

Available online at www.sciencedirect.com

Discrete Mathematics 294 (2005) 311-316

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

On edge domination numbers of graphs

Baogen Xu¹

Department of Mathematics, East China Jiaotong University, Nanchang 330013, PR China

Received 2 April 2004; received in revised form 4 November 2004; accepted 23 November 2004

Abstract

Let $\gamma'_{s}(G)$ and $\gamma'_{ss}(G)$ be the signed edge domination number and signed star domination number of *G*, respectively. We prove that $2n - 4 \ge \gamma'_{ss}(G) \ge \gamma'_{s}(G) \ge n - m$ holds for all graphs *G* without isolated vertices, where $n = |V(G)| \ge 4$ and m = |E(G)|, and pose some problems and conjectures. © 2005 Elsevier B.V. All rights reserved.

Keywords: Signed edge domination function; Signed edge domination number; Signed star domination function; Signed star domination number

1. Introduction

We use Bondy and Murty [1] for terminology and notation not defined here and consider simple graphs only.

Let G = (V, E) be a graph. For $u \in V$, then $N_G(u)$ and $N_G[u]$ denote the open and closed neighborhoods of u in G, resp. $d_G(u) = |N_G(u)|$ is the degree of u in G, and $\delta(G)$ denotes the minimum degree of G. For $S \subseteq V(G)$, then G[S] denotes the subgraph of Ginduced by S. For $v \in V$, the symbol $G - v = G[V(G) \setminus \{v\}]$. If H is an induced subgraph of G, we write $H \leq G$. For $e = uv \in E(G)$, $N_G(e) = \{e' \in E(G)|e' \text{ is adjacent to } e\}$ is called the open edge-neighborhood of e in G, and $N_G[e] = N_G(e) \cup \{e\}$ is called the closed one. If $v \in V$, then $E_G(v) = \{uv \in E | u \in V\}$ is called the edge-neighborhood of v in G. For simplicity, $N_G[e]$ and $E_G(v)$ are denoted by N[e] and E(v), respectively.

0012-365X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2004.11.008

E-mail address: Baogenxu@163.com.

¹ Supported by Jiangxi Natural Science Foundation of People's Republic of China (0311047).

In recent years, several kinds of domination problems in graphs have been investigated [2–4,6–8], most of these belonging to the vertex domination. In [5] we introduced the signed edge domination in graphs.

Definition 1.1 (*Xu* [5]). Let G = (V(G), E(G)) be a graph. A function $f: E(G) \rightarrow \{+1, -1\}$ is called the signed edge domination function (SEDF) of *G* if $\sum_{e' \in N[e]} f(e') \ge 1$ for every $e \in E(G)$. The signed edge domination number $\gamma'_{s}(G)$ of *G* is defined as $\gamma'_{s}(G) = \min\{\sum_{e \in E(G)} f(e) | f$ is an SEDF of *G*}.

For any totally disconnected graph $G = \overline{K}_n$, then define $\gamma'_s(G) = 0$.

Definition 1.2. Let G = (V, E) be a graph without isolated vertices. A function $f: E \to \{+1 - 1\}$ is called the signed star domination function (SSDF) of *G* if $\sum_{e \in E(v)} f(e) \ge 1$ for every $v \in V(G)$. The signed star domination number of *G* is defined as $\gamma'_{ss}(G) = \min\{\sum_{e \in E} f(e) | f \text{ is an SSDF of } G\}$.

We define $\gamma'_{s}(G) = 0$ for all totally disconnected graphs $G = \overline{K}_{n}$. By Definitions 1.1 and 1.2 we have

Lemma 1.3. For any two vertex-disjoint graphs G_1 and G_2 , we have

 $\gamma'_{s}(G_1 \cup G_2) = \gamma'_{s}(G_1) + \gamma'_{s}(G_2)$ and $\gamma'_{ss}(G_1 \cup G_2) = \gamma'_{ss}(G_1) + \gamma'_{ss}(G_2)$.

Obviously, an SSDF is an SEDF of G; thus we have the following.

Lemma 1.4. For any graph G without isolated vertices, $\gamma'_{ss}G \ge \gamma'_{s}(G)$.

