Note
 On edge domination numbers of graphs

Baogen Xu^{1}
Department of Mathematics, East China Jiaotong University, Nanchang 330013, PR China

Received 2 April 2004; received in revised form 4 November 2004; accepted 23 November 2004

Abstract

Let $\gamma_{\mathrm{s}}^{\prime}(G)$ and $\gamma_{\mathrm{ss}}^{\prime}(G)$ be the signed edge domination number and signed star domination number of G, respectively. We prove that $2 n-4 \geqslant \gamma_{\mathrm{sS}}^{\prime}(G) \geqslant \gamma_{\mathrm{S}}^{\prime}(G) \geqslant n-m$ holds for all graphs G without isolated vertices, where $n=|V(G)| \geqslant 4$ and $m=|E(G)|$, and pose some problems and conjectures. © 2005 Elsevier B.V. All rights reserved.

Keywords: Signed edge domination function; Signed edge domination number; Signed star domination function; Signed star domination number

1. Introduction

We use Bondy and Murty [1] for terminology and notation not defined here and consider simple graphs only.
Let $G=(V, E)$ be a graph. For $u \in V$, then $N_{G}(u)$ and $N_{G}[u]$ denote the open and closed neighborhoods of u in G, resp. $d_{G}(u)=\left|N_{G}(u)\right|$ is the degree of u in G, and $\delta(G)$ denotes the minimum degree of G. For $S \subseteq V(G)$, then $G[S]$ denotes the subgraph of G induced by S. For $v \in V$, the symbol $G-v=G[V(G) \backslash\{v\}]$. If H is an induced subgraph of G, we write $H \leqslant G$. For $e=u v \in E(G), N_{G}(e)=\left\{e^{\prime} \in E(G) \mid e^{\prime}\right.$ is adjacent to $\left.e\right\}$ is called the open edge-neighborhood of e in G, and $N_{G}[e]=N_{G}(e) \cup\{e\}$ is called the closed one. If $v \in V$, then $E_{G}(v)=\{u v \in E \mid u \in V\}$ is called the edge-neighborhood of v in G. For simplicity, $N_{G}[e]$ and $E_{G}(v)$ are denoted by $N[e]$ and $E(v)$, respectively.

[^0]In recent years, several kinds of domination problems in graphs have been investigated [2-4,6-8], most of these belonging to the vertex domination. In [5] we introduced the signed edge domination in graphs.

Definition $1.1(X u[5])$. Let $G=(V(G), E(G))$ be a graph. A function $f: E(G) \rightarrow$ $\{+1,-1\}$ is called the signed edge domination function (SEDF) of G if $\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geqslant 1$ for every $e \in E(G)$. The signed edge domination number $\gamma_{\mathrm{s}}^{\prime}(G)$ of G is defined as $\gamma_{\mathrm{s}}^{\prime}(G)=\min \left\{\sum_{e \in E(G)} f(e) \mid f\right.$ is an SEDF of $\left.G\right\}$.

For any totally disconnected graph $G=\bar{K}_{n}$, then define $\gamma_{\mathrm{s}}^{\prime}(G)=0$.
Definition 1.2. Let $G=(V, E)$ be a graph without isolated vertices. A function $f: E \rightarrow$ $\{+1-1\}$ is called the signed star domination function (SSDF) of G if $\sum_{e \in E(v)} f(e) \geqslant 1$ for every $v \in V(G)$. The signed star domination number of G is defined as $\gamma_{\mathrm{ss}}^{\prime}(G)=$ $\min \left\{\sum_{e \in E} f(e) \mid f\right.$ is an SSDF of $\left.G\right\}$.

