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The aim of this paper is to introduce the concepts of homotopical smallness and closeness.
These are the properties of homotopical classes of maps that are related to recent
developments in homotopy theory and to the construction of universal covering spaces
for non-semi-locally simply connected spaces, in particular to the properties of being
homotopically Hausdorff and homotopically path Hausdorff. The definitions of notions in
question and their role in homotopy theory are supplemented by examples, extensional
classifications, universal constructions and known applications.
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1. Introduction

The concepts of homotopical smallness and closeness are related to various versions of the property of being homotopi-
cally Hausdorff, which have been introduced and studied in [5,6,20].

Definition 1. A space X is called:

(i) (weakly) homotopically Hausdorff if for every x0 ∈ X and for every non-trivial γ ∈ π1(X, x0) there exists a neighbor-
hood U of x0 such that no loop in U is homotopic (in X ) to γ rel. x0;

(ii) strongly homotopically Hausdorff if for every x0 ∈ X and for every essential closed curve γ ∈ X there is a neighbor-
hood of x0 that contains no closed curve freely homotopic (in X ) to γ ;

(iii) homotopically path Hausdorff if for every path w : [0,1] → X with w(0) = P and w(1) = Q and every non-trivial
homotopy class α ∈ π1(X, P ) there exist finitely many open sets U (P1), . . . , U (Pk) (P1 = P and Pk = Q ) cover-
ing w([0,1]) such that for a suitable partition 0 = t0 < t1 < t2 < t3 < · · · < tk = 1, U (P j) covers w([t j−1, t j]),
P j ∈ w([t j−1, t j]) and such that for any path v : [0,1] → X that satisfies v(0) = Q , v(1) = P , Pk− j+1 ∈ v([t j−1, t j])
and v([t j−1, t j]) ⊂ U (Pk− j+1), ∀ j the concatenation of w and v does not belong to the homotopy class α.
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Fig. 1. Harmonic archipelago.

Note that the property of being homotopically Hausdorff is weaker than both the property of being strongly homotopi-
cally Hausdorff and the property of being homotopically path Hausdorff. These are separation properties for homotopical
classes of maps and play a significant role in homotopy theory for locally wild spaces, for example, spaces which are not
semi-locally simply connected, etc. Good examples of such spaces are Hawaiian earring (denoted by HE) and Harmonic
archipelago (denoted by HA).

The HE is a countable metric wedge of circles (circular loops) whose diameters tend to zero, i.e.,

HE :=
⋃

i∈Z+
S1

((
1

i
,0

)
,

1

i

)
⊂ R

2

where S1(C, r) ∼= S1 is the circle in R
2 with center C and radius r. Circles S1(( 1

i ,0), 1
i ) are equipped with the positive

(respectively negative) orientation and denoted by li (respectively l−i ). The intersection of all circles is denoted by 0. It turns
out that HE is homotopically Hausdorff but not semi-locally simply connected.

The Harmonic archipelago was defined in [2] and studied in [8]. In order to construct it begin with HE ⊂ R
2 × {0} ⊂ R

3.
For each pair of consecutive loops (li, li+1) attach the disc B2

i in the following way: identify the boundary ∂ B2
i with the loop

li ∗ l−i+1 and stretch the interior of B2
i up so that one of its interior points (called the peak point of B2

i ) is at height 1. The

situation is presented in Fig. 1 where discs B2
i are represented by “bumps”. It is easy to see that HA is not homotopically

Hausdorff.
A detailed study of relationship between properties of Definition 1 is presented in [6] and [9]. The distinction between

them is demonstrated by spaces Y , Y ′ , Z , Z ′ of [9]. Essential parts of these spaces turn out to be a generic spaces where
certain properties of smallness and closeness occur.

Properties of Definition 1 arise in connection to the universal path space.

Definition 2. Let (X, x0) be a pointed path connected space. The universal path space X̂ is the set of equivalence classes of
paths α : [0,1] → X,α(0) = x0 under the following equivalence relation: α ∼ β iff α(1) = β(1) and the concatenation α ∗β−
(where β−(t) := β(1 − t)) is homotopic to a constant path at x0, denoted by 1x0 . The space X̂ is given a topology generated
by the sets

N(U ,α) := {
β

∣∣ β 	 α ∗ ε, ε :
([0,1],0

) → (
U ,α(1)

)}
where U is an open neighborhood of α(1) ∈ X . The natural endpoint projection p̂ : X̂ → X is called the endpoint map.

Universal path space is called a universal covering space if the endpoint projection has the unique path lifting property.

The following are well-known facts that appear in [5,6,9,18,20,1,3,10].

Proposition 3. Let (X, x0) be a path connected space.

(i) X is semi-locally simply connected iff the fibers p̂−1(x) ⊂ X̂ of the endpoint projection are discrete subspaces for all x ∈ X.
(ii) X is homotopically Hausdorff iff the fibers p̂−1(x) ⊂ X̂ of the endpoint projection are Hausdorff subspaces for all x ∈ X.

(iii) If X̂ is a universal covering space then X is homotopically path Hausdorff.
(iv) If X is homotopically Hausdorff and π1(X, x0) is countable then X̂ is a universal covering space.
(v) If X is homotopically path Hausdorff then X̂ is a universal covering space.
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The property of being homotopically Hausdorff is closely related to small loops, which were introduced and studied
in [18]. In this paper we extend the approach of [18] in order to define smallness and closeness for a wider class of maps
and relate new concepts to existing examples and properties. As a result we obtain the following classification.

Theorem 4. Let X be a path connected space.

(i) A space X is homotopically Hausdorff if it contains no non-trivial pointed small loop.
(ii) A space X is strongly homotopically Hausdorff if it contains no non-trivial free small loop.

(iii) A locally path connected space X is homotopically path Hausdorff if there is no pair of paths in X that are close relatively to the
endpoints of the interval.

Statements (i) and (ii) are apparent from Definitions 31 and 16. Statement (iii) is the content of Proposition 48.

2. Technical preliminaries

We introduce several notions that will be used in the course of the paper. The following definition is a generalization of
a classical concept of an absolute extensor which will be used to classify certain cases of smallness and closeness.

Definition 5. Let A ⊆ X be a closed subspace and let Y be any topological space. Space Y is an absolute extensor for the
inclusion A ↪→ X [notation: (A ↪→ X)τ Y or Y ∈ AE(A ↪→ X)] if every map A → Y extends over X .

Note that a path connected space Y is simply connected iff it is an absolute extensor for the inclusion ∂ B2 ↪→ B2.
The notion of an m-stratified space as defined in [18] is a description of construction rather than the property of a space

as every space is m-stratified. It mimics the structure of CW-complexes by building spaces through attachment of smaller
pieces via quotient maps.

Definition 6. Let {Yi, Ai}i�0 be a countable collection of pairs of spaces where Ai ⊆ Yi is closed for every i. Topological
space X is an m-stratified (map stratified) space with parameters {Yi, Ai}i if it is homeomorphic to the direct limit of
spaces {Xi}i�0 where spaces Xi are defined inductively as

• X0 := Y0,
• Xi := Xi−1 ∪ f i Y i for some maps f i : Ai → Xi−1.

The sets Yi are called m-strata.

When applying the construction of an m-stratification we will usually adopt the notation of Definition 6. Lemma 7 has
origins in the theory of CW-complexes presented in [13]. It describes the behavior of compact subsets with respect to an
m-stratification.

Lemma 7. ([18]) Suppose Y is an m-stratified space so that m-strata Yi can be decomposed as Yi = ∐
j Y j

i where Y j
i ⊂ Yi are open

regular subspaces (i.e. open subspaces which are regular topological spaces). Let K ⊂ Y be a compact space. Define X j
i to be the image

of Y j
i in Y . Then K is contained in a finite union of subsets X j

i ⊂ Y .

