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Abstract

Let y5(G) andys(G) be the signed edge domination number and signed star domination number
of G, respectively. We prove thah2- 4> y5(G) > y5(G) >n — m holds for all graph<z without
isolated vertices, where= |V (G)| >4 andm = | E(G)|, and pose some problems and conjectures.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We use Bondy and Murtjd] for terminology and notation not defined here and consider
simple graphs only.

Let G = (V, E) be a graph. For € V, thenNg (1) and Ng[u] denote the open and
closed neighborhoods afin G, resp.dg (1) = |Ng (u)| is the degree af in G, anddo(G)
denotes the minimum degree 6f For S C V(G), thenG[S] denotes the subgraph 6f
induced byS. Forv € V, the symbolG — v = G[V (G)\{v}]. If H is an induced subgraph
of G, we write H<G. Fore =uv € E(G), Ng(e) = {¢' € E(G)|¢ is adjacent ta} is
called the open edge-neighborhoo@@f G, andNg[e] = Ng(e) U {e} is called the closed
one. Ifv € V,thenEg(v) = {uv € E|u € V}is called the edge-neighborhoodwin G.

For simplicity, Ng[e] and Eg (v) are denoted by [e] and E (v), respectively.
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In recent years, several kinds of domination problems in graphs have been investigated
[2-4,6—8] most of these belonging to the vertex dominatior5lrwe introduced the signed
edge domination in graphs.
Definition 1.1 (Xu [5]). Let G = (V(G), E(G)) be a graph. A functionf: E(G) —
{+1, —1} is called the signed edge domination function (SEDFFaf v, f(e) >1
for everye € E(G). The signed edge domination numbgkG) of G is defined as
7s(G) =min{}_, ) f(e)|f is an SEDF ofG}.

For any totally disconnected gragh= K, then defing,(G) = 0.
Definition 1.2. Let G = (V, E) be a graph without isolated vertices. A functignt —
{+1 — 1} is called the signed star domination function (SSDFGoff 3, ., f(e) >1

for everyv € V(G). The signed star domination humber Gfis defined ag,(G) =
min{}_,.x f(e)|f is an SSDF ofG}.

We definey,(G) = 0 for all totally disconnected graplts = K ,.
By Definitions 1.1 and 1.2 we have

Lemma 1.3. For any two vertex-disjoint graph§1 and G2, we have
75(G1U G2) = 75(G1) + 75(G2)  and ye(G1U G2) = 75(G1) + 75{(G2).

Obviously, an SSDF is an SEDF 6f, thus we have the following.
Lemma 1.4. For any graphG without isolated verticeg; G > y5(G).

By Definition 3, it is easy to see the following.
Lemma 1.5. For all graphsG, if v € V(G), theny,(G) <y5{(G — v) + dg(v).

A graph G is said to be &-graphif G is a connected graph with degree sequence
d=1(22,...,2,3,3). That is, af-graph consists of a cycle and a path whose two end-
vertices are on the cycle.

Lemma 1.6. Any0-graph contains a cycle of even lend#ven cycle

Proof. Itis obvious.

2. Signed edge domination

The following terminology and notation are useful to prove our main results.
A graph G with an SEDFf of G, denoted by(G, f), is calleda signed graphFor a
signed graphiG, 1), we know from Definition 1.1 thaty(G) = ZEGE(G) f(e).
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For simplicity, given a signed graplt;, f), an edger € E(G) is said to be +1 edge of
(G, f)if f(e) =+1, analogously, an edgee E(G) is said to be-1 edge of(G, f) if
fle)=—1.WriteET(G, f)={e € E(G)|f(e)=+1}andE~ (G, f)={e € E(G)|f(e)=
-1}

For any signed graptf{, g), two spanning subgraplis™ (g) andH ~ (g) of H are defined
asV(H" (g)=V(H (g)=V(H), E(H"(¢))=E*(H, g)andE(H ™ (g))=E~(H, g).
H™(g) andH ~(g) are calledhe positive subgraph and negative subgraphH, g), resp.
For every vertex: € V(H), we definethe degree differencé&*(H, g, u) of u in (H, g) as
d*(H, g, u) =dy+g)(u) — dy-(g(u). And further, ife = uv € E(H), sinceg is an SEDF
of H, by Definition 1.1, we have

> g)=d*(H, g u)+d*(H.g.v) — guv) > 1. 1)
e’eNJe]

For two signed graph&, f) and(H, g), then(G, f) = (H, g) ifand only if G = H and
f=zs.

In [6], we have shown that,(T') > 1 for all treesT # K1, and the following theorem
generalizes this result.