We define $\gamma_{\mathrm{s}}^{\prime}(G)=0$ for all totally disconnected graphs $G=\bar{K}_{n}$.
By Definitions 1.1 and 1.2 we have
Lemma 1.3. For any two vertex-disjoint graphs G_{1} and G_{2}, we have

$$
\gamma_{\mathrm{s}}^{\prime}\left(G_{1} \cup G_{2}\right)=\gamma_{\mathrm{s}}^{\prime}\left(G_{1}\right)+\gamma_{\mathrm{s}}^{\prime}\left(G_{2}\right) \quad \text { and } \quad \gamma_{\mathrm{ss}}^{\prime}\left(G_{1} \cup G_{2}\right)=\gamma_{\mathrm{ss}}^{\prime}\left(G_{1}\right)+\gamma_{\mathrm{ss}}^{\prime}\left(G_{2}\right)
$$

Obviously, an SSDF is an SEDF of G; thus we have the following.
Lemma 1.4. For any graph G without isolated vertices, $\gamma_{\mathrm{ss}}^{\prime} G \geqslant \gamma_{\mathrm{s}}^{\prime}(G)$.
By Definition 3, it is easy to see the following.
Lemma 1.5. For all graphs G, if $v \in V(G)$, then $\gamma_{\mathrm{ss}}^{\prime}(G) \leqslant \gamma_{\mathrm{ss}}^{\prime}(G-v)+d_{G}(v)$.
A graph G is said to be a θ-graph if G is a connected graph with degree sequence $d=(2,2, \ldots, 2,3,3)$. That is, a θ-graph consists of a cycle and a path whose two endvertices are on the cycle.

Lemma 1.6. Any θ-graph contains a cycle of even length (even cycle).
Proof. It is obvious.

2. Signed edge domination

The following terminology and notation are useful to prove our main results.
A graph G with an SEDF f of G, denoted by (G, f), is called a signed graph. For a signed graph (G, f), we know from Definition 1.1 that $\gamma_{\mathrm{s}}^{\prime}(G)=\sum_{e \in E(G)} f(e)$.

For simplicity, given a signed graph (G, f), an edge $e \in E(G)$ is said to be +1 edge of (G, f) if $f(e)=+1$, analogously, an edge $e \in E(G)$ is said to be -1 edge of (G, f) if $f(e)=-1$. Write $E^{+}(G, f)=\{e \in E(G) \mid f(e)=+1\}$ and $E^{-}(G, f)=\{e \in E(G) \mid f(e)=$ $-1\}$.

For any signed graph (H, g), two spanning subgraphs $H^{+}(g)$ and $H^{-}(g)$ of H are defined as $V\left(H^{+}(g)\right)=V\left(H^{-}(g)\right)=V(H), E\left(H^{+}(g)\right)=E^{+}(H, g)$ and $E\left(H^{-}(g)\right)=E^{-}(H, g)$. $H^{+}(g)$ and $H^{-}(g)$ are called the positive subgraph and negative subgraph of (H, g), resp. For every vertex $u \in V(H)$, we define the degree difference $d^{*}(H, g, u)$ of u in (H, g) as $d^{*}(H, g, u)=d_{H^{+}(g)}(u)-d_{H^{-}(g)}(u)$. And further, if $e=u v \in E(H)$, since g is an SEDF of H, by Definition 1.1, we have

$$
\begin{equation*}
\sum_{e^{\prime} \in N[e]} g\left(e^{\prime}\right)=d^{*}(H, g, u)+d^{*}(H, g, v)-g(u v) \geqslant 1 \tag{1}
\end{equation*}
$$

For two signed graphs (G, f) and (H, g), then $(G, f)=(H, g)$ if and only if $G=H$ and $f=g$.

In [6], we have shown that $\gamma_{\mathrm{s}}^{\prime}(T) \geqslant 1$ for all trees $T \neq K_{1}$, and the following theorem generalizes this result.

Theorem 2.1. Let G be a graph with $\delta(G) \geqslant 1$, then $\gamma_{\mathrm{s}}^{\prime}(G) \geqslant|V(G)|-|E(G)|$ and this bound is sharp.

Proof. For convenience, we define $T(H)=|V(H)|-|E(H)|$ for all graphs H. So, our aim is to prove that $\gamma_{\mathrm{s}}^{\prime}(G) \geqslant T(G)$.

By Lemma 1.3 and noting that $T\left(G_{1} \cup G_{2}\right)=T\left(G_{1}\right)+T\left(G_{2}\right)$, we may suppose that G is the connected graph.