Another important property is related to extensions of maps. Any synchronized collection of maps on m-stratas induces
a continuous map on Y .

Lemma 8. Let Y be an m-stratified space and let gi : Yi → Z be a collection of maps satisfying gi |Ai = gi | f i(Ai) ◦ f i . Then maps gi
induce a continuous map on Y .

The notion of a universal Peano space was defined in [4]. It allows us to study certain properties of a non-locally path
connected space.

Definition 9. Let X be a path connected space. The universal Peano space (or Peanification) PX of X is the set X equipped
with a new topology, generated by all path components of all open subsets of the existing topology on X . The universal
Peano map is the natural bijection p : PX → X .

Note that PX is locally path connected. As an example, the Peanification of the Warsaw circle is a semi-open interval.
The name “universal Peano map” refers to the universal map lifting property for locally path connected spaces.
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Proposition 10. ([4]) Let Y be a locally path connected space. Then every map f : Y → X uniquely lifts to a map f ′ : Y → PX.

PX

p

Y

f ′

f
X

Proof. Since p is bijection the only possible choice for f ′ is p f . Let us prove it is continuous. Choose y ∈ Y and let
x = f (y). Every open neighborhood U ′ ⊂ PX of x′ = p(x) ∈ PX is a path component of an open neighborhood U ⊂ X of
x ∈ X . The preimage f (U ) is an open neighborhood of y which contains an open path connected neighborhood W of y as
Y is locally path connected. Then f (W ) ⊂ U is path connected and contains x hence f ′(W ) is contained in U ′ . �

If Y is locally path connected then so is Y × [0,1] which yields the following corollary.

Corollary 11. Let Y be a locally path connected space and let X be a path connected space.

(i) The set of homotopy classes of maps [Y , X] is in natural bijection with [Y ,PX].
(ii) The set of homotopy classes of maps [Y , X]• in the pointed category is in natural bijection with [Y ,PX]• .

(iii) πk(X) = πk(PX), for all k ∈ Z
+ .

(iv) Hk(X) = Hk(PX), for all k ∈ Z
+ .

Proposition 10 implies that paths and homotopies between paths, on the base of which the universal path space is
defined, are the same in X and PX.

Corollary 12. The universal path spaces X̂ and P̂X are homeomorphic for every path connected space (X, x0).

Given a path connected space X which is not locally path connected, Corollary 12 describes the information about the
space which is lost in the construction of the universal path space. Essentially it is the same information that is lost in the
construction of the universal Peano space. In particular, the universal Peano space PX has the same homotopy and homology
groups as X but may have different shape group. On the other hand, spaces X̂ and PX are locally path connected even if
the space X is not.

3. Homotopical smallness

The definition of small maps first appeared in [18] in the form of small loops.

Definition 13. A loop α : (S1,0) → (X, x0) is small iff there exists a representative of the homotopy class [α]x0 ∈ π1(X, x0)

in every open neighborhood U of x0. A small loop is a non-trivial small loop if it is not homotopically trivial.

Griffiths’ space of [12] and HA of [2] are well-known spaces with non-trivial small loops. Another example is the strong
Harmonic Archipelago SHA. The topology of SHA can be described in terms of m-stratified spaces with the following param-
eters (using the notation of Definition 6):

Y0 = HE, Yi = B2
i , Ai = ∂ B2

i = S1
i , f i = lil

−
i+1 : S1

i → HE.

Both HA and SHA are obtained from HE by attaching discs B2
i along loops lil

−
i+1. The difference is that in the case of SHA

an infinite collection of discs {B2
i } is attached to HE by the quotient map (making it more natural as suggested by the proof

of Proposition 14), while in the case of HA attachment is carried on in R
3 so that the resulting space HA is metric. SHA is

a generic example of a non-trivial small loop in a first countable in the sense of the following proposition, which can be
proved using Lemma 8. Its generalization will be proven later.

Proposition 14. Assume that x0 ∈ X has a countable basis of neighborhoods. A loop α : (S1,0) → (X, x0) is small iff it extends to
F : (SHA,0) → (X, x0) where l1 : (S1,0) ↪→ (SHA,0) is the boundary loop.

(S1,0)
α

(X, x0)

(SHA,0)
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The same proposition can be proven for HA instead of SHA as well but the proof is somewhat more complicated. Another
construction related to small loops are small loop spaces as defined, constructed and studied in [18].

Definition 15. A non-simply connected space X is a small loop space if for every x ∈ X , every loop α : (S1,0) → (X, x) is
small.

The following subsections generalize the notion of smallness and accompanying constructions to a general case in various
categories.

3.1. Homotopical smallness in unpointed category

This subsection is devoted to homotopical smallness of arbitrary spaces in unpointed category. All homotopies and maps
are considered to be unpointed (i.e. spaces have no basepoint and homotopies need not preserve any point).

We start with a definition of smallness in the unpointed category. The absence of a basepoint implies that we should
specify a point at which we would like to consider smallness. By smallness we mean the property of being able to find a
homotopic representative of a map in every neighborhood of a point.

Definition 16. A map f : Y → X is (homotopically freely) small at x ∈ X (in unpointed topological category) if for each open
neighborhood U of x there is a (free) homotopy H : Y × [0,1] → X so that H|Y ×{0} = f and H|Y ×{1}(Y ) ⊂ U . A small map is
a non-trivial small map if it is not homotopically trivial.

Proposition 17. Suppose f : Y → X is a small map at x ∈ X and g : f (Y ) → Z is a map. If g extends over X then g f : Y → Z is a
small map at g(x).

For the rest of this section we will assume S to be a directed set with no maximal element (hence S is infinite) and
the smallest (initial) element s0, unless otherwise stated. Definition 18 introduces a generic examples of small maps which
classify all small maps in terms of extension theory.

Definition 18. The Sydney opera space of S with respect to the space Y (in the topological category) [notation: FSOY (S)] is
a space constructed in the following way.

Take a disjoint union
∐

s∈S Ys of copies of space Y , one copy for each element in S . Upon this union attach spaces
W s := Y × [0,1] for each s ∈ S\{s0}, so that Y × {0} ⊂ W s is identified with Ys0 and Y × {1} ⊂ W s is identified with Ys .
Add another point {0} to obtain the space FSOY (S) := ⋃

s∈S\{s0} W s ∪ {0} and define the following topology. The subset
U ⊂ FSOY (S) is open if either of the following is true:

(i) 0 /∈ U and U is open in W s , ∀s ∈ S\{s0},
(ii) 0 ∈ U , U is open in W s , ∀s ∈ S\{s0} and there exists t0 ∈ S such that Yt ⊂ U , ∀t � t0.

For a fixed directed set S with the initial element s0 the rule Y → FSOY (S) is a functor on the category of the topo-
logical spaces. Space FSOY (S) can be given various structures of an m-stratified space. The simplest one would start with
{0} ∪ ∐

s∈S Ys (with appropriate topology as described in Definition 18) upon which we attach homotopies W s . Using the
notation of Definition 6 the topology of FSOY (S) can be expressed by the following parameters: Y0 = {0} ∪ ∐

s∈S Ys (with
topology described in Definition 18),

Y1 =
∐

s∈S\{s0}

(
Y × [0,1])s, A1 =

∐
s∈S\{s0}

(
Y × {0,1})s,

f1|(Y ×{0})s = 1Y0 , f1|(Y ×{1})s 1Ys .

Note that 0 ∈ FSOY (S) is not path connected to Ys0 .

Lemma 19. The natural inclusion Y → Ys0 ⊂ FSOY (S) is small at 0.

