JOURNAL OF ALGEBRA 6, 317-334 (1967)

Cohomology of Algebraic Groups

DAVID HERTZIG¹

Mathematics Department, Purdue University, Lafayette, Indiana Communicated by I. N. Herstein Received August 14, 1966

The purpose of this paper is to expound a technique for the computation of certain cohomology of algebraic groups. A natural approach is to restrict attention to a Borel subgroup B. Since B splits as a semidirect product of B_u (unipotent part) and a maximal torus T, a standard exact-sequence argument leads to the heart of the problem, namely cohomology of B_u with action of the torus T. One now notes that B_u is a product of "one-parameter subgroups" and the procedure is to consider the restriction of a cocycle to these elementary subgroups and derive conditions on it so that it may extend to the whole group. Using the cohomology relation it is possible to find a neat normal form for a cocycle. In the case of the field with two elements a maximal torus is trivial and hence the trivial action of T does not give helpful restrictions on a cocycle; it is in this case that the computation is most tedious.

The special case worked out in detail in this paper is in fact quite general and gives a sufficiently complete exposition of the technique to enable one to make the computations in a particular special case.

Such explicit computation appears necessary in the cohomological approach to the "congruence subgroup problem" and the desirability of a technique was pointed out to the author by H. Bass.

Let G be a subgroup of GL(n, k), the group of $n \times n$ nonsingular matrices with coefficients in the field k of characteristic p. Note G operates by inner automorphism on the space $\mathfrak{M}_n(k)$ of all $n \times n$ matrices over k; let g be a subspace of $\mathfrak{M}_n(k)$ stable under this operation. Recall that a 1-cocycle from G to g is a map

$$f: G \rightarrow \mathfrak{g}$$

satisfying

$$f(gg') = f(g) + f(g')^g$$

¹ This paper was written while the author was on leave from Purdue University, and temporarily employed by the Institute for Defense Analysis, Princeton, New Jersey.

for all $g, g' \in G$. The set of all 1-cocycles from G to g is a commutative group $Z^{1}(G, g)$. A 1-cocycle $f \in Z^{1}(G, g)$ is a 1-coboundary if there exists $A \in g$ such that

$$f(g) = A^g - A$$

for all $g \in G$. The set of all 1-coboundaries is a subgroup $B^1(G, \mathfrak{g}) < Z^1(G, \mathfrak{g})$. The quotient group $H^1(G, \mathfrak{g})$ is the 1-cohomology group of G into g.

If H is a subgroup of GL(n, k) which normalizes G, and also under which g is stable, we can consider the action of H in the cohomology. More precisely, we denote $Z_0^1(G, g)$ the subgroup of $Z^1(G, g)$ consisting of the cocycles f satisfying

$$f(g^h) = f(g)^h$$

for all $h \in H$, $g \in G$. We denote $H_0^{-1}(G, \mathfrak{g})$ the image of $Z_0^{-1}(G, \mathfrak{g})$ in $H^1(G, \mathfrak{g})$. In this paper we restrict our considerations to the following situations:

- G = triangular unipotent matrices
- H = diagonal unimodular matrices
- $g = \mathfrak{M}_n(k)$
- $g_0 =$ matrices of trace 0
- $G_{\rho\mu} = ext{subgroup of } G ext{ consisting of the elementary matrices } \{I + xe_{\rho\mu}\}_{x \in k} \ (\rho < \mu), ext{ where, as usual, } e_{\rho\mu} ext{ is the matrix whose } (\rho, \mu) ext{th coordinate is 1 and all others are } 0.$

If f is a 1-cocycle from G to g, its restriction $f^{\rho\mu}$ to $G_{\rho\mu}$ is a 1-cocycle from $G_{\rho\mu}$ to g. The isomorphism $x \to I + xe_{\rho\mu}$ of k with $G_{\rho\mu}$ will be used to identify $G_{\rho\mu}$ with k. Then if $f^{\rho\mu}(x)$ is the matrix $(f_{ij}^{\rho\mu}(x))$, we have n^2 functions

$$f_{ij}^{\rho\mu}:k \to g$$

satisfying

$$f_{ij}^{\rho\mu}(x+y) = f_{ij}^{\rho\mu}(x) + f_{ij}^{\rho\mu}(y) + \delta_{i\rho}xf_{\mu j}^{\rho\mu}(y) - \delta_{j\mu}xf_{i\rho}^{\rho\mu}(y) - \delta_{i\rho}\delta_{j\mu}x^{2}f_{\mu}^{\rho\mu}(y).$$

