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Let C be a small category and R a ring with identity. LVe shall denote the 
category of unitary left R-modules by mod R and the category of covariant 

functors @ --+ mod R by (mod R)C. The R-cohomological dimension of @ is 
defined by 

cd,C .= sup{k 1 limk # Oj 

where lim’: is the kth right derived functor of the (inverse) limit functor 
lim: (mod R)C ----f mod R. There is a natural isomorphism lim M =~- 
Hom(dR, M) where AR denotes the constant R-valued functor. It follows 
that cd,@ = pdc AR where pdc denotes projective dimension in (mod R)“. 
W’e shall denote cd& simply by cd @. It is not difficult to show that 
cd& < cd @ for all R f  0. 

Laudal characterized all small categories @ with cd @ =~: 0 in [2]. Stallings 
[7] and Swan [S] characterized nontrivial free groups as those satisfying 
cd @ -= 1. Mitchell [5] proved that if @ is a directed set and N, is the smallest 
cardinal number of a cofinal subset, then cd& 7~ n + 1 for any nonzero 
ring R. In this paper, we shall characterize those finite posets @ such that 
cd& c: 1. 

1. MAIP~ THEOREM 

Throughout C will be a finite poset unless otherwise specified. Subsets of 
@ will be considered as full subcategories. T\‘e shall denote the category of 
abelian groups by Ab. If  p, q E @, p ~1 q, are such that there exists no k E @ 
with p < k < q, then we say that q is a coz’er for p and p a cocover for q. 

Let S, : Ab ---f Abe be the left adjoint of the pth evaluation functor. Then 

S,(rl)(q) == A 4 13 P 
-0 otherwise. 
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The functor S, preserves projectives since it is exact and its right adjoint is 

exact. Consider the exact sequence 

0 + K -j @ S,,(Z) G AZ --f 0 (1) 
m 

in Abe, where the coproduct is indexed by minimal elements m of @, and 
where the mth coordinate of E is induced by the identity on Z. Since the 
middle term P of (I) is projective, cd C -< 1 if and only if K is projective. 

LEMMA 1. I. Let e be a minimal element of @ which has ody one cover p. 

Let C’ = @ - {e>. Then cd @ < 1 if and only ifcd c=’ .< 1. 

Proof. The left adjoint G of the restriction functor T: Abe+ Abe’ 
extends D E Abe’ by adding 0 at e, and so is exact. The right adjoint R of T 
extends D E Abe’ by adding D(p) at e, and so is also exact. Since T is exact 
and has an exact right adjoint, it preserves projective resolutions. Applying 
T to (I), we get an exact sequence 

0 + T(K) - T(P) ---+ T(AZ) - 0 (2) 

in Abe’ with the middle term projective. Since K(m) == 0 for m minimal, 
we have 

K = GT(K). (3) 

Since TG = id, it follows easily (see [4, Corollary 1.21) that 

pdcGT(K) = pdc,T(K). 

Since T(AZ) is constant Z-valued over C’, we have 

(4) 

pd,,T(dZ) = cd C’. 

Hence cd @’ < 1 if and only if pdc,T(AZ) < 1, which, by (2), is true if and 
only if pd T(K) = 0. But by (3) and (4), pd& = pd,,T(K). Therefore it 
follows from (I) that cd Cc’ .< 1 if and only if pdc AZ < I, that is, if and 
only if cd@ < 1. 

LEMMA 1.2. Let p be an element of @ which has only one cocover e. Let 
@’ = @ - {p>. Then cd @ y: cd C’. 

Proof. The left adjoint G of T: Abe + Abe’ extends D E Abe;’ by adding 
D(e) at p, and so is exact. Also TG = id. Hence pdc, AZ = pdcG(AZ) = 
pdc AZ, i.e., cd C’ = cd @. 

Recall that the height of an element x in a finite poset is the greatest integer 
n such that there is a chain x0 < x1 < ... < X, = x. Define an element of @ 
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to be sup~v~uous if it is of height 0 (minimal) with onlv one cover or if it has 
height one and only one cocover. Iterating as many- times as possible the 
process of eliminating a superfluous element, we obtain a finite poset E(C). 
FVe shall show that, up to isomorphism, E(C) is independent of the order in 

which superfluous elements arc removed. Let S(C) denote the set of all 
superfluous elements of C. The following lemma follows easily from the 
definition of superfluous elements. 

LEJlhr.4 1.3. If s, J’ F S(C), then either 

(a) .Y c S(@ - (y$) rind y  E S(C - (x}), or 

(1~) 62 ~-- (s: ry c - (Y). 

PROPOSITION 1.4. Let @ be aSfiniteposet, and suppose that @--(a, , a, ,...,a,,J 
has no superfluous elements, where a, E S(@ -- (al , a, ,..., ajml}), i ~~ l,..., 11. 
If  also C ~- -(b, , b, ,..., b,,I$ has no superfluous elements and 

bi t S(@ - [bl , 6, ,..., b,_,]), j = I,..., m, 

then @ - {a, , a4 ,.. ., a,,) CY C - {b, , bz ,..., b,,,]. 