Proof. Using homotopies W s we can homotope the inclusion into arbitrary neighborhood of 0. �
If Y is contractible then the inclusion Y → Ys0 ⊂ FSOY (S) is homotopically trivial. A necessary condition for such inclu-

sion to be homotopically non-trivial is homotopical non-triviality of Y . Sufficient condition is given by Corollary 22.

Lemma 20. Let f : K → FSOY (S) be a map from a compact space K to a regular space Y . Then f (K ) is contained in the subspace⋃
s∈T

W s ∪
⋃
s∈S

Ys ∪ {0}

where T ⊆ S is some finite subset. Furthermore, such f factors over
⋃

s∈S Ys ∪ {0} ↪→ FSOY (S) up to homotopy.
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Proof. The first part follows by Lemma 7. To prove the second part consider a strong deformation retraction⋃
s∈T

W s ∪
⋃
s∈S

Ys ∪ {0} →
⋃

s∈S−T

Ys ∪ Ys0 ∪ {0}. �

Lemma 21. Let f : K → Ys0 ⊂ FSOY (S) be a map from a compact space K to a regular space Y and suppose H : K ×[0,1] → FSOY (S)

is a homotopy so that H|K×{0} = f . Then H(K × [0,1]) is contained in the subspace⋃
s∈T

W s

where T ⊆ S is some finite subset.

Proof. By Lemma 20 the compact set H(K × [0,1]) is contained in

A :=
⋃
s∈T

W s ∪
⋃
s∈S

Ys ∪ {0}

for some finite T ⊆ S . Note that H(K × [0,1]) is connected to Ys0 by paths as H|K×{0} ⊂ Ys0 . Sets {0} and Yt ∩ (K × [0,1])
for t ∈ S − T are not path connected to Ys0 in A hence H(K × [0,1]) ⊆ ⋃

s∈T W s . �
Corollary 22. Let Y be a compact Hausdorff space which is not homotopically trivial. Then the natural inclusion i : Y → Ys0 ⊂ FSOY (S)

is a homotopically non-trivial small map at 0.

Proof. Suppose there is a homotopy H in FSOY (S) between the inclusion i and a constant map. Because Y is compact such
homotopy is a compact map therefore its image is contained in

⋃
t∈T W s where T ⊆ S is a finite subset. Space

⋃
t∈T Wt can

be naturally retracted to Ys0 . Composing homotopy H with such retraction we contradict the fact that Y is homotopically
non-trivial. �

Similarly as in the case of small loops we can classify small maps in terms of extension theory.

Proposition 23. Let S be a directed set with the smallest element s0 so that for a point x ∈ X there is a basis {Us}s∈S that satisfies
(Us ⊆ Ut) iff (s � t). Map f : Ys0 → X is small at x ∈ X iff it extends over FSOY (S) to a map F so that F (0) = x.

Proof. We only have to prove one direction. Suppose the map f : Ys0 → X is small at x ∈ X . For each s ∈ S there is a
homotopy H between f and a map whose image is contained in Us . Use such homotopy to naturally define the map F
on W s and additionally define F (0) := x. This rule defines a continuous map on FSOY (S) − {0} as the topology on it is
quotient. The preimage F −1(Ut) of any basic open neighborhood Ut of x is open in W s,∀s ∈ S , and contains entire Ys for
all s � t therefore it is open in FSOY (S). Hence the extension F is continuous. �
Definition 24. Let Y be a topological space. Space X is called a small Y -space if the following conditions hold:

(i) There exists a map Y → X which is not homotopically trivial.
(ii) Every map Y → X is small at every x ∈ X .

Corollary 25. Let S be a directed set with the smallest element s0 so that for x ∈ X there is a basis {Us}s∈S that satisfies (Us ⊆ Ut)

iff (s � t). Suppose there exists a map Y → X which is not homotopically trivial. Space X is a small Y -space iff ((Ys0 ∪ {0}) ↪→
FSOY (S))τ X .

The rest of this subsection is devoted to the existence of a small Y -space for non-contractible compact Hausdorff spaces.
With these properties we can imitate the construction of a small loop space of [18]. The Hausdorff property of Y implies
that Y and FSOY (N) are regular spaces which allows Lemma 7 to be used in the case of FS(Y ). The following definition
introduces a generic example of a small Y -space.

Definition 26. Let Y be a topological space. The space FS(Y ) is an m-stratified space with

Y0 = FSOY (N), Si := {
(g, x); g : Y → Xi−1, x ∈ Xi−1

}
,

Yi :=
∐

(g,x)∈Si

FSOY (N)g,x, Ai :=
∐

(g,x)∈Si

(
Y0 ∪ {0})g,x,

f i(0g,x) = x, f i|(Y0)g,x = g,

where (Y0)g,x ⊂ FSOY (N)g,x is the initial copy of Y in FSOY (N)g,x .
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Lemma 27. Suppose Y is a compact Hausdorff space. Every map f : Y → FS(Y ) is small.

Proof. Choose any x ∈ FS(Y ). By Lemma 7 there is k ∈ N so that f (Y ) ⊂ Xk and x ∈ Xk according to m-stratification of FS(Y ).
Then f can be made small in Xk+1 via the attached space FSOY (N) f ,x . �
Proposition 28. Suppose Y is a compact Hausdorff space which is not homotopically trivial. Then the natural inclusion f : Y → Ys0 ⊂
X0 ⊂ FS(Y ) is homotopically non-trivial.

Proof. Suppose there is a homotopy H taking f to a constant map. Using Lemmas 7 and 21 one can construct a retraction of
H(Y × I) to Ys0 . Composing such retraction with H would imply that Y is homotopically trivial, which is a contradiction. �
Corollary 29. If the space Y is compact Hausdorff and homotopically non-trivial then FS(Y ) is a small Y -space.

Space FS(Y ) is a universal example of a small Y -space in the following way.

Proposition 30. Suppose f : Ys0 → X is a map to a small Y -space X where Ys0 ⊂ X0 ⊂ FS(Y ). Then f extends over FS(Y ).

Proof. Follows from Lemma 8. �
3.2. Homotopical smallness in pointed category

The aim of this subsection is to develop similar results for smallness in the pointed category. Recall that pointed homo-
topy is a homotopy that fixes the base point. All spaces, maps and homotopies of this section are considered to be in the
pointed topological category.

Definition 31. A map f : (Y , y0) → (X, x0) between pointed topological spaces is (homotopically) small (in the pointed
topological category) if for each open neighborhood U of x0 there exists a (pointed) homotopy (i.e. H : (Y ×[0,1], (y0,0)) →
(X, x0), H(y0, t) = x0, ∀t ∈ [0,1]) so that H|Y ×{0} = f and H|Y ×{1}(Y × {1}) ⊂ U . A small map is a non-trivial small map if
it is not homotopically trivial.

Proposition 32. Let f : (Y , y0) → (X, x0) be a small map and let g : ( f (Y ), x0) → (Z , z0) be a map. If g extends over X then
g f : (Y , y0) → (Z , z0) is small.

The following definition introduces an analogue of the FSO spaces in the pointed category. Recall that S is assumed to
be a directed set with no maximal element and the smallest element s0.

Definition 33. The Sydney opera space [notation: SOY (S)] of S with respect to the space (Y , y0) (in the pointed topological
category) is a topological space constructed in the following way.