By Definition 3, it is easy to see the following.

Lemma 1.5. For all graphs G, if $v \in V(G)$, then $\gamma'_{ss}(G) \leq \gamma'_{ss}(G-v) + d_G(v)$.

A graph G is said to be a θ -graph if G is a connected graph with degree sequence d = (2, 2, ..., 2, 3, 3). That is, a θ -graph consists of a cycle and a path whose two end-vertices are on the cycle.

Lemma 1.6. Any θ -graph contains a cycle of even length (even cycle).

Proof. It is obvious.

2. Signed edge domination

The following terminology and notation are useful to prove our main results.

A graph G with an SEDF f of G, denoted by (G, f), is called a signed graph. For a signed graph (G, f), we know from Definition 1.1 that $\gamma'_{s}(G) = \sum_{e \in E(G)} f(e)$.

For simplicity, given a signed graph (G, f), an edge $e \in E(G)$ is said to be +1 edge of (G, f) if f(e) = +1, analogously, an edge $e \in E(G)$ is said to be -1 edge of (G, f) if f(e) = -1. Write $E^+(G, f) = \{e \in E(G) | f(e) = +1\}$ and $E^-(G, f) = \{e \in E(G) | f(e) = -1\}$ -1.

For any signed graph (H, g), two spanning subgraphs $H^+(g)$ and $H^-(g)$ of H are defined as $V(H^+(g)) = V(H^-(g)) = V(H)$, $E(H^+(g)) = E^+(H, g)$ and $E(H^-(g)) = E^-(H, g)$. $H^+(g)$ and $H^-(g)$ are called the positive subgraph and negative subgraph of (H, g), resp. For every vertex $u \in V(H)$, we define the degree difference $d^*(H, g, u)$ of u in (H, g) as $d^*(H, g, u) = d_{H^+(g)}(u) - d_{H^-(g)}(u)$. And further, if $e = uv \in E(H)$, since g is an SEDF of H, by Definition 1.1, we have

$$\sum_{e' \in N[e]} g(e') = d^*(H, g, u) + d^*(H, g, v) - g(uv) \ge 1.$$
(1)

For two signed graphs (G, f) and (H, g), then (G, f) = (H, g) if and only if G = H and f = g.

In [6], we have shown that $\gamma'_{s}(T) \ge 1$ for all trees $T \ne K_{1}$, and the following theorem generalizes this result.

Theorem 2.1. Let G be a graph with $\delta(G) \ge 1$, then $\gamma'_{s}(G) \ge |V(G)| - |E(G)|$ and this bound is sharp.

Proof. For convenience, we define T(H) = |V(H)| - |E(H)| for all graphs H. So, our aim is to prove that $\gamma'_{s}(G) \ge T(G)$.

By Lemma 1.3 and noting that $T(G_1 \cup G_2) = T(G_1) + T(G_2)$, we may suppose that G is the connected graph.

Let $A = \{u \in V(G) | d_G(u) \ge 2\}$ and $B = \{u \in V(G) | d_G(u) = 1\}$. Note that $\delta(G) \ge 1$. We have $V(G) = A \cup B$ and $A \cap B = \phi$. When $|A| \leq 1$, then G is a star, this theorem is obvious. Next, we can suppose $|A| \ge 2$. Write $G_A = G[A]$.

Let f be such an SEDF that $\gamma'_{s}(G) = \sum_{e \in E(G)} f(e)$, based on the signed graph (G, f), we define a signed graph (G^*, f^*) which satisfies the following three properties:

- (a) $\gamma'_{s}(G) = \sum_{e \in E(G^*)} f^*(e),$ (b) $T(G) = T(G^*),$
- (c) $G_A = G^*[A]$ and G_A contains no -1 edge of (G^*, f^*) .

Let $s = |E^-(G, f) \cap E(G_A)|$.

If s = 0, we define $G^* = G$ and $f^* = f$. Obviously, the signed graph (G^*, f^*) satisfies the above three properties. Thus, we can suppose $s \ge 1$.

Let $E^{-}(G, f) \cap E(G_A) = \{e_1, e_2, \dots, e_s\}$, where $e_j = u_j v_j (j = 1, 2, \dots, s)$.

