Applications of Ky Fan’s inequality on σ-compact set to variational inclusion and n-person game theory

Funchun Yanga,b,*, Congxin Wua, Qinghai Heb

a Department of Mathematics, Haerbin Institute of Technology, Helongjiang Province, Haerbin 150001, PR China
b Department of Mathematics, Yunnan University, Yunnan Province, Kunming 650091, PR China

Received 16 October 2004
Available online 5 August 2005
Submitted by H. Frankowska

Abstract

In this paper, Ky Fan’s inequality on σ-compact set is applied to variational inclusions and n-person game theory. We give results of some variational inclusions and existence of non-cooperative equilibrium in n-person game on σ-compact set.

Keywords: Ky Fan’s inequality; Set-valued map; Variational inclusion; n-Person game; Cooperative equilibrium point

1. Introduction

As is well known, Ky Fan’s inequality is used widely in many aspects of nonlinear analysis (e.g., see [1–5]). Recently, some set-valued versions of Ky Fan’s inequality for set-
valued mappings are obtained and also applied to variational inclusion theory, fixed point theory, contingent derivative, optimal and equilibrium theory, etc. (see [7–9]). The classical Ky Fan’s inequality demands domain of the function involved is a convex compact set. A kind of non-compact sets called σ-compact set is defined and some generalized KKM theorems are obtained in [10]. A generalized Ky Fan’s inequality on a closed set is given in [6].

Inspired and motivated by the results mentioned above, in this paper, we will discuss some variational inclusion problems and verify the existence of non-cooperative equilibrium in \(n \)-person game theory on a σ-compact set by using the version of Ky Fan’s inequality on the set. A fixed point theorem and some results about variational inclusions are obtained in Section 3 after preliminaries in Section 2. We gave an existence theorem for non-cooperative equilibrium in \(n \)-person games in which the set of multistrategies is a σ-compact convex subset in Section 4. The corresponding results in [3] are generalized.

2. Preliminaries

Let \(X \) be a real normed vector space with topological dual \(X^* \), and \(\langle \cdot, \cdot \rangle \) be the duality pairing between \(X \) and \(X^* \). If \(K \) is a nonempty subset of \(X \), we always assume that \(\varphi : K \times K \to R \) is a given function. For \(x_0 \in X \) and \(\eta > 0 \), we denote the closed ball centered at \(x_0 \) with radius \(\eta \) by

\[
B_X(x_0, \eta) = B(x_0, \eta) = \{ x \in X : \| x - x_0 \| \leq \eta \}.
\]

We recall that the domain of an extended-real-valued function \(f : X \to \overline{R} := R \cup \{+\infty\} \) is the set where it is finite and is denoted by \(\text{dom}(f) := \{ x \in X : f(x) < +\infty \} \). A function \(f : X \to \overline{R} \) is said to be lower semi-continuous (lsc) at \(x_0 \in \text{dom}(f) \) if for all \(\lambda < f(x_0) \), there exists \(\eta > 0 \) such that

\[
\lambda \leq f(x), \quad \forall x \in B(x_0, \eta).
\]

We say that \(f \) is lsc if it is lsc everywhere in its domain. A function \(f \) is said to be upper semi-continuous (usc) if \(-f \) is lsc.

Proposition 2.1. [3] A function \(f : X \to \overline{R} \) is lower semi-continuous at \(x_0 \) if and only if

\[
f(x_0) \leq \liminf_{x \to x_0} f(x).
\]

Let \(X \) and \(Y \) be two normed vector spaces and \(F : X \to 2^Y \) be a set-valued map. We write \(\text{Gr}(F) := \{(x, y) \in X \times Y : y \in F(x)\} \) for the graph of \(F \) and \(\text{dom}(F) := \{ x \in X : F(x) \neq \emptyset \} \) for the domain of \(F \). If \(A \) is a subset of \(X \) then \(F(A) := \bigcup_{x \in A} F(x) \) and if \(B \subset Y \), \(\text{F}^{-1}(B) := \{ x \in X : B \cap F(x) \neq \emptyset \} \).

