design problems in spatial mechanisms and physics, kinematics
and computer aided design (CAD). Especially, the frames and

invariants of these surfaces have important applications in
these sciences. Moreover, the study of ruled surfaces in the
Minkowski 3-space is more interesting than the the Euclidean

case. According to the classifications of ruled surfaces, they
have different values for derivative of the vectors. So, the kine-
matics and geometric interpretations can be more different. In
this paper, we introduce the Frenet frames and invariants of

timelike ruled surfaces with timelike and spacelike rulings
which can be used to give the instantaneous properties of a
point trajectory and of a line trajectory in Lorentzian spatial

kinematics.
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Mehmet Önder, Assistant Professor Doctor of

Mathematics, Faculty of Arts and Sciences,

Mathematics Department, Celal Bayar Uni-

versity, Muradiye, Manisa, Turkey. The

author graduated from Celal Bayar University

and received his M.Sc. Degree in 2002 and

2004, respectively. He obtained his Ph. D. in

2012 from the same university. He is a Faculty

of Arts and Sciences Member at Celal Bayar

University since 2004. His research interests

comprise: Differential geometry, line geometry, dual and dual

Lorentzian geometry.
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