Theorem 2.1. Let G be a graph with3(G) > 1, thenyy(G) > |V (G)| — |E(G)| and this
bound is sharp

Proof. For convenience, we defifie(H) = |V (H)| — |E(H)| for all graphsH. So, our
aim is to prove thapy(G) > T (G).

By Lemma 1.3 and noting thdt(G1 U G2) =T (G1) + T (G2), we may suppose that
is the connected graph.

LetA={u € V(G)|dg(u)>2} andB = {u € V(G)|ds(u) = 1}. Note thaté(G) >1.
We haveV(G) = AU B andA N B = ¢. When|A| <1, thenG is a star, this theorem is
obvious. Next, we can suppoké| > 2. Write G 4 = G[A].

Let f be such an SEDF tha{(G) =3, () f (e), based on the signed grapd, f),
we define a signed gragli:*, f*) which satisfies the following three properties:

(@ ”//s(G) = ZeeE(G*) f*(e),
(b) T(G) =T(G"),
() G4 = G*[A] andG 4 contains no-1 edge of(G*, f*).

Lets = |E~(G, ) N E(G)|.

If s =0, we defineG* = G and f* = f. Obviously, the signed grapl*, f*) satisfies
the above three properties. Thus, we can suppask.

LetE7(G, /)NE(Ga) ={e1,e2,...,e5},Wheree; =ujv;(j=1,2,...,5).

Next we define one by onesigned graphsG®, ), (G2, @) . | (GW), 1)y,

Let (GO, f©@) = (G, f), fromi =1 tos. We define one by on6® from G“~1 by
adding two pendant edges and defiffé by @~ as the following Cases 1-2 such that
e; is a +1 edge of G, ) (note that; is a—1 edge of GV~ f(-D)) and hence;
is a +1 edge ofG*, ™).

We may suppose = u;v; is a—1 edge of GV~ , =) By (1), we have

d*(GEY, =D oy 4 a*(GED, £E=D y)) — FOD0) >1, that s,
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d*(GEY | =D oy 4 a*(GUD, £E=D 1) >0. Without loss of generality, we may
supposel*(GU=V, F0=D yy>ax(GUD, £ ).

Casel: Whend*(GU—D, =D 4)>1, G® can be obtained frons“~1 by adding
two pendant edges w; andu; w! in G~Y; this also adds two pendant vertioesandw!.
Define an SEDF®) of G as follows:

_ SV whene € E(GO)\{ujvi, ujw;, ujw},
FD(e) = l+1 whene = u;v;,
-1 whene € {u;w;, u;w}.

Case2: Whend* (G, 0= ;) =a*(GU=P, =Y v;)=0,G¥ can be obtained
from G~ by adding two pendant edgesw; andviw; in verticesu; andv;, resp. Anal-
ogously, we define an SEDF® of G as follows:

, f@ V() whene € E(G\{ujvi, uyw;, viw]},
FD(e) = {+1 whene = u;v;,
-1 whene € {u;w;, v;w;}.

Combining Cases 1 and 2, we have obtaingd®, f@) from (GU—D, fi-D)
i=212,...,5).

Let (G*, f*) = (G, f)), note thatyys(G) = Y, (g, f(e), it is easy to see that
G4 = G*[A] and G4 contains no—1 edge of(G*, f*). And further,T(G) = T(G™)
andyy(G) =Y oep6) £ (©) = Yecpcin £ (€ =Y ep(c+ f*(e) holds for eacti (i =
1,2,...,5). Nextwe prove thap_,. p g+ f* () =T (G).

Let C be the set of all pendant edgesri, p andg denote the numbers of all +1 edges
and—1 edge inC, resp. This implies that* hasp + ¢ pendant vertices.

Foranyvertex € A,if uis notadjacentto any pendantvertexit, thend*(G*, f*, u)=
dg,(u)>2; if u is adjacent to a pendant vertexn G*, by (1) we havel*(G*, f*, u) +
d*(G*, f*,v) — f*uv)>=1 (note thatd*(G*, f*,v) = f*(uv)), it implies that
d*(G*, f*,u) >1holds for every vertex € A. S0, JE(GA)|+p—q=) ,cadc,(u)+
P—q=2 ,ead"(G* f* u)>|Al|. Note thatG 4 contains no-1 edge of(G*, f*), and
thus we have) _, g+ f*(e) = [E(Ga)| + p —q=|Al — |[E(GA)| = (Al + p+ q) —
(IEG)|+p+q)=IV(G)| - |E(G)|=T(G*) =T(G).