Consider the wedge
∨

s∈S (Ys, y0) of |S| copies of the space Y , one copy for each element of S , obtained by identifying
the base points y0 of the spaces (Ys, y0). Define its basepoint to be the wedge point and denote it by y0 as well. On this
wedge attach the spaces W s := Y × [0,1] for each s ∈ S\{s0}, so that Y × {0} ⊂ W s is identified with Ys0 , Y × {1} ⊂ W s

is identified with Ys and {y0} × I is identified with y0 ∈ ∨
s∈S\{s0}(Ys, y0). Define SOY (S) to be the set

⋃
s W s with the

following topology. A subset U ⊂ SOY (S) is open if either of the following is true:

(i) y0 /∈ U and U is open in W s , ∀s ∈ S\{s0},
(ii) y0 ∈ U , U is open in W s , ∀s ∈ S\{s0} and there is t0 ∈ S so that Yt ⊂ U , ∀t � t0.

For a fixed directed set S with the initial element s0 the rule Y → SOY (S) is a functor in the category of the pointed
topological spaces. The space SOY (S) is a natural quotient of FSOY (S) and can be given various structures of an m-stratified
space. The simplest one is almost identical to the one of FSOY (S). Start with the wedge

∨
s∈S (Ys, y0) (with appropriate

topology as described in Definition 33) upon which we attach homotopies W s . Using the notation of Definition 6 the
topology of SOY (S) can be expressed by the following parameters: Y0 = ∐

s∈S Ys (with topology described in Definition 33),

Y1 =
∐

s∈S\{s0}

(
Y × [0,1])s, A1 =

∐
s∈S\{s0}

(
Y × {0,1} ∪ {y0} × [0,1])s,

f1|(Y ×{0})s = 1Y0 , f1|(Y ×{1})s = 1Ys f1
(({y0} × [0,1])s

) = {y0}.
The topology of an m-stratified space implies that the natural inclusion (Y , y0) ∼= (Ys0 , y0) ⊂ (SOY (S), y0) is small. The

nature of compact subsets implies that such inclusion homotopically non-trivial if Y is not contractible.
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Lemma 34. Let S be a directed set with the smallest element s0 . The natural inclusion (Y , y0) → (Ys0 , y0) ⊂ (SOY (S), y0) is small.

Proof. Use homotopies W s . �
Lemma 35. Suppose f : (K ,k0) → (SOY (S), y0) is a map defined on a compact Hausdorff space (K ,k0). Then f (K ) is contained in
the subspace⋃

s∈T

W s ∪
⋃
s∈S

Ys

where T ⊂ S is a finite subset. Furthermore, such f factors over (
⋃

s∈S Ys, y0) ↪→ (SOY (S), y0) up to homotopy.

Proof. The first part follows by Lemma 7. To prove the second part consider the strong deformation retraction⋃
s∈T

W s ∪
⋃
s∈S

Ys →
⋃

s∈S−T

Ys ∪ Ys0 . �

Corollary 36. Let (Y , y0) be a compact Hausdorff, homotopically non-trivial space. The natural inclusion i : (Y , y0) → (Ys0 , y0) ⊂
(SOY (S), y0) is a homotopically non-trivial small map.

Proof. Suppose there is a pointed homotopy in SOY (S) between i and a constant map. The space (Y , y0) is compact
hence the image of such homotopy is contained in

⋃
s∈T W s ∪ ⋃

s∈S−T Ys where T ⊆ S is some finite subset. The sub-
space

⋃
t∈T W T ⊂ SOY (S) can be retracted to Ys0 and the subspace

⋃
s∈S−T Ys ⊂ SOY (S) can be retracted to y0. Composing

the homotopy with these retractions we obtain a contraction of (Y , y0), a contradiction. �
Proposition 37. Let S be a directed set with the smallest element s0 so that x ∈ X has a basis of neighborhoods {Us}s∈S that satisfies
(Us ⊆ Ut) iff (s � t). The map f : (Ys0 , y0) → (X, x0) is small iff it extends over SOY (S).

Proof. We only have to prove one direction. Suppose the map f : (Ys0 , y0) → (X, x0) is small. For each s ∈ S there is a
homotopy H between f and a map with its image contained in Us . Use such homotopy to naturally define a map on W s .
With this rule we have defined a continuous map on SOY (S)−{y0} by the definition of topology. The preimage of any basic
open neighborhood Ut , t ∈ S of x is open in W s , ∀s ∈ S , and contains all W s , s � t therefore it is open. Hence the extension
is continuous. �

Definition 38 introduces a small Y -space. It is followed by the extensional classification and a construction of such space.
Small Y -space is a generalization of a small loop space which was shown to have interesting properties in [18].

Definition 38. Let (Y , y0) be a topological space. We call X a small Y -space if the following conditions hold:

(i) There exists a map f : (Y , y0) → (X, f (y0)) which is not homotopically trivial.
(ii) Every map f : (Y , y0) → (X, f (y0)) is small.

Corollary 39. Let X be a topological space and suppose S is a directed set with the smallest element s0 so that for every x ∈ X there
exists a basis {Us}s∈S of open neighborhoods of x satisfying (Us ⊆ Ut) iff (s � t). Suppose there exists a homotopically non-trivial map
f : (Y , y0) → (X, f (y0)). Space X is a small Y -space iff (Ys0 ↪→ SOY (S))τ X .

Definition 40. Let (Y , y0) be a topological space. The space S(Y ) is an m-stratified space with

Y0 = SOY (N), Si := {g; g : Y → Xi−1},
Yi :=

∐
g∈Si

SOY (N)g, Ai :=
∐
g∈Si

(Y0)g, f i =
∐
g∈Si

g,

where (Y0)g,x ⊂ SOY (N)g,x is the initial copy of Y in SOY (N)g .

Lemma 41. If (Y , y0) is a compact Hausdorff space then every f : (Y , y0) → (S(Y ), f (y0)) is small.

Proof. By Lemma 7 there exists k ∈ N so that f (Y ) ⊂ Xk . Pointed map f : (Y , y0) → (S(Y ), f (y0)) is small in Xk+1 due to
attached space SOY (N) f . �
Proposition 42. The natural inclusion f : (Y , y0) → (Ys0 , y0) ⊂ (X0, y0) ⊂ (S(Y ), y0) is homotopically non-trivial in S(Y ) if Y is
compact Hausdorff and homotopically non-trivial.
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Proof. Suppose there exists a homotopy H between f and a constant map. By Lemma 35 the homotopy H factors over⋃
s∈T W s ∪ ⋃

s∈S−T Ys for some finite subset T ⊂ S . Observe that there exists a retraction of
⋃

s∈T W s ∪ ⋃
s∈S−T Ys to Ys0 :

retract W s to Ys0 for s ∈ T and contract the rest to y0. The composition of H with such retraction implies that Y is
homotopically trivial, a contradiction. �
Corollary 43. Space S(Y ) is a small Y -space if Y is compact Hausdorff and homotopically non-trivial.

Space S(Y ) is a universal example of a small Y -space in the following way.

Proposition 44. Suppose f : (Ys0 , y0) → (X, x0) is a map to a small Y -space (X, x0) where Ys0 ⊂ X0 ⊂ FS(Y ). Then f extends over
(FS(Y ), y0).

4. Homotopical closeness

Homotopical closeness is a concept which generalizes homotopical smallness. Its development is motivated by consid-
ering how close the two loops are in some space. Roughly speaking, loop α is close to loop β �	 α if for each ε > 0 there
exists a homotopic representative αε of α so that d(αε(t), β(t)) < ε, ∀t . In other words, there is no pair of close loops if
the following condition holds: whenever there are homotopic loops αε so that αε(t)

ε→0−−−→ α(t) then αε 	 α. This condi-
tion is related to the property of being π1-shape injective (or just shape injective) due to [5] and to the property of being
homotopically path Hausdorff.

4.1. On homotopical smallness and closeness

The aim of this section is to discuss some issues concerning the relationship between homotopical smallness and close-
ness. The following is the definition of closeness we employ for the future use.