Since $f_{ij}^{\rho\mu}(x+y) = f_{ij}^{\rho\mu}(y+x)$, we must have

$$\begin{split} \delta_{i\rho} x f^{\rho\mu}_{\mu j}(y) &- \delta_{j\mu} x f^{\rho\mu}_{i\rho}(y) - \delta_{i\rho} \delta_{j\mu} x^2 f^{\rho\mu}_{\mu\rho}(y) \\ &= \delta_{i\rho} y f^{\rho\mu}_{\mu j}(x) - \delta_{j\mu} y f^{\rho\mu}_{i\rho}(x) - \delta_{i\rho} \delta_{j\mu} y^2 f^{\rho\mu}_{\mu\rho}(x). \end{split}$$

Therefore for $i = \rho$, $j \neq \mu$ we get

$$xf_{\rho j}^{\rho \mu}(y) = yf_{\mu j}^{\rho \mu}(x)$$

and for $i \neq \rho$, $j = \mu$ we get

$$xf_{i\rho}^{\rho\mu}(y) = yf_{i\rho}^{\rho\mu}(x).$$

Denoting $c_{ij}^{\rho\mu} = f_{ij}^{\rho\mu}(1)$, the above imply

$$egin{aligned} &f^{
ho\mu}_{i
ho}(x)=c^{
ho\mu}_{i
ho}x &(i
eq
ho),\ &f^{
ho\mu}_{\mu j}(x)=c^{
ho\mu}_{\mu j}x &(j
eq\mu). \end{aligned}$$

Then taking $i = \rho$, $j = \mu$ we find

$$f_{\mu\mu}^{\rho\mu}(x) - f_{\rho\rho}^{\rho\mu}(x) = (c_{\mu\mu}^{\rho\mu} - c_{\rho\rho}^{\rho\mu}) x + c_{\mu\rho}^{\rho\mu}(x - x^2).$$

It then follows that

$$\begin{split} f_{ij}^{\rho\mu}(x+y) &= f_{ij}^{\rho\mu}(x) + f_{ij}^{\rho\mu}(y) & (i \neq \rho, j \neq \mu), \\ f_{i\mu}^{\rho\mu}(x+y) &= f_{i\mu}^{\rho\mu}(x) + f_{i\mu}^{\rho\mu}(y) - c_{i\rho}^{\rho\mu}xy & (i \neq \rho), \\ f_{\rho j}^{\rho\mu}(x+y) &= f_{\rho j}^{\rho\mu}(x) + f_{\rho j}^{\rho\mu}(y) + c_{\mu j}^{\rho\mu}xy & (j \neq \mu), \\ f_{\rho\mu}^{\rho\mu}(x+y) &= f_{\rho\mu}^{\rho\mu}(x) + f_{\rho\mu}^{\rho\mu}(y) + (c_{\mu\mu} - c_{\rho\rho}^{\rho\mu})xy + c_{\mu\rho}^{\mu}(xy - x^{2}y - xy^{2}), \\ \text{with} \end{split}$$

$$egin{aligned} &f^{
ho\mu}_{i
ho}(x)=c^{
ho\mu}_{i
ho}x &(i
eq
ho),\ &f^{
ho\mu}_{\mu j}(x)=c^{
ho\mu}_{\mu j}(x) &(j
eq\mu), \end{aligned}$$

and

$$f_{\mu\mu}^{\rho\mu}(x) - f_{\rho\rho}^{\rho\mu}(x) = (c_{\mu\mu}^{\rho\mu} - c_{\rho\rho}^{\rho\mu}) x + c_{\mu\rho}^{\rho\mu}(x - x^2).$$

For the case n = 2 we have $G = G_{12}$ and necessarily $\rho = 1$, $\mu = 2$; we simply denote $f_{ij}^{\rho\mu} = f_{ij}$ and $c_{ij}^{\rho\mu} = c_{ij}$ $(1 \le i, j \le 2)$. The relations reduce to

$$\begin{split} f_{11}(x+y) &= f_{11}(x) + f_{11}(y) + c_{21}xy, \\ f_{12}(x+y) &= f_{12}(x) + f_{12}(y) + (c_{22} - c_{11} + c_{21}) xy - c_{21}(xy^2 + x^2y), \\ f_{21}(x) &= c_{21}x, \\ f_{22}(x) &= f_{11}(x) + (c_{22} - c_{11} + c_{21}) x - c_{21}x^2. \end{split}$$

If p = 2, setting x = y gives $c_{21} = c_{22} - c_{11} + c_{21} = 0$. If p = 3, setting $x = \pm y$ leads to $c_{21} = 0$.