A set-valued map \(F : X \to 2^Y \) is said to be lower semi-continuous (lsc) at \(x \in \text{dom}(F) \) if and only if for any \(y \in F(x) \) and for any sequence of elements \(x_n \) in \(X \) converging to \(x \), there exists a sequence of elements \(y_n \in F(x_n) \) converging to \(y \). The set-valued map \(F : X \to 2^Y \) is said to be upper semi-continuous (usc) at \(x_0 \in X \) if and only if for any
neighborhood U of $F(x_0)$, there exists $\eta > 0$ such that for every $x \in B_X(x_0, \eta)$, we have $F(x) \subset U$. F is said to be lsc (respectively usc) on a subset $A \subset X$ if it is lsc (respectively usc) at every point in $A \cap \text{dom}(F)$.

The support function of the subset K of the normed vector space X is defined by

$$\sigma_K(p) := \sigma(K, p) := \sup_{x \in K} \langle p, x \rangle,$$

where $p \in X^*$.

A set-valued map $C : X \to 2^Y$ is said to be upper hemi-continuous at $x_0 \in K \subset X$ if and only if for all $p \in Y^*$, the function $\sigma(C(x), p)$ is upper semi-continuous at x_0. It is said to be upper hemi-continuous on K if it is upper hemi-continuous at every point $x_0 \in K$.

Remark 2.2. Any upper semi-continuous mapping is upper hemi-continuous. The graph of an upper hemi-continuous set-valued map with convex closed values is closed (see [3]).

For more discussion about the lsc, usc, hemi-continuous mappings and the support function, we refer to [1–4].

In the following, we need also the next definition and theorem which can be find in [7].

Definition 2.3. A nonempty set $K \subset X$ is called σ-compact if there is a sequence $\{K_n\}$ of compact subsets of X such that $K = \bigcup_{n=1}^{\infty} K_n$.

Theorem 2.4. [7, Theorem 3.2] Let X be a finite-dimensional real normed vector space, K a convex and σ-compact subset of X, Y a real normed vector space, M a nonempty subset in Y and $F : K \times K \to 2^Y$ a set-valued map. Suppose that

(i) the set-valued map $U : K \to 2^K$, defined by $U(x) := \{u \in K : (x, u) \in F^{-1}(Y \setminus M)\}$, is lsc on K;
(ii) for each finite set $\{u_1, u_2, \ldots, u_n\} \subset K$, $\text{conv}\{u_1, u_2, \ldots, u_n\} \subset \{x \in K : \exists i = 1, \ldots, n, F(x, u_i) \subset M\}$;
(iii) there is a nonempty compact subset A of K such that for every $x \in K \setminus A$ there exists $u \in A$ satisfying $F(x, u) \cap (Y \setminus M) \neq \emptyset$.

Then there exists $\bar{x} \in K$ such that $F(\bar{x}, u) \subset M$ for every $u \in K$.

3. Fixed point theorem and variational inclusions

We first introduce a lemma which is important for our discussion in the sequel, and present a fixed point theorem and then three results about variational inclusions.

Lemma 3.1. Let K be a nonempty σ-compact convex subset of the finite-dimensional real normed vector space X and let $f : K \times K \to \bar{R}$ be a function such that

(i) for every $y \in K$, $x \to f(x, y)$ is lsc;
(ii) for every \(x \in K, \ y \to f(x, y) \) is concave;
(iii) there is a nonempty compact subset \(A \) of \(K \) such that for every \(x \in K \setminus A \) there exists \(u \in A \) satisfying \(f(x, u) > \sup_{x \in K} f(x, x) \).

Then there exists \(\bar{x} \in K \) such that \(\sup_{y \in K} f(\bar{x}, y) \leq \sup_{x \in K} f(x, x) \).

Proof. Let \(m = \sup_{x \in K} f(x, x) \), \(M = (-\infty, m] \) and \(Y = \mathbb{R}^1 \). We observe that assumptions (ii) and (iii) ensure that the conditions (ii) and (iii) of Theorem 2.4 hold. The assumption (i) ensures that \(U : K \to 2^K, U(x) = \{ y \in K : f(x, y) > m \} \), is lsc on \(K \). Indeed, let \(V \) be an open subset of \(X \) and \(x_0 \in K \) such that \(U(x_0) \cap V \neq \emptyset \), then take any fixed point \(y_0 \in U(x_0) \cap V \), we have \(f(x_0, y_0) > m \). From assumption (i), there exists a neighborhood \(V_0 \) of \(x_0 \) such that \(f(x_0, y_0) > m \) for all \(x \in V_0 \). Hence \(y_0 \in U(x) \cap V \) for all \(x \in V_0 \), i.e., \(U(x) \cap V \neq \emptyset \). So \(U \) is lsc on \(K \). On the other hand, we have \(U(x) = \{ y \in K : (x, y) \in f^{-1}(Y \setminus M) \} \). This means the condition (i) of Theorem 2.4 holds. So the result holds. \(\square \)