Definition 45. Let A ⊂ Y be a closed subspace of Y and let (X,d) be a metric space. Map f : Y → X is (homotopically) close
to the map g : Y → X relatively to A (denoted by rel A) if the following conditions hold:

(a) f is not homotopic to g , rel A (i.e. there exists no homotopy between f and g that fixes all points of A);
(b) for each ε > 0 there exists a homotopy Hε : Y × [0,1] → X so that

(i) Hε|Y ×{0} = f ;
(ii) Hε(a, t) = g(a), ∀a ∈ A, ∀t ∈ [0,1];

(iii) d(Hε(y,1), g(y)) < ε, ∀y ∈ Y .

The first observation is that (homotopical) closeness is only considered in metric spaces. The reason is that, roughly
speaking, we want to obtain homotopically equivalent maps fn : Y → X that point-wise uniformly converge to a map
f : Y → X which is not homotopically equivalent to any fn . The structure of a metric space was not required in the case of
smallness (i.e. closeness to a constant map) as we were only considering convergence towards one point. On the other hand
the definition of closeness contains convergence of sequences with potentially different limit points. This generalization also
allows us to consider closeness relatively to a subset A. Smallness could only be considered relatively to ∅ or a basepoint
(yielding pointed and unpointed smallness).

Another issue is the invariance of closeness and smallness. Every small map Y → X is topologically invariant (i.e. small-
ness is preserved by homeomorphisms of X ). On the other hand the closeness is not preserved by homeomorphisms as
suggested by the following example. Consider planar spaces X and Z (see Fig. 2) defined by the following rule

X := {x > 0, y = 0} ∪ {x = 0, y > 1} ∪
⋃

n∈Z+

{
x = 1

n
, y > 0

}
,

Z := {x > 0, y = 0} ∪ {x = 0, y > 1} ∪
⋃

n∈Z+

{
y = nx − 1; x >

1

n

}
.

Observe that there exists a homeomorphism h : X → Z which fixes the subset {x > 0, y = 0}∪{x = 0, y > 1} and linearly
maps {x = 1

n , y > 0} to {y = nx − 1; x > 1
n }. Consider the map f : R+ → X defined by f (t) := (1,1 + t). Note that f is close

(but not homotopic) to the map g defined by g(t) := (0,1 + t). On the other hand hf is not close to hg .
However, closeness is Lipschitz invariant and closeness of maps in a compact space is topologically invariant as proved

by the following statements.

Proposition 46. Let f : Y → X be close to g : Y → X (in a metric space X) and suppose a map h : X → Z is uniformly continuous.
Then hf is either close or homotopic to hg.
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Fig. 2. Spaces used to disprove the topological invariance of closeness.

Proof. For every ε > 0 let δε denote a positive number so that if dX (x, y) < δε then dZ ( f (x), f (y)) < ε. Consider ho-
motopies Hε according to Definition 45. Given a homeomorphism h the homotopies H̃ε := hHδε satisfy condition (ii) of
Definition 45. �
Corollary 47. Let f : Y → X be close to g : Y → X (in a metric space X) and let h : X → Z be a map. If X is compact Hausdorff or h is
Lipschitz then hf is either close or homotopic to hg.

Another observation is related to the nature of closeness as a relation, i.e. the absence of symmetry. Note that f being
close to g does not imply g being close to f . The reason is that the definition of closeness ( f being close to g) requires
homotopic representative of f converging to the map g and not only to homotopic representative of g . The relaxation of
condition of closeness as suggested by the last sentence would yield a symmetric (and transitive) relation of closeness.
However, such relaxation would change the nature of closeness (and smallness) drastically. In particular, every two maps
to a graph of function f (x) = x−2 would be either homotopic or close. Such relaxation would redefine small loops (within
the unpointed category) in the following way: a loop is small iff it has a homotopic representative of diameter at most ε
for every ε > 0. This would mean that the punctured open disc is a small loop space but an open annulus is not hence
smallness would not be a topological invariant. Also, the absence of close paths relatively to the endpoints would not
coincide with the concept of the property of being homotopically path Hausdorff as proved by Proposition 48. For these
reasons the definition of closeness is not symmetric.

The notion of small loops (in the pointed category) is closely related to the property of being homotopically Hausdorff
(i.e. it is equivalent to the absence of small loops). In a similar fashion the closeness of paths relatively to the endpoints is
related to the property of being homotopically path Hausdorff in a locally path connected space.

Proposition 48. A locally path connected metric space X has the property of being homotopically path Hausdorff iff there are no close
paths [0,1] → X relatively to the endpoints of the interval.

Proof. Suppose X is not homotopically path Hausdorff. According to Definition 1 there exist paths w, v : [0,1] → X ,
v �	 w rel{0,1} with the following property: for any chosen n ∈ Z+ and a cover of w([0,1]) by open sets of diameter at
most 1

n the conditions of Definition 1 are not satisfied due to some path vn homotopic to v relatively to {0,1}. In particular,
d(w(t), vn(t)) < 1

n , ∀t ∈ [0,1] as w(t) and vn(t) are contained in a set of diameter at most 1
n . This implies that v is close

to w relatively to {0,1}.
To prove the other direction we use local path connectedness of X . Suppose the path v : [0,1] → X is close to the

path w relatively to {0,1}. Choose any cover of w([0,1]) by finitely many path connected open sets U (P1), . . . , U (Pk) and
any partition 0 = t0 < t1 < t2 < t3 < · · · < tk = 1 so that:

(i) U (P j) covers w([t j−1, t j]);
(ii) P j ∈ w([t j−1, t j]).

There exists ε > 0 so that the ε-neighborhood of w([t j−1, t j]) is contained in U (P j), ∀ j. The closeness of v to w relatively to
{0,1} allows us to choose a path v ′ 	 v rel{0,1} so that dX (v ′(t), w(t)) < ε hence U (P j) covers v ′([t j−1, t j]). Since the sets
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Fig. 3. The space C(S1, {0}).

U (P j) are path connected we can (for each j) redefine v ′|[t j−1,t j ] so that we do not change the homotopy type relatively to
{t j−1, t j}, P j ∈ v ′([t j−1, t j]) and U (P j) ⊃ v ′([t j−1, t j]). Such path v ′ contradicts Definition 1 for the loop α = w ∗ v− hence
X is not homotopically path Hausdorff. �

If the space X is not locally path connected then close paths need not contradict the property of being homotopically
path Hausdorff. This fact is connected to the following observation. If a path f : [0,1] → X is close to the path g (relatively
to {0,1}) then:

(i) f is close to g in the Peanification PX if X is locally path connected.
(ii) f may not be close to g in the Peanification PX (for some metric on PX) if X is not locally path connected.

Statement (i) is obvious as X = PX in the case of a locally path connected space. Note that statement (ii) requires a
structure of metric space on PX in order to consider closeness. To prove statement (ii) we construct the space C(S1, {0})
which is a modification of HA. Recall that HA is constructed with the aim to create a small loop. In order to do this we
attach big homotopies along the loops converging to a point. The construction of C(S1, {0}) follows the same philosophy for
closeness. We attach big homotopies along loops converging to another loop (rather than a point). Recall that 0 = (0,0) ∈ R

2

and S1(S, r) denotes a circle in R
2 with center S and radius r. Define

S1
n := S1

((
1 + 1

n
,1

)
,1 + 1

n

)
for n ∈ Z+, S1∞ := S1((1,0),1

)
.

Naturally embed
⋃

n∈Z+ S1
n ∪ S1∞ in R

3 and attach spaces An = (S1 × [0,1])n for all n ∈ Z+ so that:

(i) we identify (S1 × {0})n with S1
n;

(ii) we identify (S1 × {1})n with S1
n+1;

(iii) we identify ({0} × [0,1])n with 0;
(iv) the rest of An is stretched up so that it reaches height (z-coordinate) 1 (i.e. An has a point which is of distance at

least 1 from S1
n and S1

n+1).