Define

$$\alpha = \begin{cases} \frac{1}{2} (c_{22} - c_{11} + c_{21}) & \text{if} \quad p \neq 2, \\ 0 & \text{if} \quad p = 2; \end{cases}$$
$$\beta = \begin{cases} \frac{1}{6} c_{21} & \text{if} \quad p \neq 2, 3, \\ 0 & \text{if} \quad p = 2, 3. \end{cases}$$

Then we may write

$$f(x) = \begin{pmatrix} \rho_0(x) & \rho_1(x) \\ 0 & \rho_0(x) \end{pmatrix} + \alpha \begin{pmatrix} -x & x^2 \\ 0 & x \end{pmatrix} + \beta \begin{pmatrix} 3x^2 & -2x^3 \\ 12x & -3x^2 \end{pmatrix}$$

where

$$ho_0(x+y) =
ho_0(x) +
ho_0(y),$$

 $ho_1(x+y) =
ho_1(x) +
ho_1(y).$

If

$$h = \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}$$

and

$$g = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix},$$

the condition $f(g^{\hbar}) = f(g)^{\hbar}$ becomes

$$f(u^2x) = egin{pmatrix} f_{11}(x) & u^2f_{12}(x) \ u^{-2}f_{21}(x) & f_{22}(x) \end{pmatrix}$$

or

$$\begin{split} \rho_0(u^2 x) &- \alpha u^2 x + 3\beta u^4 x^2 = \rho_0(x) - \alpha x + 3\beta x^2, \\ \rho_1(u^2 x) &+ \alpha u^4 x^2 - 2\beta u^6 x^3 = u^2 \rho_1(x) + \alpha u^2 x^2 - 2\beta u^2 x^3, \\ &12\beta u^2 x = 12\beta u^{-2} x, \\ \rho_0(u^2 x) &+ \alpha u^2 x - 3\beta u^4 x^2 = \rho_0(x) + \alpha x - 3\beta x^2. \end{split}$$

From the third equation we obtain

$$\beta = 0$$
 unless $k = \mathbf{F}_5$.

From the first and fourth equations we obtain

$$\alpha = 0$$
 unless $k = \mathbf{F}_3$.

However, if $k = \mathbf{F}_3$ we may take

$$A = \begin{pmatrix} 0 & 0 \\ \alpha & 0 \end{pmatrix}$$

so that

$$A^{x}-A=-\alpha\begin{pmatrix}-x & x^{2}\\ 0 & x\end{pmatrix};$$

hence, up to cohomology, there is no loss of generality in assuming $\alpha = 0$.

We also have

$$ho_0(u^2 x) =
ho_0(x),$$

ho_1(u^2 x) = u^2
ho_1(x).

Suppose $k \neq F_2$, F_3 ; choose $u \in k$, $u \neq 0$, such that $u^2 \neq 1$, i.e., $v = u - u^{-1} \neq 0$. Then for $x \in k$

$$\begin{split} \rho_0(x) &= \rho_0(v^2 x) = \rho_0(u^2 x) - 2\rho_0(x) + \rho_0(u^{-2} x) \\ &= \rho_0(x) - 2\rho_0(x) + \rho_0(x) = 0. \end{split}$$

Therefore, $\rho_0(x) = \gamma x$ with $\gamma = 0$ unless $k = \mathbf{F}_2$ or \mathbf{F}_3 . If $k = \mathbf{F}_2$ we may take

$$A = \begin{pmatrix} 0 & 0 \\ \gamma & 0 \end{pmatrix}$$

so that

$$A^{x}-A=\begin{pmatrix} \gamma x & \gamma x\\ 0 & \gamma x \end{pmatrix};$$

then up to cohomology we see there is no loss of generality in assuming $\gamma=0$ unless $k={f F}_3$.