We have proved that

75(G) = V(G)| - |E(G)| )

holds for any graplG with 6(G) > 1. By the following statement, we have completed the
proof of Theorem 2.1. [J

Statement. Given a graphH with §(H) > 1, there exists a grapfi such thatd <G and
75(G) = [V(G)| — |E(G)].

Proof. Let G be the graph obtained froi by addingdy (1) — 1 pendant edges in vertex
u for everyu € V(H). Define an SEDF of G as follows:

whene € E(H), f(e) = +1; whene € E(G)\E(H), f(e) = —1. We get a signed
graph(G. ), and so/i(G) <Y pe () [ (@ = E(H)| = Y ey [d(w) — 11 = |V (H)| —
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|E(H)| = |V(G)| — |E(G)|. By (2), we have),(G) = |V (G)| — | E(G)| and this proof is
complete. [J

3. Signed star domination

Lemma 3.1. For any graphgG, if 6(G) >3, thenG contains af-graph as subgraphand
henceG contains an even cycle

Proof. Without loss of generality, we may suppose tGas a connected graph. L&tbe a
spanning tree of7. v is a pendant vertex df. Thatis,dr (v) =1. Sinced(G) > 3, there exist

at least two vertices andw such thattv, wv € E(G)\E(T). DefineH =T + {uv, wv}.
Obviously,H contains &-graph as subgraph, which is the maximum 2-connected subgraph
of H. Note thatH C G and by Lemma 1.6(; contains an even cycle. We have completed
the proof of Lemma 3.1. [J

Theorem 3.2. For any graphG of ordern (n>4), thenys(G)<2n — 4, and this bound
is sharp

Proof. We use the induction om = | E(G)|. The result is clearly true fon <3 (note that
nz4;

Suppose that the theorem is true for all graghswith |E(G1)|<m —1land 4&< |V (G1)|
<n. Now we consider a grap& with |E(G)| = m. Without loss of generality, we may
suppose that(G) > 1.

Casel: 1<(G) < 2. There exists a vertaxe V (G) such thatl; (v) = 6(G) < 2. Note
that| E(G —v)|<m —1.When|V (G —v)|=n—1=3, thatis|V(G)|=n=4, itis easy to
check thay(G) <4=2n—4.When|V (G —v)| =n — 1>4; by the induction hypothesis,
we havey,(G —v)<2(n — 1) — 4=2n — 6. By Lemma 1.5, we havg(G) <ys(G —
V) +de(v)<2n —6+2=2n—4.

Case2: 0(G) >3. We see from Lemma 3.1 that contains an even cycl€. Let H =
G — E(C). By the induction hypothesig/ has an SSDF with ZeeE(H) f(e)<2n —A4.
Extendingf from H by signing+1 and—1 alternatively alond”, we obtain an SSDF for
G, and hence,(G)<2n — 4.

Sinceys(K2 ,—2) =2n — 4 (n>4), the upper bound given in Theorem 3.2 is sharp. We
have completed the proof of Theorem 3.Z]

Corollary 3.3. For all graphsG of ordern, if 5(G) >1, theny,(G) > [n/2].

Proof. Let f be an SSDF oG such thats(G) =3, () f (e). For every edge =uv €
E(G),e € E(u) ande € E(v). Thus, we have

1 1 n
/ = f— —
Vs G) = E f(e)—g E § f(e)>E § : 1_5.
¢cE(G) veV(G) ecE(v) veV(G)

Note thaty;(G) is an integer. The proof is complete.r]
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4. Some open problems and conjectures

We know from Lemma 1.4 that,(G) > v5(G) holds for any graplG, and so we have
the following.

Problem 4.1. Characterize the graplts which satisfy the equality;(G) = y54(G).

We know from Theorem 2.1 that(G) > |V (G)| — | E(G)| holds for any graplG with
d0(G) > 1. A natural problem is the following.

Problem 4.2. Characterize the graphs which satisfy the equality(G) = |V(G)| —
|E(G)I.

Although in[5] we have determine the exact value/dgin) =min{y5(G)|G is a graph of
size m} for all positive integers:, it seems more difficult to solve the following:

Problem 4.3 (Xu [5]). Determine the exact value @in) = min{y;(G)|G is a graph of
ordern} for every positive integet.

Conjecture 4.4. For any graplG of ordern (n>1), y5(G)<n — 1.

Iftrue, the upper bound is the best possible foredeor example, let be the subdivision
of the starK'y (,—1)/2. Clearly,y5(G) = |[E(G)| =n — 1 (the subdivision of a grap#i is the
graph obtained frond; by subdividing each edge @&f exactly once).
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