In other words, we attach big homotopies between loops S1
n as suggested by Fig. 3. Since closeness is only defined in a

metric space we cannot attach all An by quotient maps (as in SHA) but rather within a metric space R
3.

Remark. The conditions above about the nature of the attached homotopies An do not uniquely define the space C(S1, {0}).
The reason is, roughly speaking, that the homotopies An approach the loop S1∞ rather than just a point. For example, the
homotopies An may be chosen so that for any given x ∈ S1∞ − {0} the space either is or is not locally path connected at x.
Fig. 3 suggests that C(S1, {0}) is locally path connected everywhere and that there are small loops at (1,0,0) ∈ S1∞ as
the humps (i.e. subspaces of An with z-coordinate at least 1) of An converge to that point. In order to comply with later
definitions we demand the humps of C(S1, {0}) to converge to entire S1∞ so that C(S1, {0}) is not locally path connected at
any point of S1∞ − {0}. For an alternative description of C(S1, {0}) see Definition 54.

Note that the loops S1
n are homotopic to each other relatively to 0 via homotopies An but these homotopies cannot

be combined to obtain a homotopy to the limit loop S1∞ . Similarly as in the case of HA we can prove that the map
(S1,0) → (S1

1,0) ⊂ C(S1, {0}) is close to the map (S1,0) → (S1∞,0) ⊂ C(S1, {0}) relatively to 0. In both cases we consider a
map of the form eiϕ → (A + Beiϕ,0). However, the Peanification of C(S1, {0}) is a wedge of S1 and (S1 × [0,1) ∪ {0} × {1})
hence it contains no close loops. The space C(S1, {0}) is an example of a homotopically path Hausdorff space with close
loops.
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Fig. 4. Notation concerning close paths f and g .

The last observation is related to the Spanier group of a space. Groups π s and π sg are generated by small loops and
defined in [18]. Close loops have no influence on these groups but may interfere with the Spanier group. The following is
the definition of a Spanier group for locally path connected spaces as presented in [9] and [16].

Definition 49. Let (X, x0) be a locally path connected space and let U = {Ui}i∈I be a cover of X by open neighborhoods.
Define π1(U , x0) as the subgroup of π1(X, x0) consisting of the homotopy classes of loops that can be represented by a
product (concatenation) of the following type:

n∏
j=1

u j ∗ v j ∗ u−
j ,

where u j are paths that run from x0 to a point in some Ui and each v j is a closed path inside the corresponding Ui based
at the endpoint of u j . We call π1(U , x0) the Spanier group of (X, x0) with respect to U .

Let U and V be an open covers of X and let U be a refinement of V . Then π1(U , x0) ⊂ π1(V , x0). This inclusion relation
induces an inverse limit defined via the directed system of all covers with respect to refinement. We will call such limit the
Spanier group of the space X and denote it by π

sp
1 (X, x0).

Proposition 50. Let (X, x0) be a locally path connected space.

(i) π
sg
1 (X, x0) ⊂ π

sp
1 (X, x0).

(ii) If f : ([0,1],0) → (X, x0) is close to g relatively to {0,1} in a metric space (X,d) then [ f ∗ g−] ∈ π
sp
1 (X, x0).

Proof. Claim (i) is true as every element of π
sg
1 (X, x0) is contained in each π1(U , x0) by the definition.

To prove claim (ii) we partially imitate the proof of Proposition 48. Fix a cover U of X and choose a finite subfamily
U1, . . . , Uk ⊂ U covering g([0,1]) so that for some partition 0 = t0 < t1 < · · · < tk = 1 the set U j contains g([t j−1, t j]), ∀ j.
There exists ε > 0 so that for every j:

• ε-neighborhood of g([t j−1, t j]) is contained in U j ;
• every point of the ε-neighborhood of g(t j) is connected to g(t j) by a path in U j ∩ U j+1.

We can assume dX ( f (t), g(t)) < ε, ∀t . For each j let α j denote an oriented path in U j ∩ U j+1 between g(t j) and f (t j)

as denoted by Fig. 4. We can assume α0 and αk to be constant paths. Observe that the oriented loop Q j defined as a
concatenation

α j−1 ∗ f |[t j−1,t j ] ∗ α−
j ∗ (g|[t j−1,t j ])−

is based at g(t j) and contained in U j . The class [ f ∗ g−] is contained in π1(U , x0) because it can be expressed as

k∏
j=1

g|[0,t j−1] ∗ Q j ∗ (g|[0,t j−1])−.

Hence [ f ∗ g−] ∈ π
sp
1 (X, x0). �
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Fig. 5. Space C(Y ).

4.2. Standard constructions

In this subsection we present some aspects of closeness which are motivated by similar results on smallness. Since the
closeness is only defined in metric spaces the construction of an m-stratified space and some other features of smallness
are not applicable. The absence of these obstruct the generalization of some constructions including the small loop space.
However it is possible to construct the space C(Y , A) with maps f , g : Y → C(Y , A) for which the map f is close to g
relatively to A.

Given a metric space X its metric will be denoted by d or dX . The metric on a product of metric spaces is defined by
dX×Y ((x1, y1), (x2, y2)) := dX (x1, x2) + dY (y1, y2).

4.2.1. Free closeness
We first consider free closeness, i.e. closeness relatively to ∅. The following is a generalization of the SO spaces.

Definition 51. Let Y be a metric space. Metric space C(Y ) is the subspace of Y × [0,1] × [−1,1] defined as{(
y, t, sin

π

t

)
; (y, t) ∈ Y × (0,1]

}
∪ Y × {0} × {0}.

Fig. 5 schematically represents space C(Y ): copies of space Y connected by big (dashed) homotopies converge to (Y ,0,0).
In the case of Y being a single point we obtain C(Y ) = {(0,0)} ∪ {(x, sin 1

x ); x ∈ (0,1]}. For any point (y, t, s) ∈ C(Y ) we
refer to y, t , s as the first, the second and third coordinate respectively. The role of these coordinates is the following:

• the first coordinate allows space Y to be embedded;
• the second coordinate represents homotopies between converging embeddings;
• the third coordinate makes homotopies via the second coordinate big so that they cannot extend over (Y ,0,0).

Note that (Y ,0,0) is not path connected to (Y ,1,0) which yields the following result.

Proposition 52. The map f : Y → C(Y ) defined by y → (y,1,0) is close to the map g : Y → C(Y ) defined by y → (y,0,0).

Proposition 53. Suppose Y is a compact metric space and the map f : Y → X is not homotopic to g : Y → X. The map f is close to g
iff there exists a map F : C(Y ) → X so that F |(Y ,1,0) = f and F |(Y ,0,0) = g.

Proof. The existence of an extension F implies that f is close to g by Corollary 47.
To prove the other direction assume that f is close to g . Hence for all n ∈ Z+ there exist maps

Hn : Y ×
[

1

n + 1
,

1

n

]
→ X; Hn|Y ×{n+1} = Hn+1|Y ×{n+1};

d

(
Hn

(
y,

1
)

, g(y)

)
<

1 ; H1|Y ×{1} = f .

n n
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We have to adjust the maps Hn in order to construct a continuous map on C(Y ). The idea is to adjust the maps Hn so that
they only depend on Y -coordinate in appropriate neighborhoods of (Y ,n + 1) and (Y ,n).