Theorem 3.2. Let \(K \) be a \(\sigma \)-compact convex subset of a finite-dimensional real normed vector space \(X \) and let \(f : K \to K \) be a continuous mapping. If there is a nonempty compact subset \(A \) of \(K \) such that for every \(x \in K \setminus A \), there exists \(y \in A \) satisfying

\[
\| x - f(x) \| > \| y - f(x) \|,
\]

then there exists \(\bar{x} \in K \) such that \(\bar{x} = f(\bar{x}) \).

Proof. We set

\[
\varphi(x, y) = -\| y - f(x) \| + \| x - f(x) \|, \quad \forall x, y \in K.
\]

Then for every \((x, y) \in K \times K \), \(\varphi(x, y) \) is continuous and for every \(x \in K \), \(\varphi(x, y) \) is concave with respect to \(y \in K \), i.e., the conditions (i) and (ii) of Lemma 3.1 are satisfied. From the assumptions, we know that the condition (iii) of Lemma 3.1 is also satisfied. So there exists \(\bar{x} \in K \) such that

\[
\varphi(\bar{x}, y) = -\| y - f(\bar{x}) \| + \| \bar{x} - f(\bar{x}) \| \leq \sup_{x \in K} \varphi(x, x) = 0, \quad \forall y \in K.
\]

We take \(y = f(\bar{x}) \), then \(\| \bar{x} - f(\bar{x}) \| \leq 0 \), i.e., \(\bar{x} = f(\bar{x}) \). \(\square \)

Theorem 3.3. Let \(K \) be a \(\sigma \)-compact convex subset of \(\mathbb{R}^n \) and let \(C : K \to 2^{\mathbb{R}^n} \) be a set-valued mapping with nonempty values. If

(i) \(\varphi(x, y) := -\sigma(C(x), y) \) is lsc in \(x \) on \(K \);
(ii) \(\forall x \in K, C(x) - R^n_+ \) is a convex closed subset;
(iii) there is a nonempty compact subset \(A \) of \(K \) such that for every \(x \in K \setminus A \), there exists \(y \in A \) satisfying \(\sigma(C(x), y) < 0 \); and
(iv) \(\forall x \in K, \sigma(C(x), x) \geq 0 \).

Then there exists \(\bar{x} \in K \) such that \(C(\bar{x}) \cap R^n_+ \neq \emptyset \).
Proof. We consider the function
\[\varphi(x, y) = -\sigma(C(x), y), \quad \forall (x, y) \in K \times K. \]
This function is concave in \(y \in K \) (since \(y \rightarrow \sigma(C(x), y) \) is convex) and is lsc in \(x \) on \(K \).
It follows from the conditions (iii) and (iv) that, for each \(x \in K \setminus A \), there exists \(y \in A \) satisfying
\[\varphi(x, y) = -\sigma(C(x), y) > 0 \geq \sup_{x \in K} -\sigma(C(x), x) = \sup_{x \in K} \varphi(x, x). \]
By Lemma 3.1, there exists \(\bar{x} \in K \) such that
\[\sup_{y \in K} \varphi(\bar{x}, y) \leq \sup_{x \in K} \varphi(x, x) \leq 0, \]
i.e., \(\sigma(C(\bar{x}), y) \geq 0, \forall y \in K \). Since \(\sigma(-R^+_n, y) = 0 \) whenever \(y \in R^+_n \) and \(\sigma(-R^+_n, y) = +\infty \) whenever \(y \notin R^+_n \), it is equivalent to
\[0 \leq \sigma(C(\bar{x}) - R^+_n, y), \quad \forall y \in R^n. \]
Since \(C(\bar{x}) - R^+_n \) is a convex and closed subset, it follows from the separation theorem that if \(0 \notin C(\bar{x}) - R^+_n \) then there exists \(y \in R^n \), such that \(\sigma(C(\bar{x}) - R^+_n, y) < 0 \), which is a contradiction. This implies \(C(\bar{x}) \cap R^+_n \neq \emptyset. \)

Remark 3.4. Under the condition that \(K \) is a compact subset of \(R^n \), Debruy, Gale and Nikaïdo obtained a theorem which is known as Debruy–Gale–Nikaïdo Theorem. Here we give the same result of the Debruy–Gale–Nikaïdo Theorem under different conditions. Also it is well known that when \(C \) is upper hemi-continuous, the function \(\varphi(x, y) := -\sigma(C(x), y) \) is lsc in \(x \) on \(K \) (see [3]).