Next we define one by one *s* signed graphs $(G^{(1)}, f^{(1)}), (G^{(2)}, f^{(2)}), \dots, (G^{(s)}, f^{(s)}).$ Let $(G^{(0)}, f^{(0)}) = (G, f)$, from i = 1 to s. We define one by one $G^{(i)}$ from $G^{(i-1)}$ by adding two pendant edges and define $f^{(i)}$ by $f^{(i-1)}$ as the following Cases 1–2 such that e_i is a +1 edge of $(G^{(i)}, f^{(i)})$ (note that e_i is a -1 edge of $(G^{(i-1)}, f^{(i-1)})$), and hence e_i is a +1 edge of (G^*, f^*) .

We may suppose $e_i = u_i v_i$ is a -1 edge of $(G^{(i-1)}, f^{(i-1)})$. By (1), we have $d^*(G^{(i-1)}, f^{(i-1)}, u_i) + d^*(G^{(i-1)}, f^{(i-1)}, v_i) - f^{(i-1)}(u_i v_i) \ge 1$, that is,

 $d^*(G^{(i-1)}, f^{(i-1)}, u_i) + d^*(G^{(i-1)}, f^{(i-1)}, v_i) \ge 0$. Without loss of generality, we may suppose $d^*(G^{(i-1)}, f^{(i-1)}, u_i) \ge d^*(G^{(i-1)}, f^{(i-1)}, v_i)$.

Case 1: When $d^*(G^{(i-1)}, f^{(i-1)}, u_i) \ge 1$, $G^{(i)}$ can be obtained from $G^{(i-1)}$ by adding two pendant edges $u_i w_i$ and $u_i w'_i$ in $G^{(i-1)}$; this also adds two pendant vertices w_i and w'_i . Define an SEDF $f^{(i)}$ of $G^{(i)}$ as follows:

$$f^{(i)}(e) = \begin{cases} f^{(i-1)}(e) & \text{when } e \in E(G^{(i)}) \setminus \{u_i v_i, u_i w_i, u_i w_i'\}, \\ +1 & \text{when } e = u_i v_i, \\ -1 & \text{when } e \in \{u_i w_i, u_i w_i'\}. \end{cases}$$

Case 2: When $d^*(G^{(i-1)}, f^{(i-1)}, u_i) = d^*(G^{(i-1)}, f^{(i-1)}, v_i) = 0, G^{(i)}$ can be obtained from $G^{(i-1)}$ by adding two pendant edges $u_i w_i$ and $v_i w'_i$ in vertices u_i and v_i , resp. Analogously, we define an SEDF $f^{(i)}$ of $G^{(i)}$ as follows:

$$f^{(i)}(e) = \begin{cases} f^{(i-1)}(e) & \text{when } e \in E(G^{(i)}) \setminus \{u_i v_i, u_i w_i, v_i w'_i\}, \\ +1 & \text{when } e = u_i v_i, \\ -1 & \text{when } e \in \{u_i w_i, v_i w'_i\}. \end{cases}$$

Combining Cases 1 and 2, we have obtained $(G^{(i)}, f^{(i)})$ from $(G^{(i-1)}, f^{(i-1)})$ (i = 1, 2, ..., s).

Let $(G^*, f^*) = (G^{(s)}, f^{(s)})$, note that $\gamma'_s(G) = \sum_{e \in E(G)} f(e)$, it is easy to see that $G_A = G^*[A]$ and G_A contains no -1 edge of (G^*, f^*) . And further, $T(G) = T(G^*)$ and $\gamma'_s(G) = \sum_{e \in E(G)} f(e) = \sum_{e \in E(G^{(i)})} f^{(i)}(e) = \sum_{e \in E(G^*)} f^*(e)$ holds for each i (i = 1, 2, ..., s). Next we prove that $\sum_{e \in E(G^*)} f^*(e) \ge T(G)$.

Let C be the set of all pendant edges in G^* , p and q denote the numbers of all +1 edges and -1 edge in C, resp. This implies that G^* has p + q pendant vertices.