Let $A=\left\{u \in V(G) \mid d_{G}(u) \geqslant 2\right\}$ and $B=\left\{u \in V(G) \mid d_{G}(u)=1\right\}$. Note that $\delta(G) \geqslant 1$. We have $V(G)=A \cup B$ and $A \cap B=\phi$. When $|A| \leqslant 1$, then G is a star, this theorem is obvious. Next, we can suppose $|A| \geqslant 2$. Write $G_{A}=G[A]$.

Let f be such an SEDF that $\gamma_{\mathrm{s}}^{\prime}(G)=\sum_{e \in E(G)} f(e)$, based on the signed graph (G, f), we define a signed graph $\left(G^{*}, f^{*}\right)$ which satisfies the following three properties:
(a) $\gamma_{\mathrm{s}}^{\prime}(G)=\sum_{e \in E\left(G^{*}\right)} f^{*}(e)$,
(b) $T(G)=T\left(G^{*}\right)$,
(c) $G_{A}=G^{*}[A]$ and G_{A} contains no -1 edge of $\left(G^{*}, f^{*}\right)$.

Let $s=\left|E^{-}(G, f) \cap E\left(G_{A}\right)\right|$.
If $s=0$, we define $G^{*}=G$ and $f^{*}=f$. Obviously, the signed graph $\left(G^{*}, f^{*}\right)$ satisfies the above three properties. Thus, we can suppose $s \geqslant 1$.

Let $E^{-}(G, f) \cap E\left(G_{A}\right)=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$, where $e_{j}=u_{j} v_{j}(j=1,2, \ldots, s)$.
Next we define one by one s signed graphs $\left(G^{(1)}, f^{(1)}\right),\left(G^{(2)}, f^{(2)}\right), \ldots,\left(G^{(s)}, f^{(s)}\right)$.
Let $\left(G^{(0)}, f^{(0)}\right)=(G, f)$, from $i=1$ to s. We define one by one $G^{(i)}$ from $G^{(i-1)}$ by adding two pendant edges and define $f^{(i)}$ by $f^{(i-1)}$ as the following Cases $1-2$ such that e_{i} is a +1 edge of $\left(G^{(i)}, f^{(i)}\right)$ (note that e_{i} is a -1 edge of $\left(G^{(i-1)}, f^{(i-1)}\right)$), and hence e_{i} is a +1 edge of $\left(G^{*}, f^{*}\right)$.

We may suppose $e_{i}=u_{i} v_{i}$ is a -1 edge of ($G^{(i-1)}, f^{(i-1)}$). By (1), we have $d^{*}\left(G^{(i-1)}, f^{(i-1)}, u_{i}\right)+d^{*}\left(G^{(i-1)}, f^{(i-1)}, v_{i}\right)-f^{(i-1)}\left(u_{i} v_{i}\right) \geqslant 1$, that is,
$d^{*}\left(G^{(i-1)}, f^{(i-1)}, u_{i}\right)+d^{*}\left(G^{(i-1)}, f^{(i-1)}, v_{i}\right) \geqslant 0$. Without loss of generality, we may suppose $d^{*}\left(G^{(i-1)}, f^{(i-1)}, u_{i}\right) \geqslant d^{*}\left(G^{(i-1)}, f^{(i-1)}, v_{i}\right)$.

Case 1: When $d^{*}\left(G^{(i-1)}, f^{(i-1)}, u_{i}\right) \geqslant 1, G^{(i)}$ can be obtained from $G^{(i-1)}$ by adding two pendant edges $u_{i} w_{i}$ and $u_{i} w_{i}^{\prime}$ in $G^{(i-1)}$; this also adds two pendant vertices w_{i} and w_{i}^{\prime}. Define an SEDF $f^{(i)}$ of $G^{(i)}$ as follows:

$$
f^{(i)}(e)= \begin{cases}f^{(i-1)}(e) & \text { when } e \in E\left(G^{(i)}\right) \backslash\left\{u_{i} v_{i}, u_{i} w_{i}, u_{i} w_{i}^{\prime}\right\} \\ +1 & \text { when } e=u_{i} v_{i} \\ -1 & \text { when } e \in\left\{u_{i} w_{i}, u_{i} w_{i}^{\prime}\right\} .\end{cases}
$$