Theorem 3.5. Let \(K \) be a \(\sigma \)-compact and convex subset of a finite-dimensional normed vector space \(X \) and let \(S : K \to 2^X \) be a lsc set-valued map. Suppose that

(i) there exists a nonempty compact subset \(A \subset K \) such that for every \(x \in K \setminus A \), there exist \(t \in S(x) \) and \(u \in A \) satisfying
\[\langle t, u - x \rangle < 0; \]
(ii) for any finite subset \(\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subset [0, 1], \{u_1, u_2, \ldots, u_n\} \subset K, \ u = \sum_{i=1}^{n} \alpha_i u_i, \)
we have
\[\sum_{i=1}^{n} \alpha_i \langle t_i, u_i - u \rangle \geq 0, \quad \text{for all } t_i \in S(u). \]
Then there exists \(\bar{x} \in K \) such that \(\langle t, u - \bar{x} \rangle \geq 0, \) for all \(t \in S(\bar{x}) \) and \(u \in A \).

Proof. Let \(Y = R, M = [0, +\infty), \) we introduce the following set-valued mappings:
\[F : K \times K \to 2^R, \quad F(x, y) = \{ a \in R : \langle t, y - x \rangle = a, \ t \in S(x) \}, \]
and
\[U : K \to 2^K, \quad U(x) = \{ u \in K : \exists t \in S(x), \ \langle t, u - x \rangle < 0 \}. \]
We first show that \(U \) is lsc on \(K \). Since \(S \) is lsc on \(K \), i.e., for any \(x \in K \), \(t \in S(x) \) and \(\{ x_n \} \subset K \), \(x_n \to x \) as \(n \to +\infty \), there exists \(t_n \in S(x_n) \) such that \(t_n \to t \). For sufficient large \(n \), we have \(\langle t_n, u - x_n \rangle < 0 \) whenever \(u \in U(x) \). This is to say \(u \in U(x_n) \) for sufficient large \(n \). So \(U \) is lsc on \(K \). On the other hand, \(U(x) = \{ u \in K : F(x, u) \cap (-\infty, 0) \neq \emptyset \} = \{ u \in K : (x, u) \in F^{-1}(Y - M) \} \), \(\forall x \in K \). So the condition (i) of Theorem 2.4 is satisfied.

Secondly, we show that the condition (ii) of Theorem 2.4 is satisfied. Suppose, on the contrary, that there exist a finite subset \(\{ u_1, u_2, \ldots, u_n \} \subset K \) and \(u_0 \in \text{conv}\{u_1, u_2, \ldots, u_n\} \) such that \(F(u_0, u_i) \cap (-\infty, 0) \neq \emptyset \) for every \(i = 1, \ldots, n \). Hence \(u_0 = \sum_{i=1}^{n} \alpha_i u_i \), \(\alpha_i \geq 0 \), \(\sum_{i=1}^{n} \alpha_i = 1 \) and \(\sum_{i=1}^{n} \alpha_i F(u_0, u_i) \cap (-\infty, 0) \neq \emptyset \), which is a contradiction with the assumption (ii).

Finally, from the assumption (i), we know the condition (iii) of Theorem 2.4 is also satisfied. Therefore there exists \(\bar{x} \in K \) such that \(\langle t, u - \bar{x} \rangle \geq 0 \), for all \(t \in S(\bar{x}) \), \(u \in A \). \(\Box \)

Next we will verify a quasi-variational inequality.

Theorem 3.6. Let \(K \) be a \(\sigma \)-compact convex subset of a finite-dimensional normed space \(X \) and let \(C : K \to 2^X \) be an upper hemi-continuous set-valued mapping with nonempty convex closed values. We consider a function \(\varphi : K \times K \to \mathbb{R} \) satisfying

(i) \(\varphi \) is lsc in \(x \) on \(K \);

(ii) \(\forall x \in K, \ y \to \varphi(x,y) \) is concave;

(iii) \(\sup_{y \in K} \varphi(y,y) = 0 \);

(iv) there is a nonempty compact subset \(A \) of \(K \) such that

\[
A \cap \left\{ x \in K : \sup_{y \in C(x)} \varphi(x,y) \leq 0 \right\} = \emptyset,
\]

and for every \(x \in K \setminus A \), there exists \(u \in A \cap C(x) \) satisfying

\[
\varphi(x,u) > \sup_{y \in K} \varphi(y,y); \quad \text{and}
\]

(v) the subset \(\{ x \in K : \sup_{y \in C(x)} \varphi(x,y) \leq 0 \} \) is closed.