For any vertex $u \in A$, if u is not adjacent to any pendant vertex in G^* , then $d^*(G^*, f^*, u) = d_{G_A}(u) \ge 2$; if u is adjacent to a pendant vertex v in G^* , by (1) we have $d^*(G^*, f^*, u) + d^*(G^*, f^*, v) - f^*(uv) \ge 1$ (note that $d^*(G^*, f^*, v) = f^*(uv)$), it implies that $d^*(G^*, f^*, u) \ge 1$ holds for every vertex $u \in A$. So, $2|E(G_A)| + p - q = \sum_{u \in A} d_{G_A}(u) + p - q = \sum_{u \in A} d^*(G^*, f^*, u) \ge |A|$. Note that G_A contains no -1 edge of (G^*, f^*) , and thus we have $\sum_{e \in E(G^*)} f^*(e) = |E(G_A)| + p - q \ge |A| - |E(G_A)| = (|A| + p + q) - (|E(G_A)| + p + q) = |V(G^*)| - |E(G^*)| = T(G^*) = T(G)$.

We have proved that

$$\gamma'_{s}(G) \ge |V(G)| - |E(G)| \tag{2}$$

holds for any graph G with $\delta(G) \ge 1$. By the following statement, we have completed the proof of Theorem 2.1. \Box

Statement. Given a graph *H* with $\delta(H) \ge 1$, there exists a graph *G* such that $H \le G$ and $\gamma'_{s}(G) = |V(G)| - |E(G)|$.

Proof. Let *G* be the graph obtained from *H* by adding $d_H(u) - 1$ pendant edges in vertex *u* for every $u \in V(H)$. Define an SEDF *f* of *G* as follows:

when $e \in E(H)$, f(e) = +1; when $e \in E(G) \setminus E(H)$, f(e) = -1. We get a signed graph (G, f), and so $\gamma'_{s}(G) \leq \sum_{e \in E(G)} f(e) = |E(H)| - \sum_{u \in V(H)} [d(u) - 1] = |V(H)| - |V(H)| - |V(H)| |V(H)| -$

314

|E(H)| = |V(G)| - |E(G)|. By (2), we have $\gamma'_{s}(G) = |V(G)| - |E(G)|$ and this proof is complete. \Box

3. Signed star domination

Lemma 3.1. For any graph G, if $\delta(G) \ge 3$, then G contains a θ -graph as subgraph, and hence G contains an even cycle.

Proof. Without loss of generality, we may suppose that *G* is a connected graph. Let *T* be a spanning tree of *G*. *v* is a pendant vertex of *T*. That is, $d_T(v) = 1$. Since $\delta(G) \ge 3$, there exist at least two vertices *u* and *w* such that $uv, wv \in E(G) \setminus E(T)$. Define $H = T + \{uv, wv\}$. Obviously, *H* contains a θ -graph as subgraph, which is the maximum 2-connected subgraph of *H*. Note that $H \subseteq G$ and by Lemma 1.6, *G* contains an even cycle. We have completed the proof of Lemma 3.1. \Box

Theorem 3.2. For any graph G of order n $(n \ge 4)$, then $\gamma'_{ss}(G) \le 2n - 4$, and this bound is sharp.

Proof. We use the induction on m = |E(G)|. The result is clearly true for $m \leq 3$ (note that $n \geq 4$);

Suppose that the theorem is true for all graphs G_1 with $|E(G_1)| \leq m-1$ and $4 \leq |V(G_1)| \leq n$. Now we consider a graph *G* with |E(G)| = m. Without loss of generality, we may suppose that $\delta(G) \geq 1$.

Case 1: $1 \le \delta(G) \le 2$. There exists a vertex $v \in V(G)$ such that $d_G(v) = \delta(G) \le 2$. Note that $|E(G-v)| \le m-1$. When |V(G-v)| = n-1 = 3, that is, |V(G)| = n = 4, it is easy to check that $\gamma'_{ss}(G) \le 4 = 2n - 4$. When $|V(G-v)| = n - 1 \ge 4$; by the induction hypothesis, we have $\gamma'_{ss}(G-v) \le 2(n-1) - 4 = 2n - 6$. By Lemma 1.5, we have $\gamma'_{ss}(G) \le \gamma'_{ss}(G-v) + d_G(v) \le 2n - 6 + 2 = 2n - 4$.