The condition on ρ_1 implies

$$\rho_1(x^2) = \delta x^2$$

so that

$$\begin{split} \delta(1+x)^2 &= \rho_1((1+x)^2) = \rho_1(1) + 2\rho_1(x) + \rho_1(x^2) \\ &= \delta + 2\rho_1(x) + \delta x^2 \end{split}$$

and

$$2\rho_1(x)=2\delta x.$$

Therefore if $p \neq 2$, $\rho_1(x) = \delta x$. On the other hand, if p = 2 and k is perfect, every element is a square and again we have $\rho_1(x) = \delta x$. It is easy to construct other examples if k is not perfect.

If $p \neq 2$ let

$$A = \begin{pmatrix} -\frac{1}{2}\delta & 0\\ 0 & \frac{1}{2}\delta \end{pmatrix}$$

so that

$$A^x - A = \begin{pmatrix} 0 & \delta x \\ 0 & 0 \end{pmatrix};$$

then, up to cohomology, there is no loss of generality in assuming $\delta = 0$ unless p = 2.

If p = 2 in the case of cohomology into g we can take

$$A = \begin{pmatrix} \delta & 0 \\ 0 & 0 \end{pmatrix}$$

so that

$$A^x - A = \begin{pmatrix} 0 & \delta x \\ 0 & 0 \end{pmatrix}$$
,

and then in this case too we may assume $\delta = 0$.

We now have

$$f(x) = \begin{pmatrix} \gamma x + 3\beta x^2 & \rho_1(x) - 2\beta x^3 \\ 2\beta x & \gamma x - 3\beta x^2 \end{pmatrix}$$

with $\gamma = 0$ unless $k = \mathbf{F}_3$, $\beta = 0$ unless $k = \mathbf{F}_5$, $\rho_1 \equiv 0$ unless p = 2. If p = 2 and k is perfect, $\rho_1(x) = \delta x$ with $\delta = 0$ for cohomology into g. Moreover, if f(x) is to be of trace $0, \gamma = 0$. Thus

PROPOSITION 1. For n = 2, $H_0^{1}(G, g) = 0$ provided k is perfect if p = 2, except for $k = \mathbf{F}_3$ or \mathbf{F}_5 in which cases $H_0^{1}(G, g) \simeq k$.

Also if $p \neq 2$, $H_0^1(G, \mathfrak{g}_0) = 0$, except for $k = \mathbf{F}_5$. In the cases $k = \mathbf{F}_5$ or p = 2 and k perfect, $H_0^1(G, \mathfrak{g}_0) \simeq k$.

We now assume $n \ge 3$ and $k \ne \mathbf{F}_2$. Let

$$h = \begin{pmatrix} u_1 & & 0 \\ & u_2 & & \\ & & \ddots & \\ 0 & & & u_n \end{pmatrix}$$

with $u_1u_2 \cdots u_n = 1$. The condition

$$f(g^h) = f(g)^h$$

implies

$$f_{ij}^{\rho_{\mu}}(u_{\rho}u_{\mu}^{-1}x) = u_{i}u_{j}^{-1}f_{ij}^{\rho_{\mu}}(x).$$

First consider the case n = 3, and let $\lambda \neq \rho$, μ so that $\{\lambda, \rho, \mu\} = \{1, 2, 3\}$. Suppose $i = \rho$; then

$$f_{\rho j}^{\rho \mu}(u_{\rho}u_{\mu}^{-1}x) = u_{\rho}u_{j}^{-1}f_{\rho j}^{\rho}(x).$$

Taking $u_{\rho} = y$, $u_{\lambda} = y^{-1}$, $u_{\mu} = 1$, x = 1 we get

$$\begin{split} f^{\rho\mu}_{\rho j}(y) &= c^{\rho\mu}_{\rho j} u_j^{-1} y \\ &= \begin{cases} c^{\rho\mu}_{\rho \rho} & (j=\rho), \\ c^{\rho\mu}_{\rho \mu} y & (j=\mu), \\ c^{\rho\mu}_{\rho \lambda} y^2 & (j=\lambda). \end{cases} \end{split}$$

Then $c_{\rho\lambda}^{\rho\mu}u_{\rho}^{2}u_{\mu}^{-2}x^{2} = c_{\rho\lambda}^{\rho\mu}u_{\rho}u_{\lambda}^{-1}x^{2}$. Since $u_{\rho}u_{\lambda}u_{\mu} = 1$, taking $u_{\mu} = t \neq 0$, 1, this reduces to

$$c_{\rho\lambda}^{\rho\mu}(1-t^3)=0.$$

Thus if $k \neq \mathbf{F}_4$, $c_{\rho\lambda}^{\rho\mu} = 0$.