Then there exists a point \(\bar{x} \in K \) satisfying

(I) \(\bar{x} \in C(\bar{x}) \), and

(II) \(\sup_{y \in C(\bar{x})} \varphi(\bar{x}, y) \leq 0 \).

Proof. We shall argue by reduction to the absurd. Denote \(\alpha(x) = \sup_{y \in C(x)} \varphi(x,y) \). If the conclusion is false for all \(x \in K \), we would have either \(\alpha(x) > 0 \) or \(x \notin C(x) \). The later implies that there exists \(p \in X^* \) such that \(\langle p, x \rangle - \sigma(C(x), p) > 0 \). We set

(a) \(V_0 := \{ x \in K : \alpha(x) > 0 \} \), and
(b) \(V_n(p) := \{ x \in K_n : \langle p, x \rangle - \sigma(C(x), p) > 0 \} \).

Where \(K = \bigcup_{n=1}^{\infty} K_n \) and each \(K_n \) is a compact subset of \(X \).
Obviously, for each K_n, we have
$$K_n \subset V_0 \cup \left(\bigcup_{p \in X^*} V_n(p) \right).$$

The assumption on the set-valued map C and the condition (i) imply that the sets V_0 and $V_n(p)$ are open. Since each K_n is compact, there exist finite $p_{n1}, p_{n2}, \ldots, p_{nm_n}$ such that
$$K_n \subset V_0 \cup \left(\bigcup_{i=1}^{m_n} V_n(p_{ni}) \right).$$

Therefore
$$K = \bigcup_{n=1}^{\infty} K_n = V_0 \cup \bigcup_{n=1}^{\infty} \left(\bigcup_{i=1}^{m_n} V_n(p_{ni}) \right).$$

By the unity partition theorem, there exists a continuous partition of unity
$$\{g_0, g_{11}, g_{12}, \ldots, g_{1m_1}; g_{21}, g_{22}, \ldots, g_{2m_2}; \ldots; g_{n1}, g_{n2}, \ldots, g_{nm_n}; \ldots\},$$
which satisfies

1. g_{ni} is continuous on K. There exists $V_{ni}(p_{ni})$, for each $x \in K$, such that $x \in V_{ni}(p_{ni})$ and only finite g_{ni} are nonzero on it;
2. $0 \leq g_{ni}(x) \leq 1$, $g_0(x) + \sum_{n=1}^{\infty} \sum_{i=1}^{m_n} g_{ni}(x) = 1$, for all $x \in K$; and
3. for each g_{ni}, there exists $V_{ni}(p_{ni})$ such that $\text{supp}(g_{ni}) \subset V_{ni}(p_{ni})$, or $\text{supp}(g_{0}) \subset V_0$.

Now we define the function $\psi : K \times K \to \mathbb{R}$ by
$$\psi(x, y) = g_0(x)\varphi(x, y) + \sum_{n=1}^{\infty} \sum_{i=1}^{m_n} g_{ni}(x)\langle p_{ni}, x - y \rangle.$$

For each $x \in K$, it follows from (1) that only finite $g_{ni}(x)\langle p_{ni}, x - y \rangle$ are nonzero in some neighborhood of x. From assumptions (i) and (ii), we know that $\psi(x, y)$ is lower semicontinuous in x and concave in y.

Next we show that $\psi(x, y)$ satisfying the condition (iii) of Lemma 3.1. Indeed, since $A \cap \{x \in K: \alpha(x) \leq 0\} = \emptyset$, we have $A \subset V_0$. So
$$K \setminus A = (K \setminus V_0) \cup (V_0 \setminus A).$$

If $x \in K \setminus A$, then $x \in K \setminus V_0$ or $x \in V_0 \setminus A$. If $x \in K \setminus V_0$, then $g_0(x) = 0$ and there exist g_{ni} and $V_{ni}(p_{ni})$ such that $g_{ni}(x) > 0$, $x \in V_{ni}(p_{ni})$. By assumption (iv), there exists $u \in A \cap C(x)$ such that $\varphi(x, u) > \sup_{y \in K} \varphi(y, y)$. So
$$\langle p_{ni}, x - u \rangle = \langle p_{ni}, x \rangle - \langle p_{ni}, u \rangle > \langle p_{ni}, x \rangle - \sigma(C(x), p_{ni}) > 0.$$