Case 2: $\delta(G) \ge 3$. We see from Lemma 3.1 that *G* contains an even cycle *C*. Let H = G - E(C). By the induction hypothesis, *H* has an SSDF *f* with $\sum_{e \in E(H)} f(e) \le 2n - 4$. Extending *f* from *H* by signing +1 and -1 alternatively along *C*, we obtain an SSDF for *G*, and hence $\gamma'_{ss}(G) \le 2n - 4$.

Since $\gamma'_{ss}(K_{2,n-2}) = 2n - 4$ $(n \ge 4)$, the upper bound given in Theorem 3.2 is sharp. We have completed the proof of Theorem 3.2. \Box

Corollary 3.3. For all graphs G of order n, if $\delta(G) \ge 1$, then $\gamma'_{ss}(G) \ge \lceil n/2 \rceil$.

Proof. Let *f* be an SSDF of *G* such that $\gamma'_{ss}(G) = \sum_{e \in E(G)} f(e)$. For every edge $e = uv \in E(G)$, $e \in E(u)$ and $e \in E(v)$. Thus, we have

$$\gamma_{\rm ss}'(G) = \sum_{e \in E(G)} f(e) = \frac{1}{2} \sum_{v \in V(G)} \sum_{e \in E(v)} f(e) \ge \frac{1}{2} \sum_{v \in V(G)} 1 = \frac{n}{2}.$$

Note that $\gamma'_{ss}(G)$ is an integer. The proof is complete. \Box

4. Some open problems and conjectures

We know from Lemma 1.4 that $\gamma'_{ss}(G) \ge \gamma'_{s}(G)$ holds for any graph *G*, and so we have the following.

Problem 4.1. Characterize the graphs *G* which satisfy the equality $\gamma'_{s}(G) = \gamma'_{ss}(G)$.

We know from Theorem 2.1 that $\gamma'_{s}(G) \ge |V(G)| - |E(G)|$ holds for any graph G with $\delta(G) \ge 1$. A natural problem is the following.

Problem 4.2. Characterize the graphs G which satisfy the equality $\gamma'_{s}(G) = |V(G)| - |E(G)|$.

Although in [5] we have determine the exact value of $\psi(m) = \min\{\gamma'_s(G)|G \text{ is a graph of size } m\}$ for all positive integers m, it seems more difficult to solve the following:

Problem 4.3 (*Xu* [5]). Determine the exact value of $g(n) = \min\{\gamma'_s(G)|G \text{ is a graph of order } n\}$ for every positive integer *n*.

Conjecture 4.4. For any graph *G* of order *n* $(n \ge 1)$, $\gamma'_{s}(G) \le n - 1$.

If true, the upper bound is the best possible for odd *n*. For example, let *G* be the subdivision of the star $K_{1,(n-1)/2}$. Clearly, $\gamma'_{s}(G) = |E(G)| = n - 1$ (the subdivision of a graph *G* is the graph obtained from *G* by subdividing each edge of *G* exactly once).

Acknowledgements

I am very grateful to the referees for their careful reading with corrections and useful comments.

References

- [1] J.A. Bondy, V.S.R. Murty, Graph Theory with Applications, Elsevier, Amsterdam, 1976.
- [2] I. Broere, J.H. Hatting, M.A. Henning, A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125–135.
- [3] E.J. Cockayne, C.M. Mynhart, On a generalization of signed domination functions of graphs, Ars. Combin. 43 (1996) 235–245.
- [4] J.H. Hattingh, E. Ungerer, The signed and minus k-subdomination numbers of comets, Discrete Math. 183 (1998) 141–152.
- [5] B. Xu, On signed edge domination numbers of graphs, Discrete Math. 239 (2001) 179-189.
- [6] B. Xu, On lower bounds of signed edge domination numbers in graphs, J. East China Jiaotong Univ. 1 (2004) 110–114 (In Chinese).
- [7] B. Xu, E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi, S. Zhou, Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000) 1–10.
- [8] Z. Zhang, B. Xu, Y. Li, L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999) 295–298.