Suppose $i = \mu$; then

$$f^{\rho\mu}_{\mu j}(u_{
ho}u_{\mu}^{-1}x) = u_{\mu}u_{j}^{-1}f^{
ho\mu}_{\mu j}(x)$$

so that, for $j \neq \mu$,

$$c_{\mu j}^{\rho \mu} u_{\rho} u_{\mu}^{-1} x = u_{\mu} u_{j}^{-1} c_{\mu j}^{\rho \mu} x, \qquad c_{\mu j}^{\rho \mu} (u_{\rho} u_{j} - u_{\mu}^{-2}) = 0.$$

Therefore

$$f^{\rho\mu}_{\mu\rho} = 0$$
 if $k \neq \mathbf{F}_3$,
 $f^{\rho\mu}_{\mu\lambda} = 0$ if $k \neq \mathbf{F}_4$.

Also,

$$f^{\,\rho\mu}_{\,\mu\mu}(u_{\rho}u_{\mu}^{-1}x) = f^{\,\rho\mu}_{\,\mu\mu}(x)$$

so that

$$f^{\,
ho\mu}_{\,\mu\mu}(x)=egin{cases} c^{
ho\mu}_{\,\mu\mu} & ext{for} & x
eq 0,\ 0 & ext{for} & x=0. \end{cases}$$

Suppose $i = \lambda$; then

$$f_{\lambda j}^{\rho\mu}(u_{\rho}u_{\mu}^{-1}x)=u_{\lambda}u_{j}^{-1}f_{\lambda j}^{\rho\mu}(x).$$

Taking $u_{\rho} = 1$, $u_{\mu} = y^{-1}$, $u_{\lambda} = y$, x = 1, we get

$$egin{aligned} &f^{
ho\mu}_{\lambda j}(y)=c^{
ho\mu}_{\lambda j}yu^{-1}_{j}\ &=egin{pmatrix}c^{
ho\mu}_{\lambda
ho}y&(j=
ho),\ c^{
ho\mu}_{\lambda
ho}y^{2}&(j=\mu),\ c^{
ho\mu}_{\lambda \lambda}&(j=\lambda). \end{aligned}$$

Then $c_{\lambda\rho}^{\rho\mu}u_{\rho}u_{\mu}^{-1}x = u_{\lambda}u_{\rho}^{-1}c_{\lambda\rho}^{\rho\mu}x$. Since $u_{\rho}u_{\lambda}u_{\mu} = 1$, taking $u_{\rho} = t \neq 0$, 1, this reduces to

$$c_{\lambda\rho}^{\rho\mu}(1-t^3)=0.$$

Thus if $k \neq \mathbf{F}_4$, then $c_{\lambda\rho}^{\rho\mu} = 0$. Also, $c_{\lambda\mu}^{\rho\mu} \mu_{\rho}^2 u_{\mu}^{-2} x^2 = u_{\lambda} u_{\mu}^{-1} c_{\lambda\mu}^{\rho\mu} x^2$ and again, if $k \neq \mathbf{F}_4$, $c_{\lambda\mu}^{\rho\mu} = 0$. Combining this with the conditions already obtained for $f^{\rho\mu}$ to be a cocycle we conclude

$$\begin{split} f^{\rho\mu}_{\rho\mu}(x) &= c^{\rho\mu}_{\rho\lambda} x, \\ f^{\rho\mu}_{\rho\lambda}(x) &= c^{\rho\mu}_{\rho\lambda} x^2 \qquad (c^{\rho\mu}_{\rho\lambda} = 0 \quad \text{if} \quad k \neq \mathbf{F_4}), \\ f^{\rho\mu}_{\lambda\mu}(x) &= c^{\rho\mu}_{\lambda\mu} x^2 \qquad (c^{\rho\mu}_{\lambda\mu} = 0 \quad \text{if} \quad k \neq \mathbf{F_4}), \\ f^{\rho\mu}_{ij}(x) &= 0 \qquad \text{otherwise.} \end{split}$$

Let

$$g_1 = I + xe_{23}$$
, $g_2 = I + ye_{12}$, $g_3 = I + xye_{13}$,

so that

$$g_2g_1 = g_1g_2g_3$$
.