Proof. \\‘e shall prove it by induction on n. If  rz I, then ~1 ’ I. Hence 

a, , Oi E S(C). By Lemma 1.3, we have C - {a,; - @ (b,). Now suppose 
the proposition is true for all k < n. If  C --~ [ai) e @ - (b,j, then we are 
done hy induction. If  al E S(@ - {b,}) and b, E S(C - {a,}), then suppose 
@ -- [a, , h, , s, ,..., s,] has no superfluous elements, where 

x, E S(C -- {a, , b, , x1 ,..., xiJ), I i r. 

By induction, r ~~~ n -- 2, and we have 

@ - ja, ,..., a,] r, @ -- [a1 , b, , xl ,..., .vf) 
e@-fb 1 I al I I , Xl (. . ( s,,. 
‘v C - :b, ,..., b,,,;. 

From Lemmas 1.1 and 1.2 it follows that cd C < I if and onl!; if 
cd E(C) 1. In particular, if E(C) 21, then cd @ .” 1. The converse is not 

true in general. For example, if @ is the following poset 

(all arrows are going down), then cd @ .<’ I. But E(C) C + II. However, 

we shall show that if C has a terminal element, then the converse holds. 
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Let ,I1 be the set of all minimal elements of c=. For each q E @, define the 
poset C, == (p E C 1 p < q> and the poset & = {p E C 1 p > q). We shall 

denote the number of elements in a finite set S by #S. 

LEMRIA I .5. De$ne n(q) inductively by the formula 

p(P) = #CM f-l a=,) - 13 
-. 

for all q E @. If cd @ << I, then n(q) 3 Ofor all q. 

Proof. consider the exact sequence (1). S ince cd @ :< 1, K is projective. 

Hence there exists, for each p E C, a unique nonnegative integer m(p) such 
that 

K = @ s&Py, 
PGF 

[6, Corollary 23.41. Hence K(q) = CJ,., + < P(J’) for all q E @. But from the 

exact sequence (l), 

Taking ranks, we see that Cycp m(p) = #(M n C,) - 1. Hence m(p) -= 

z(p), and so the result follows. 

Remark. The converse of the above lemma is not true. For example if @ 

is the poset 

then n(1) -c n(2) = n(3) =- 0, n(4) = n(5) = 1 and n(6) := 0. But our main 
theorem will show (or one can show directly) that cd C =-r 2. 

A poset @ is initiaZZyj%ite if C, is finite for all q E @. It is known [6, Corollary 
23.61 that if c is initially finite, then 

cdR C = sup cd, Q. (5) 

LEMMA 1.6. Suppose that cd C .< 1 and let p E C be such that he$hf 
p :- I. Then n(p) ;J #M, where AZ, := {m [ m is minimal and p covers m). 

Proof. By (5) cd C, < cd Cc. Hence cd c,, 5: I. By Lemma I. I, 
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cd(@, - M,) ;-. 1, so the unique number n’(p)(with respect to C, ~ M,,) is 
nonnegative. Since height p 12 1, n(p) > ~$02, where n(p) is the unique 
number associated with p in Lemma I .5 with respect to C,, , hence UZ. 

LEMMA 1.7. Let @ be a jnite poset with a terminal object. Then cd @ i I 

if and on!v if E(C) = Il. 

Proof. One direction is clear as mentioned before. Suppose cd @ : I 
and E(C) + II. Then E(@) has the property that each minimal element has 
at least two covers and that each element of height one has at least two co- 
covers. Let the set of all covers of the minimal elements be P and let the set 
of all such elements of height one be Q, Then, by Lemma 1.5, 

#M- 1 =: c n(p) , ,,& w + c 4P). (6) ,‘E c 1)EQ 

Since elements of P - Q satisfies the condition of Lemma I .6, n(p) ;-. 
#M,, ‘,r I, for all p E P -- Q. Also, as p E Q covers at least two minimal 
elements, n(p) I according to Lemma 1.5. Hence, from (6). #M -~~~ 1 
#P ‘: #Q, Using (6) again, we see that 

#AI - I ;, 1 #IV, -. c (#iv,, - 1) 
wP- Q F 0 

The first two terms must be greater than 2#M, as every element of ill has 
at least two covers. Hence #ill - I > 2#.21- #Q, so #M -.< #Q - 1 < #Q, 

a contradiction. 
Combining Lemma 1.7 and (5) WC deduce our main theorem: 

THEOREM 1.8. Let @ be an initialh finite poset. Then cd E ’ I ; f  and 
only ifE(@,) li fov all q E C. 