Case 2: When $d^{*}\left(G^{(i-1)}, f^{(i-1)}, u_{i}\right)=d^{*}\left(G^{(i-1)}, f^{(i-1)}, v_{i}\right)=0, G^{(i)}$ can be obtained from $G^{(i-1)}$ by adding two pendant edges $u_{i} w_{i}$ and $v_{i} w_{i}^{\prime}$ in vertices u_{i} and v_{i}, resp. Analogously, we define an SEDF $f^{(i)}$ of $G^{(i)}$ as follows:

$$
f^{(i)}(e)= \begin{cases}f^{(i-1)}(e) & \text { when } e \in E\left(G^{(i)}\right) \backslash\left\{u_{i} v_{i}, u_{i} w_{i}, v_{i} w_{i}^{\prime}\right\} \\ +1 & \text { when } e=u_{i} v_{i} \\ -1 & \text { when } e \in\left\{u_{i} w_{i}, v_{i} w_{i}^{\prime}\right\}\end{cases}
$$

Combining Cases 1 and 2, we have obtained $\left(G^{(i)}, f^{(i)}\right.$) from $\left(G^{(i-1)}, f^{(i-1)}\right)$ $(i=1,2, \ldots, s)$.

Let $\left(G^{*}, f^{*}\right)=\left(G^{(s)}, f^{(s)}\right)$, note that $\gamma_{\mathrm{s}}^{\prime}(G)=\sum_{e \in E(G)} f(e)$, it is easy to see that $G_{A}=G^{*}[A]$ and G_{A} contains no -1 edge of $\left(G^{*}, f^{*}\right)$. And further, $T(G)=T\left(G^{*}\right)$ and $\gamma_{\mathrm{s}}^{\prime}(G)=\sum_{e \in E(G)} f(e)=\sum_{e \in E\left(G^{(i)}\right)} f^{(i)}(e)=\sum_{e \in E\left(G^{*}\right)} f^{*}(e)$ holds for each $i(i=$ $1,2, \ldots, s)$. Next we prove that $\sum_{e \in E\left(G^{*}\right)} f^{*}(e) \geqslant T(G)$.

Let C be the set of all pendant edges in G^{*}, p and q denote the numbers of all +1 edges and -1 edge in C, resp. This implies that G^{*} has $p+q$ pendant vertices.

For any vertex $u \in A$, if u is not adjacent to any pendant vertex in G^{*}, then $d^{*}\left(G^{*}, f^{*}, u\right)=$ $d_{G_{A}}(u) \geqslant 2$; if u is adjacent to a pendant vertex v in G^{*}, by (1) we have $d^{*}\left(G^{*}, f^{*}, u\right)+$ $d^{*}\left(G^{*}, f^{*}, v\right)-f^{*}(u v) \geqslant 1$ (note that $d^{*}\left(G^{*}, f^{*}, v\right)=f^{*}(u v)$), it implies that $d^{*}\left(G^{*}, f^{*}, u\right) \geqslant 1$ holds for every vertex $u \in A$. So, $2\left|E\left(G_{A}\right)\right|+p-q=\sum_{u \in A} d_{G_{A}}(u)+$ $p-q=\sum_{u \in A} d^{*}\left(G^{*}, f^{*}, u\right) \geqslant|A|$. Note that G_{A} contains no -1 edge of $\left(G^{*}, f^{*}\right)$, and thus we have $\sum_{e \in E\left(G^{*}\right)} f^{*}(e)=\left|E\left(G_{A}\right)\right|+p-q \geqslant|A|-\left|E\left(G_{A}\right)\right|=(|A|+p+q)-$ $\left(\left|E\left(G_{A}\right)\right|+p+q\right)=\left|V\left(G^{*}\right)\right|-\left|E\left(G^{*}\right)\right|=T\left(G^{*}\right)=T(G)$.