Therefore

$$f(g_2) + f(g_1)^{g_3} = f(g_1) + f(g_2)^{g_1} + f(g_3)^{g_1g_2}.$$

It is easily verified that this condition gives

$$\begin{split} f^{\rho\mu}_{\rho\mu}(x) &= c^{\rho\mu}_{\rho\mu}x, \\ f^{12}_{13}(x) &= c^{12}_{13}x^2 \qquad (c^{12}_{13} = 0 \quad \text{if} \quad k \neq \mathbf{F_4}), \\ f^{23}_{13}(x) &= c^{23}_{13}x^2 \qquad (c^{23}_{13} = 0 \quad \text{if} \quad k \neq \mathbf{F_4}), \\ f^{\rho\mu}_{14}(x) &= 0 \qquad \text{otherwise,} \end{split}$$

 $f_{ij}^{\rho\mu}(x) = 0$

along with

$$c_{13}^{13} = c_{12}^{12} + c_{23}^{23} \, .$$

Taking

$$A = egin{pmatrix} 0 & 0 & 0 \ 0 & c_{12}^{12} & 0 \ 0 & 0 & -c_{12}^{12} \end{pmatrix}$$

and setting $f(g) = A^g - A$, we get

$$f_{12}^{12}(x) = c_{12}^{12}x, \quad f_{13}^{13}(x) = -c_{12}^{12}x, \quad f_{23}^{23}(x) = -2c_{12}^{12}x$$

and $f_{ij}^{\rho\mu} = 0$ otherwise. Hence, up to cohomology, there is no loss of generality in assuming $c_{12}^{12} = 0$. If $p \neq 3$, let $a = \frac{1}{3} c_{13}^{13}$ and

$$A = \begin{pmatrix} -a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & 2a \end{pmatrix},$$

whereas if p = 3, let $a = c_{13}^{13}$ and

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a \end{pmatrix}.$$

Then if $f(g) = A^g - A$, we get

$$f_{13}^{13}(x) = c_{13}^{13}x, \quad f_{23}^{23}(x) = c_{23}^{23}x, \quad f_{ij}^{\rho\mu} = 0$$
 otherwise.

We now have

$$f:\begin{pmatrix} 1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 0 & 0 & \alpha x^2 + \beta y^2 + \gamma z \\ 0 & 0 & \gamma x \\ 0 & 0 & 0 \end{pmatrix},$$

with $\alpha = 0$, $\beta = 0$ unless $k = \mathbf{F}_4$, and $\gamma = 0$ unless p = 3, and we are in the case of g_0 .

PROPOSITION 2. For n = 3, and $k \neq \mathbf{F}_2$, if $p \neq 3$ and $k \neq \mathbf{F}_4$,

$$H_0^1(G,\mathfrak{g})=H_0^1(G,\mathfrak{g}_0)=0.$$

If p = 3,

$$H_0^{-1}(G,\mathfrak{g})=0, \qquad H_0^{-1}(G,\mathfrak{g}_0)\cong k.$$

If $k = \mathbf{F}_{4}$,

$$H_0^1(G,\mathfrak{g}) = H_0^1(G,\mathfrak{g}_0) \cong k^{(2)}.$$

Now assume $n \ge 4$. Taking $u_{\rho} = u_{\mu} = 1$, we have

$$(u_i-u_j)f_{ij}^{\rho\mu}(x)=0.$$

It follows easily that, except in the case n = 4 and $k = \mathbf{F}_3$, we must have

$$f_{ij}^{\rho\mu} = 0$$
 for $i \neq \rho, \mu$ or $j \neq \rho, \mu$.

We also easily deduce $f^{\rho\mu}_{\rho\mu}(x) = c^{\rho\mu}_{\rho\mu}x$, as well as $c^{\rho\mu}_{\mu\rho} = 0$ if $k \neq F_3$. The conditions

$$f^{\rho\mu}_{\mu\mu}(x+y) = f^{\rho\mu}_{\mu\mu}(x) + f^{\rho\mu}_{\mu\mu}(y) - c^{\rho\mu}_{\mu\rho}xy,$$

$$f^{\rho\mu}_{\rho\rho}(x+y) = f^{\rho\mu}_{\rho\rho}(x) + f^{\rho\mu}_{\rho\rho}(y) + c^{\rho\mu}_{\rho\rho}xy,$$

imply

$$c^{
ho\mu}_{\mu\mu}=-c^{
ho\mu}_{
ho
ho}=c^{
ho\mu}_{\mu
ho}$$
 .