Hence,
$$\psi(x, u) = \sum_{g_{ni}(x) \neq 0} g_{ni}(x)\langle p_{ni}, x - u \rangle > 0 = \sup_{y \in K} \psi(y, y).$$
If \(x \in V_0 \setminus A \), we also have

\[
\psi(x, u) = g_0(x)\varphi(x, u) + \sum_{g_{ni}(x) \neq 0} g_{ni}(x)(p_{ni}, x - u) > 0 = \sup_{y \in K} \psi(y, y).
\]

By Lemma 3.1, there exists \(\bar{x} \in K \) such that

\[
\sup_{y \in K} \psi(\bar{x}, y) \leq 0.
\]

We shall contradict this inequality by proving that there exists \(\bar{y} \in K \) such that \(\psi(\bar{x}, \bar{y}) > 0 \).

We take

(4) any \(\bar{y} \in C(\bar{x}) \) if \(\alpha(\bar{x}) \leq 0 \), or

(5) \(\bar{y} \in \hat{C}(\bar{x}) \) satisfying \(\varphi(\bar{x}, \bar{y}) > \frac{1}{2} \alpha(\bar{x}) \) if \(\alpha(\bar{x}) > 0 \).

Since \(g_0, g_{11}, g_{12}, \ldots, g_{1m_1}; g_{21}, g_{22}, \ldots, g_{2m_2}; \ldots \) is a partition of unity, we have \(g_{ni}(\bar{x}) > 0 \) for at least one index \(i = 1, 2, \ldots \). So \(\psi(\bar{x}, \bar{y}) > 0 \) follows from the assertion:

(6) \(g_0(\bar{x}) > 0 \) implies that \(\varphi(\bar{x}, \bar{y}) > 0 \), or

(7) \(g_{ni}(\bar{x}) > 0 \) implies that \(\langle p_{ni}, \bar{x} - \bar{y} \rangle > 0 \).

Indeed, if \(g_0(\bar{x}) > 0 \), then \(\bar{x} \in V_0 \) consequently, \(\varphi(\bar{x}, \bar{y}) > \frac{1}{2} \alpha(\bar{x}) \). If \(g_{ni}(\bar{x}) > 0 \), then \(\bar{x} \in V(p_{ni}) \) and consequently, \(\langle p_{ni}, \bar{x} \rangle > \sigma(C(\bar{x}), p_{ni}) \geq \langle p_{ni}, \bar{y} \rangle \) (since \(\bar{y} \in C(\bar{x}) \)). Thus, \(\langle p_{ni}, \bar{x} - \bar{y} \rangle > 0 \).

4. Non-cooperative equilibrium in n-person games

Now we consider the decision rules of \(n \) plays that are determined by loss functions. In [3], the set of multi-strategies \(E \) is a compact set. In this section, we discuss the situations in which the set \(E \) is not compact and give a result of the existence for non-cooperative equilibrium in \(n \)-person games in which the set of multi-strategies is a \(\sigma \)-compact convex subset.

Let \(E^i \subset R, \hat{E}^i = \prod_{j \neq i}^n E^i, \hat{x}^i = (x^1, \ldots, x^{i-1}, x^{i+1}, \ldots, x^n) \in \hat{E}^i \). The set of multi-strategies \(x := (x^i, \hat{x}^i) \) may be written as the set \(E := E^i \times \hat{E}^i \). In a \(n \)-person game, the behavior of the \(i \)th player is defined by a loss function. The related conceptions and discussions can be find in [2–4].

Definition 4.1. [3] The \(i \)th player’s loss function \(f^i \) is defined by \(f^i : E \rightarrow R \), which evaluates the loss of the \(i \)th player inflicted by each multi-strategy \(x \in E \).

The associated decision rules are defined by

\[
C^i : \hat{E}^i \rightarrow 2^{E^i}, \quad C^i(\hat{x}^i) = \left\{ x^i \in E^i : f^i(x^i, \hat{x}^i) = \inf_{y^i \in E^i} f^i(y^i, \hat{x}^i) \right\}.
\]

Now we defined \(C : E \rightarrow 2^E, C(x) = \prod_{i=1}^n C^i(x^i) \).
Definition 4.2. [3] A non-cooperative equilibrium (or Nash equilibrium) is a fixed point of the set-valued map C on E.