Given any n ∈ Z+ and any δ < ( 1
n − 1

n+1 )/2 we can assume Hn(y, t) = Hn(y, 1
n+1 ) if |t − 1

n+1 | < δ and Hn(y, t) = Hn(y, 1
n )

if |t − 1
n | < δ. A required modification can be obtained as follows. Extend Hn to a map Y × [a,b] → X so that

Hn(y, t) := Hn

(
y,

1

n + 1

)
if t <

1

n + 1
;

Hn(y, t) := Hn

(
y,

1

n

)
if t >

1

n
.

The linear contraction c : [a,b] → [ 1
n+1 , 1

n ] for appropriate a and b induces a map

Y ×
[

1

n + 1
,

1

n

]
1×c−−→ Y × [a,b] Hn−→ X

which satisfies the required condition.
Define the map F : C(Y ) → X by the rule (y, t, s) → Hn(y, t) if t ∈ [ 1

n+1 , 1
n ] and F (y,0,0) = f (y). We claim that for a

suitable choice of maps Hn the map F is continuous. Note that C(Y )∩ (Y × (0,1]× [−1/2,1/2]) is a disjoint union of closed
neighborhoods of (Y ,1/n,0) which are all homeomorphic to Y × [−1,1]. We can assume (by applying the modification
above) that the maps Hn are appropriately modified to ensure that F (y, s, t) only depends on y on each of these sets. In
particular, any sequence an = F (y, ti, s(ti)) with fixed y and ti converging to 1/n is eventually constant. The stabilization
occurs (if not before) for i with the property that for all successive indexes j > i we have |s(t j)| < 1/2 and |t j − 1/n| <

1/(4n2).
Note that F is continuous at every point (y, t, s) with t > 0 as the maps Hn are continuous and agree on the intersection

of their domains. To prove that F is continuous consider a convergent sequence (yi, ti, si) → (y0,0,0) in C(Y ). Given any
ε > 0 choose i0 so that for every i > i0:

• d( f (yi), f (y0)) < ε/2;
• |si| < 1/2;
• ti < 1/nε < ε/2 for some nε ∈ Z+ (i.e. d( f (y, ti, si), f (y,0,0)) < 1

nε
, ∀y ∈ Y ).

Then

d
(

F (yi, ti, si), F (y0,0,0)
)
< d

(
F (yi, ti, si), F (yi,0,0)

) + d
(

F (yi,0,0), F (y0,0,0)
)
< 1/nε + ε/2 < ε,

since F (yi, ti, si) ∈ {F (yi,1/n,0)}n�nε hence F is continuous. �
4.2.2. Relative closeness

Definition 54. Let Y be a metric space and let A ⊂ Y be a closed subspace. Choose a map ϕ : Y → [0,1] so that A = ϕ−1({0}).
The metric space C(Y , A) is a subspace of Y × [0,1] × [−1,1] defined as{(

y,ϕ(y)t,ϕ(y) sin
π

t

)
; (y, t) ∈ (Y \A) × (0,1]

}
∪ Y × {0} × {0}.

The space C(Y , A) depends on a choice of map ϕ . Nevertheless we omit ϕ form the notation of C(Y , A) as the properties
of our interest do not depend on the choice of a map ϕ . Note that C(Y , A) is not locally path connected at any point of
(Y \A,0,0). In the case of (Y , A) = ([0,1], {1}) the space C(Y , A) is a cone over the space

C
({0}) = {

(0,0)
} ∪

{(
x, sin

1

x

)
; x ∈ (0,1]

}
.

The following proposition provides some examples of a relatively close maps.

Proposition 55. Suppose A ⊂ Y is a closed subspace of a metric space Y . The inclusion i1 : Y ↪→ C(Y , A) defined by y →
(y,ϕ(y),ϕ(y)) is homotopic or close to the inclusion i2 : Y ↪→ C(Y , A) rel A, where i2 : y → (y,0,0).

Proof. The homotopies H : Y × [1/n,1] → C(Y , A) defined by the rule

(y, t) →
(

y,ϕ(y)t,ϕ(y) sin
π

t

)
homotope i1 arbitrarily close to i2. �
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In the case of free closeness the inclusions of Proposition 52 were not homotopic due to an argument on path connect-
edness. Such argument cannot be employed for the inclusions i1 and i2 of Proposition 55 as C(Y , A) is path connected if Y
is path connected and A �= ∅. In order to find a condition for the inclusions i1 and i2 not to be homotopic relatively to A
consider the space W := Y1 ∪a∼(a,(0,1]);a∈A (Y2 × (0,1]) where Y1 and Y2 are isomorphic to a locally path connected metric
space Y . Using the argument of Peanification for the points of (Y − A,0,0) observe that the natural bijection W ↔ C(Y , A)

induces a natural bijection on maps and homotopies from Y , rel A if Y is locally path connected. The space W is homotopic
to Y1 ∪A Y2 with the natural inclusions of Y1 and Y2 corresponding to the inclusions i1 and i2 of Proposition 55. Hence the
inclusions i1 and i2 of Proposition 55 are homotopic rel A iff the inclusions of Y1 and Y2 into Y1 ∪A Y2 are homotopic rel A.
The later of these conditions is equivalent (via contraction of Y2 in Y1 ∪A Y2) to Y /A being contractible which is the case if
A ↪→ X is a cofibration and a homotopy equivalence.

Corollary 56. Suppose the cofibration inclusion A ↪→ Y of a closed subspace into a locally path connected metric space Y is not
a homotopy equivalence. Then the inclusion i1 : Y ↪→ C(Y , A) defined by y → (y,ϕ(y),ϕ(y)) is close to the inclusion i2 : Y ↪→
C(Y , A) rel A, where i2 : y → (y,0,0).

Combining Corollary 56 and Proposition 53 we obtain the extensional classification of certain types of relative close
maps.

Proposition 57. Consider the following situation:

• Y is a compact, locally path connected metric space;
• A ⊂ Y is a closed subspace;
• the natural inclusion A ↪→ Y is a cofibration which is not a homotopy equivalence;
• the map f : Y → X is not homotopic to the map g : Y → X, rel A;
• the inclusions i1, i2 : Y → C(Y , A) are defined by i1(y) = (y,ϕ(y),ϕ(y)) and i2(y) = (y,0,0).

Then the map f is close to g, rel A iff there exists a map F : C(Y , A) → X so that F i1 = f and F i2 = g.

Proof. The existence of an extension F implies that f is close to g by Corollary 47. To prove the other direction assume
that f is close to g , rel A. By Proposition 53 there exists an appropriate extension F over C(Y ). Note that for every a ∈ A the
closed subset Wa := C(Y ) ∩ ({a} × [0,1] × [−1,1]) is mapped by F to a. The map F induces an extension over the quotient
space C(Y )/Wa;a∈A = C(Y , A). �
4.3. Closeness and compactness

Closeness of maps due to Definition 45 is considered within metric spaces in order to enforce a uniform continuouity of
the approaching maps. On the other hand the idea of close maps appears in (iii) of Definition 1 where closeness of paths
is considered in a non-metric space. The aim of this section is to introduce the notion of closeness for maps with compact
domain and possibly non-metric range.

Definition 58. Suppose f , g : K → Y are maps defined on a compact Hausdorff space K so that f �	 g , rel A for some closed
subspace A ⊂ K . The map f is close to g if for every finite open cover U1, . . . , Uk of g(K ) there exist:

• a collection B1, . . . , Bk of closed subsets of K so that K = ⋃
i Bi and g(Bi) ⊂ Ui ;

• the map f ′ 	 f , rel A so that f ′(Bi) ⊂ Ui , ∀i.