The relation

$$f_{\rho\mu}^{\rho\mu}(x+y) = f_{\rho\mu}^{\rho\mu}(x) + f_{\rho\mu}^{\rho\mu}(y) + (c_{\mu\mu}^{\rho\mu} - c_{\rho\rho}^{\rho\mu}) xy + c_{\mu\rho}^{\rho\mu}(xy - x^2y - xy^2)$$

then gives

$$f^{\mu\rho}_{\mu\rho} = 0, \quad f^{\rho\mu}_{\rho\rho} = 0, \quad f^{\rho\mu}_{\mu\mu} = 0.$$

Since for $i \neq \rho$, μ we have

$$f_{ii}^{\rho\mu}(x+y) = f_{ii}^{\rho\mu}(x) + f_{ii}^{\rho\mu}(y)$$

we also have $f_{ii}^{\rho\mu} = 0$ in the case n = 4 and $k = \mathbf{F}_3$.

Finally then, we must have

$$f^{\rho\mu}(x) = c^{\rho\mu}_{\rho\mu} x e_{\rho\mu}$$
,

except in the case n = 4 and $k = F_3$, in which case we can conclude

 $f^{\rho\mu}(x) = x \{ c^{\rho\mu}_{\rho\mu} e_{\rho\mu} + c^{\rho\mu}_{\lambda\sigma} e_{\lambda\sigma} + c^{\rho\mu}_{\sigma\lambda} e_{\sigma\lambda} \}$

where $\{\rho, \mu, \sigma, \lambda\} = \{1, 2, 3, 4\}$.

Suppose $\rho < \lambda < \mu$ and let

$$g_1 = I + xe_{\lambda\mu}$$
, $g_2 = I + ye_{\rho\lambda}$, $g_3 = I + xye_{\rho\mu}$

so that

$$g_2g_1 = g_1g_2g_3$$
.

The cocycle condition

$$f(g_2) + f(g_1)^{g_2} = f(g_1) + f(g_2)^{g_1} + f(g_3)^{g_1 g_2}$$

then gives

$$c^{\rho\mu}_{\rho\mu} = c^{\rho\lambda}_{\rho\lambda} + c^{\lambda\mu}_{\lambda}$$

and, in the case n = 4 and $k = \mathbf{F}_3$,

 $f^{\rho\mu}_{\lambda\sigma}=0,$

except for f_{14}^{23} .

The first condition may be reformulated as

$$c^{
ho\mu}_{
ho\mu}=c^{1\mu}_{1\mu}-c^{1
ho}_{1
ho}$$

Define α and β as follows:

$$\alpha = \begin{cases} 0 & \text{if } p \mid n, \\ -\frac{1}{n} \sum_{i} c_{1i}^{1i} & \text{if } p \nmid n; \\ \beta = \begin{cases} -\sum_{i} c_{1i}^{1i} & \text{if } p \mid n, \\ 0 & \text{if } p \nmid n. \end{cases}$$

Define $A = (a_{ij})$ as follows:

$$a_{ij} = \delta_{ij} \{ \alpha + c_{1i}^{1i} + \delta_{in} \beta \}.$$

Then if $f(g) = A^g - A$, we have

$$f^{
hou}(x) = c^{
ho\mu}_{
ho\mu} x e_{
ho\mu} + \delta_{\mu n} \beta x c^{
hon}_{
hon} e_{
hon}$$

so that, up to cohomology, we may assume

$$f^{\,
ho\mu}(x)=\delta_{\mu n}\gamma x e_{
ho n}$$

with $\gamma = 0$ if $p \nmid n$, except the case n = 4, $k = \mathbf{F}_3$, $(\rho, \mu) = (2, 3)$, where we have

$$f^{23}(x) = \delta x e_{14} \,.$$

If $p \mid n$, let $A = \gamma e_{nn}$ and $f(g) = A^g - A$. Then $\tilde{f}^{\rho\mu}(x) = \delta_{\mu n} \gamma x e_{\rho n}$.