As in [3], we consider the function $\varphi : E \times E \to R$ defined by

$$\varphi(x, y) = \sum_{i=1}^{n} (f^i(x^i, \hat{x}^i) - f^i(y^i, \hat{x}^i)).$$

Lemma 4.3. [3, p. 181] The following assertions are equivalent:

(i) $\bar{x} \in E$ is a non-cooperative equilibrium;
(ii) $\forall y \in E$, $\varphi(\bar{x}, y) \leq 0$.

Now we can verify the existence of a non-cooperative equilibrium which generalize the result of Theorem 12.2 in [3, p. 181].

Theorem 4.4. Suppose that, $\forall i \in N := \{1, 2, \ldots, n\}$,

(i) the sets E^i are convex and σ-compact;
(ii) the function f^i are continuous and the function $y^i \to f^i(y^i, \hat{x}^i)$ are convex; and
(iii) there is a nonempty compact subset A^i of E^i such that for every $y^i \in E^i \setminus A^i$, there exists $u^i \in A^i$ satisfying

$$f^i(x^i, \hat{x}^i) - f^i(u^i, \hat{x}^i) > 0.$$

Then there exists a non-cooperative equilibrium.

Proof. We introduce the set E and the function φ by

(i) $E := E^1 \times \hat{E}^i = \prod_{i=1}^{n} E^i$;
(ii) $\varphi(x, y) = \sum_{i=1}^{n} (f^i(x^i, \hat{x}^i) - f^i(y^i, \hat{x}^i)).$

Since each E^i is a σ-compact convex subset, so is E. The function $\varphi(x, y)$ is continuous on $E \times E$ and the function $y \to \varphi(x, y)$ is concave. Now we shall verify that there exists a nonempty compact A of E such that for every $x \in E \setminus A$, there exists $u \in A$ satisfying

$$\varphi(x, u) > \sup_{x \in E} \varphi(x, x) = 0.$$

We set $A = \prod_{i=1}^{n} A^i$. It follows from the assumption (iii) that A is compact. For every $x \in E \setminus A$, we set $x = (x^1, x^2, \ldots, x^n)$.

(1) If $\forall i$, $x^i \notin A^i$, then $x^i \in E^i \setminus A^i$, thus $x \in \prod_{i=1}^{n} (E^i \setminus A^i)$. From the assumption (iii), there exists $u^i \in A^i$ satisfying

$$f^i(x^i, \hat{x}^i) - f^i(u^i, \hat{x}^i) > 0$$.
thus, we set \(u = (u^1, u^2, \ldots, u^n) \), \(u \in \prod_{i=1}^n A^i = A \), and

\[
\varphi(x, u) = \sum_{i=1}^n (f^i(x^i, \hat{x}^i) - f^i(u^i, \hat{x}^i)) > 0.
\]

(2) If there exists \(x^i \in A^i \), but not all \(x^i \in A^i \) (if all \(x^i \in A^i \), then \(x \notin E \setminus A \) which is a contradiction), then, we set \(u = (u^1, u^2, \ldots, u^n) \) where if \(x^i \in A^i \) then take \(u^i = x^i \), otherwise take \(u^i \in A^i \) satisfying

\[
f^i(x^i, \hat{x}^i) - f^i(u^i, \hat{x}^i) > 0.
\]

Thus \(u \in \prod_{i=1}^n A^i \), and we have

\[
\varphi(x, u) = \sum_{i=1}^n (f^i(x^i, \hat{x}^i) - f^i(u^i, \hat{x}^i)) = \sum_{i=1, u^i \neq x^i}^n (f^i(x^i, \hat{x}^i) - f^i(u^i, \hat{x}^i)) > 0 = \sup_{x \in E} \varphi(x, x).
\]

From Lemma 3.1, we obtain that there exists \(\bar{x} \in E \) such that \(\varphi(\bar{x}, y) \leq \sup_{x \in E} \varphi(x, x) = 0 \), for every \(y \in E \). It follows from Lemma 4.3 that \(\bar{x} \) is a non-cooperative equilibrium.

Acknowledgments

The authors thank the referees for their many valuable suggestions and helpful comments which improve the exposition of the paper.

References