We have proved that

$$
\begin{equation*}
\gamma_{\mathrm{s}}^{\prime}(G) \geqslant|V(G)|-|E(G)| \tag{2}
\end{equation*}
$$

holds for any graph G with $\delta(G) \geqslant 1$. By the following statement, we have completed the proof of Theorem 2.1.

Statement. Given a graph H with $\delta(H) \geqslant 1$, there exists a graph G such that $H \leqslant G$ and $\gamma_{\mathrm{s}}^{\prime}(G)=|V(G)|-|E(G)|$.

Proof. Let G be the graph obtained from H by adding $d_{H}(u)-1$ pendant edges in vertex u for every $u \in V(H)$. Define an SEDF f of G as follows:
when $e \in E(H), f(e)=+1$; when $e \in E(G) \backslash E(H), f(e)=-1$. We get a signed $\operatorname{graph}(G, f)$, and so $\gamma_{\mathrm{s}}^{\prime}(G) \leqslant \sum_{e \in E(G)} f(e)=|E(H)|-\sum_{u \in V(H)}[d(u)-1]=|V(H)|-$
$|E(H)|=|V(G)|-|E(G)|$. By (2), we have $\gamma_{\mathrm{s}}^{\prime}(G)=|V(G)|-|E(G)|$ and this proof is complete.

3. Signed star domination

Lemma 3.1. For any graph G, if $\delta(G) \geqslant 3$, then G contains a θ-graph as subgraph, and hence G contains an even cycle.

Proof. Without loss of generality, we may suppose that G is a connected graph. Let T be a spanning tree of $G . v$ is a pendant vertex of T. That is, $d_{T}(v)=1$. Since $\delta(G) \geqslant 3$, there exist at least two vertices u and w such that $u v, w v \in E(G) \backslash E(T)$. Define $H=T+\{u v, w v\}$. Obviously, H contains a θ-graph as subgraph, which is the maximum 2-connected subgraph of H. Note that $H \subseteq G$ and by Lemma 1.6, G contains an even cycle. We have completed the proof of Lemma 3.1.

Theorem 3.2. For any graph G of order $n(n \geqslant 4)$, then $\gamma_{\mathrm{ss}}^{\prime}(G) \leqslant 2 n-4$, and this bound is sharp.

Proof. We use the induction on $m=|E(G)|$. The result is clearly true for $m \leqslant 3$ (note that $n \geqslant 4$);

Suppose that the theorem is true for all graphs G_{1} with $\left|E\left(G_{1}\right)\right| \leqslant m-1$ and $4 \leqslant\left|V\left(G_{1}\right)\right|$ $\leqslant n$. Now we consider a graph G with $|E(G)|=m$. Without loss of generality, we may suppose that $\delta(G) \geqslant 1$.

Case 1: $1 \leqslant \delta(G) \leqslant 2$. There exists a vertex $v \in V(G)$ such that $d_{G}(v)=\delta(G) \leqslant 2$. Note that $|E(G-v)| \leqslant m-1$. When $|V(G-v)|=n-1=3$, that is, $|V(G)|=n=4$, it is easy to check that $\gamma_{\mathrm{ss}}^{\prime}(G) \leqslant 4=2 n-4$. When $|V(G-v)|=n-1 \geqslant 4$; by the induction hypothesis, we have $\gamma_{\mathrm{ss}}^{\prime}(G-v) \leqslant 2(n-1)-4=2 n-6$. By Lemma 1.5, we have $\gamma_{\mathrm{ss}}^{\prime}(G) \leqslant \gamma_{\mathrm{ss}}^{\prime}(G-$ $v)+d_{G}(v) \leqslant 2 n-6+2=2 n-4$.

Case 2: $\delta(G) \geqslant 3$. We see from Lemma 3.1 that G contains an even cycle C. Let $H=$ $G-E(C)$. By the induction hypothesis, H has an SSDF f with $\sum_{e \in E(H)} f(e) \leqslant 2 n-4$. Extending f from H by signing +1 and -1 alternatively along C, we obtain an SSDF for G, and hence $\gamma_{\mathrm{ss}}^{\prime}(G) \leqslant 2 n-4$.