Let us prove that both definitions of closeness agree if considered in a metric space Y . Suppose the map f : K → Y is
close rel A to the map g in terms of Definition 58 where A ⊂ K is a close subset of a compact Hausdorff space K and Y is a
metric space. Given any ε > 0 we can cover g(K ) by a collection of open sets of diameter at most ε. The map f ′ referred to
such cover by Definition 58 is homotopic to f , rel A and satisfies the condition d( f ′(x), g(x)) < ε, ∀x ∈ K , hence f is close
to g in terms of Definition 45.

To prove the opposite implication assume that the map f : K → Y is close rel A to the map g in terms of Definition 45.
Given any finite open cover U1, . . . , Uk of g(K ) choose a collection B1, . . . , Bk of closed subsets of K so that K = ⋃

i Bi and
Bi ⊂ Ui . There exists an ε > 0 so that for all i the ε-neighborhood of Bi is also in Ui . A map f ′ 	 f , rel A with the property
of d( f ′(x), g(x)) < ε, ∀x ∈ K satisfies the conditions of Definition 58 hence the definitions are equivalent.

5. Applications

Other that the classification of Theorem 4, homotopical smallness and closeness can efficiently be used in construction
of certain spaces. The simplest case is the topologist’s sine curve, which is equivalent to C({0}). It can also be considered
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Fig. 6. The surface portion of the harmonic vase.

as a one-dimensional harmonic archipelago HA1. The harmonic archipelago of dimension n [denoted by HAn] is a subset
of R

n+1 is constructed from a wedge of spheres {Sn
i }i∈Z+ radii 1/i by attaching big homotopies (i.e. of diameter at least 1)

between each pair of consecutive spheres (Sn
i , Sn

i+1).

The harmonic vase was defined in [19] as a subset of R
3. It has an essential role in the proof of Theorem 63. It consists

of a disc

B2 = {
(x, y,0) ∈ R

3; x2 + y2 � 9
}
,

and a surface portion (see Fig. 6)

r := |ϕ|
π

sin
π

z
+ 2, z ∈ (0,1], ϕ ∈ [−π,π ],

where (r,ϕ) are polar coordinates in R
2 × {0} ⊂ R

3 and z is the coordinate of {0}2 × R so that (r,ϕ, z) are cylindric
coordinates in R

3. The motivation for HV is a construction of a loop f which is close to a homotopically trivial embedding g
of S1 in a compact space. The quotient space HV/{ϕ = 0} is homeomorphic to a compact space C(S1, {0}) ∪ B2 where the
disc B2 is attached in appropriate way as described above. Furthermore, the union of the surface portion of HV and ∂ B2 is
equivalent to C(S1, {0}).

Space A as defined in [6] was developed as an example of a space which is homotopically Hausdorff but not strongly
homotopically Hausdorff, i.e., it has no small loops but has free small loops. It is a subspace of R

3 consisting of three parts:

• the surface portion which is obtained by rotating the topologist’s sine curve

{
(0,0,0)

} ∪
{(

x,0, sin
1

x

)
; x ∈ (0,1]

}
around the z-axis, as suggested by Fig. 7;

• the central limit arc {0} × {0} × [−1,1];
• connecting arcs, i.e. a system of countably many closed radial arcs emerging from the central limit arc so that A is

compact and locally path connected.

The surface portion of A can be considered as an unpointed version of HA, the quotient C(S1)/(S1,0,0) or as a modified
version (in the same way as HA is a modified version of SOS1 (N)) of FSOS1 (N).
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Fig. 7. The surface portion of space A.

Fig. 8. The surface portion of space B .

Space A and its properties were studied in [9] under the name of space Y ′ . A similar space called Y is defined and
studied in the same paper. It consists of the same surface portion and the same central limit arc, but instead of connecting
arcs there is a single simple arc connecting the central limit arc with the surface portion. The space Y is not locally path
connected but the connecting arc makes it path connected.

Space Y distinguishes between two definitions of semi-local simple connectedness that appear in the literature. Accord-
ing to [9]:

• space X is based semi-locally simply connected iff every point x ∈ X has a neighborhood U ⊂ X so that π1(U , x) →
π1(X, x) is trivial.

• space X is unbased semi-locally simply connected iff every point x ∈ X has a neighborhood U ⊂ X so that every loop
in U is contractible.

Both definitions of semi-local simple connectedness agree if the space is locally path connected. It turns out that the space Y
is based but not unbased semi-locally simply connected due to its topology at the central limit arc.

Space B as defined in [6] was developed as an example of a space which is strongly homotopically Hausdorff but not
shape injective. It is a subspace of R

3 consisting of three parts:

• the surface portion which is obtained by rotating the topologist’s sine curve

{
(0,0,0)

} ∪
{(

x,0, sin
1

x

)
; x ∈ (0,1]

}

around the axis {1} × {0} × R, as suggested by Fig. 8;
• the outer annulus obtained by rotating {0} × {0} × [−1,1] around the axis {1} × {0} × R;
• connecting arcs, i.e. a system of countably many closed radial arcs emerging from the outer annulus so that B is

compact and locally path connected.

The surface portion of B is essentially the same as C(S1). Space B and its properties were studied in [9] under the name
of space Z ′ . A similar space called Z is defined and studied in the same paper.

5.1. Realization theorems

One of the basic problems in homotopy theory is the realization of various groups as a homotopy invariants of certain
spaces. In particular, we are interested in the following question: given a group G when can we realize it as a fundamental
group of a path connected space X which possesses the following properties:
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(i) X is compact;
(ii) X is metric;

(iii) X is locally path connected?

It turns out that these three conditions are too restrictive for the realization of all countable groups.

Theorem 59. ([15]) Let X be a compact metric space which is path connected and locally path connected. If the fundamental group
of X is not finitely generated then it has the power of the continuum.

An improvement to this theorem has been made in [5] and [7].

Theorem 60. Let X be a compact metric space which is path connected and locally path connected. If the fundamental group of X is
not finitely presented then it has the power of the continuum.

However, if we omit any of the three properties mentioned above we can realize all countable groups. It is well known
(see [11]) that every group can be realized as a fundamental group of a path connected CW complex of dimension two and
every countable group can be realized as a fundamental group of a countable path connected CW complex of dimension
two. Every countable CW complex is homotopy equivalent to a locally finite (hence metrizable) CW complex of the same
dimension which yields the realization in terms of metric, locally path connected spaces. Since the metric space of such
realization is a two-dimensional CW complex it can be embedded in R

5.

Theorem 61. Let G be a countable group. Then G can be realized as a fundamental group of a two-dimensional metric space X which
is path connected and locally path connected.

This result implies that, omitting the compactness from the list above, we can realize all countable groups as a funda-
mental groups of a space with prescribed properties. Similarly we can omit metrizability in order to obtain a realization in
terms of compact locally path connected space.

Theorem 62. ([14]) Let G be a countable group. Then G can be realized as a fundamental group of a compact space X which is path
connected and locally path connected.

The realization in terms of a compact metric space was proven in [19] using the techniques of homotopical closeness
(i.e. the harmonic vase and its variation: the braided harmonic vase) and the universal Peano space. It turns out that given
a locally path connected space X in certain circumstances, one can construct a compact space Y so that P Y 	 X , i.e. the
spaces have the same fundamental group.

Theorem 63. Let G be a countable group. Then G can be realized as a fundamental group of a two-dimensional compact metric space
X ⊂ R

4 which is path connected.

The approach of [19] in terms of homotopical smallness was generalized in [17] in order to obtain a wider class of real-
ization theorems. This improvement includes the realization of appropriately prescribed groups as a homotopy or homology
groups of a space. The realization results are implied by the following fact.

Proposition 64. ([17]) For every countable CW complex K there is a compact metric space X such that PX is homotopy equivalent
to K .

The proof of the above (and similar results of [17]) is motivated by our construction of spaces possessing homotopical
smallness and homotopical closeness.
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