Actually Theorem 1.8 is valid for arbitrary coefficient rings. To see 
this, we recall from [4] that an object D E Abe is split if the morphism 
xi<-, im(D,,) - D(q) is a coretraction for each q E C, where [Ii, is the 
morphism induced by i :I q. Also II is pointwisefree if D(q) is free for all q E @. 

COROLLARY- 1.9. Let C be a finite poset and R any nonzero ving. Then 
cd& 2 C 1 ifandonZyifE(@,) II for all q t C. 

Proof. By the theorem it suffices to prove that cd,@ -< 1 if and only 
if cd C . . I. One direction is clear, since cd,@ :< cd IG is true for any small 
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category. Now suppose cd @ $ 1. Tensoring the exact sequence (1) with R, 
we get an exact sequence 

in (mod R)C. By [4, Lemma 3.71, K is split and pointwise free. Since K is not 
projective, by [4, Theorem 3.41, cd,@ =- pdc AR > 2 + pd R = 2. 

2. APPLICATIONS 

The rz-CYOWZ Cn(n > 2) is the poset 

If  we add an initial element and a terminal element to C, , we obtain the 
suspended z-crown C%. Following Mitchell [6], we say that C contains a 
(suspended) crown if it contains C,(cJ as a full subcategory for some n > 2 
with the further condition in case n = 2 that there exists no k E @ such that 

ei <k <fi,i= 1,2. 

LEMMA 2.1. Let C be a finite poset. Then E(C) contains a crown if and 
on& if E(C) # II. 

Proof. I f  E(C) contains a crown, then certainly E(C) # Ii. Conversely 
suppose E(C) f  II. Choose a minimal element of E(C), say e, . Let fr be a 
cover for e, . There exists a minimal element, say e, , such that fr > e2 and 
ei f  e2 . Let f2 be a cover for ep distinct from fi . Continuing in this way, 
we obtain a diagram in E(C) of form 

el 

where e+r # ei, fi+l # fi , fi is a cover of ei , and ei is minimal. Since E(C) 
is finite, there exists i, i, i # J’ such that e, = ej orfi = fj . In either case, by 



346 CHARLES CHING-AN CHENG 

renumbering the subscripts, we obtain a (not necessarily full) subcategory 
(1) which satisfies the following: 

(1) ci is minimal, i :- 1 ,..., II, 

(2) f,  is a cover for e, , i I,..., n, 

(3) eiil #= e, andf, ~1 + f; for all i (subscripts mod n). 

Suppose n is the smallest integer for which such a subset (1) exists (n . 2). 
I f  n :> 2, then @ contains (1) as a full subcategory, for otherwise w would 
contradict the minimality of n. In case II mm~ 2, if there exists k G G such that 
ei -< k i fi , i I, 2, then (2) is contradicted. Hence E(C) contains a 
crown. 

A poset C is locall~~ finite if ,,@,, = {x t C / p .‘. x q/ is finite for all 

p, (1 E @. The following theorem is due to Mitchell [4, Theorem 4.61. L.sing 
Lemma 2. I, we shall simplify the proof of the more difficult of its impli- 
cations. 

THEOREM 2.2. Let @ be a locally finite poset, and let .r/ be an!, abeliurl 
categol-\l z&h finite global dimension. Then C contains a suspetlded crown if 

and onl? if 

gl dim .0/c 3 -1 gl dim .e/. (-4 

Proof. ‘I-he “only if” direction is easily proved using the fact that if C 
contains a suspended crown, then it contains it as a retract [6, Lemma 35.61. 
For the other direction, consider the exact sequence 

0 --f h----f S,(Z) -I&q--z 0 (3) 

in Ab@, where 

~,W(d r z if p-q 

0 if p + q. 

Then 
K(q) = .z if qbp 

r- 0 otherwise, 

and it follows that 

cd ,C - ; p; =~ pd K. (4) 

But from (3) we have 

pdK = pdL,(Z) - 1. (5) 

Wow suppose (2) holds. By [4, Lemma 3.11, pdL,(Z) .> 3, for some p t @. 
Hence cd ,,@ - [~j -* 2. Using Bq. (5) of Section 1, we see that there exists 
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q E yC - {pj such that cd (,C - {p>), > 2. Hence, by Lemma 2.1, 
E(,C - {pj), contains a crown. Since it is easy to see that C contains a crown 

whenever E(C) does, (DC - {p}), contains a crown, and therefore @ contains 

a suspended crown. 

Define the R-homological dimension of @ by 

hd,@ = sup{k j colim7i # 0} 

where colimk is the lith left derived functor of the colimit (direct limit) 
functor colim: (mod R)C ---f mod R. Latch and Mitchell have shown [l] 
that if C is a finite category, then cd&On = hd,@. Hence the main theorem 
gives a characterization of the finite posets @ such that hd,C < 1. 

In contrast to the situation for cohomological dimension one, the class of 
finite posets C satisfying cd& < 2 depends on the ring R. Examples which 
are obtained by ordering the cells of certain cell complexes under the inclusion 
relation are presented in [6]. 
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