Since $\gamma_{\mathrm{ss}}^{\prime}\left(K_{2, n-2}\right)=2 n-4(n \geqslant 4)$, the upper bound given in Theorem 3.2 is sharp. We have completed the proof of Theorem 3.2.

Corollary 3.3. For all graphs G of order n, if $\delta(G) \geqslant 1$, then $\gamma_{\mathrm{ss}}^{\prime}(G) \geqslant\lceil n / 2\rceil$.
Proof. Let f be an SSDF of G such that $\gamma_{\mathrm{ss}}^{\prime}(G)=\sum_{e \in E(G)} f(e)$. For every edge $e=u v \in$ $E(G), e \in E(u)$ and $e \in E(v)$. Thus, we have

$$
\gamma_{\mathrm{ss}}^{\prime}(G)=\sum_{e \in E(G)} f(e)=\frac{1}{2} \sum_{v \in V(G)} \sum_{e \in E(v)} f(e) \geqslant \frac{1}{2} \sum_{v \in V(G)} 1=\frac{n}{2}
$$

Note that $\gamma_{\mathrm{SS}}^{\prime}(G)$ is an integer. The proof is complete.

4. Some open problems and conjectures

We know from Lemma 1.4 that $\gamma_{\mathrm{ss}}^{\prime}(G) \geqslant \gamma_{\mathrm{s}}^{\prime}(G)$ holds for any graph G, and so we have the following.

Problem 4.1. Characterize the graphs G which satisfy the equality $\gamma_{\mathrm{s}}^{\prime}(G)=\gamma_{\mathrm{ss}}^{\prime}(\mathbf{G})$.
We know from Theorem 2.1 that $\gamma_{\mathrm{s}}^{\prime}(G) \geqslant|V(G)|-|E(G)|$ holds for any graph G with $\delta(G) \geqslant 1$. A natural problem is the following.

Problem 4.2. Characterize the graphs G which satisfy the equality $\gamma_{\mathrm{s}}^{\prime}(G)=|V(G)|-$ $|E(G)|$.

Although in [5] we have determine the exact value of $\psi(m)=\min \left\{\gamma_{s}^{\prime}(G) \mid G\right.$ is a graph of size $m\}$ for all positive integers m, it seems more difficult to solve the following:

Problem 4.3 (Xu [5]). Determine the exact value of $g(n)=\min \left\{\gamma_{\mathrm{s}}^{\prime}(G) \mid G\right.$ is a graph of order n \} for every positive integer n.

Conjecture 4.4. For any graph G of order $n(n \geqslant 1), \gamma_{s}^{\prime}(G) \leqslant n-1$.
If true, the upper bound is the best possible for odd n. For example, let G be the subdivision of the star $K_{1,(n-1) / 2}$. Clearly, $\gamma_{\mathrm{s}}^{\prime}(G)=|E(G)|=n-1$ (the subdivision of a graph G is the graph obtained from G by subdividing each edge of G exactly once).

Acknowledgements

I am very grateful to the referees for their careful reading with corrections and useful comments.

References

[1] J.A. Bondy, V.S.R. Murty, Graph Theory with Applications, Elsevier, Amsterdam, 1976.
[2] I. Broere, J.H. Hatting, M.A. Henning, A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125-135.
[3] E.J. Cockayne, C.M. Mynhart, On a generalization of signed domination functions of graphs, Ars. Combin. 43 (1996) 235-245.
[4] J.H. Hattingh, E. Ungerer, The signed and minus k-subdomination numbers of comets, Discrete Math. 183 (1998) 141-152.
[5] B. Xu, On signed edge domination numbers of graphs, Discrete Math. 239 (2001) 179-189.
[6] B. Xu, On lower bounds of signed edge domination numbers in graphs, J. East China Jiaotong Univ. 1 (2004) 110-114 (In Chinese).
[7] B. Xu, E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi, S. Zhou, Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000) 1-10.
[8] Z. Zhang, B. Xu, Y. Li, L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999) 295-298.

[^0]: E-mail address: Baogenxu@163.com.
 ${ }^{1}$ Supported by Jiangxi Natural Science Foundation of People's Republic of China (0311047).