PROPOSITION 3. For n = 4 and $k \neq \mathbf{F}_2$, if $k \neq \mathbf{F}_3$,

$$H_0^{1}(G,\mathfrak{g})=0.$$

If $p \neq 2$, $H_0^{-1}(G, g_0) = 0$ and if p = 2, $H_0^{-1}(G, g_0) \cong k$. If $k = \mathbf{F}_3$, $H_0^{-1}(G, g) = H_0^{-1}(G, g_0) \cong k$.

PROPOSITION 4. For $n \ge 5$ and $k \ne \mathbf{F}_2$,

$$H_0^1(G,\mathfrak{g})=0$$

If $p \nmid n$, $H_0^1(G, \mathfrak{g}_0) = 0$ and if $p \mid n$,

 $H_0^1(G, \mathfrak{g}_0) \cong k.$

In the case $k = \mathbf{F}_2$ the torus *H* is trivial and so compatibility with the action of *H* gives no conditions on the cocycles. However, every function $f: \mathbf{F}_2 \rightarrow \mathbf{F}_2$ satisfying f(0) = 0 is simply of the form f(x) = cx (c = 0 or 1), so that (in the earlier notation)

$$f^{
ho\mu}_{ij}(x) = c^{
ho\mu}_{ij}x$$
 $f^{
ho\mu}(x) = xc^{
ho\mu}$

or

for a constant matrix $c^{\rho\mu}$.

Thus $f^{\rho\mu}(x + y) = f^{\rho\mu}(x) + f^{\rho\mu}(y)$ and the cocycle condition then implies $c^{\rho\mu}$ must commute with $e_{\rho\mu}$. Hence

$$c^{
ho\mu}_{i
ho}=\delta_{i
ho}c^{
ho\mu}_{\mu\mu}\,,\qquad c^{
ho\mu}_{\mu j}=\delta_{j\mu}c^{
ho\mu}_{
ho
ho}\,.$$

Now let $\lambda < \mu, \rho < \sigma, \sigma \neq \lambda, \rho \neq \mu$ and

$$g_1=I+e_{\lambda\mu}\,,\qquad g_2=I+e_{
ho\sigma}\,.$$

Then $g_1g_2 = g_2g_1$ so that

$$f(g_1) + f(g_2)^{g_1} = f(g_2) + f(g_1)^{g_2}$$

or

$$f(g_1)^{g_2} + f(g_1) = f(g_2)^{g_1} + f(g_2),$$

which may be written

$$[e_{\rho\sigma}, c^{\lambda\mu}] + c^{\lambda\mu}_{\sigma\rho} e_{\rho\sigma} = [e_{\lambda\mu}, c^{\rho\sigma}] + c^{\rho\sigma}_{\mu\lambda} e_{\lambda\mu}.$$

Hence

$$\sum_{j
eq \sigma} c^{\lambda\mu}_{\sigma j} e_{
ho j} + \sum_{i
eq
ho} c^{\lambda\mu}_{i
ho \rho} e_{i \sigma} + (c^{\lambda\mu}_{\sigma \sigma} + c^{\lambda\mu}_{
ho
ho} + c^{\lambda\mu}_{\sigma
ho}) e_{
ho \sigma}$$

= $\sum_{j
eq \mu} c^{
ho \sigma}_{\mu j} c_{\lambda j} + \sum_{i
eq \lambda} c^{
ho \sigma}_{i \lambda} e_{i \mu} + (c^{
ho \sigma}_{\mu \mu} + c^{
ho \sigma}_{\lambda \lambda} + c^{
ho \sigma}_{\mu \lambda}) e_{\lambda \mu}.$

If $\sigma = \mu$ this reduces to

$$\sum_{\mu \neq
ho} c^{\lambda\mu}_{i
ho} e_{i\mu} + (c^{\lambda\mu}_{\mu\mu} + c^{\lambda\mu}_{
ho
ho}) e_{
ho\mu} = \sum_{i
eq \lambda} c^{
ho\mu}_{i\lambda} e_{i\mu} + (c^{
ho\mu}_{\mu\mu} + c^{
ho\mu}_{\lambda\lambda}) e_{\lambda\mu} \,.$$

If $\rho = \lambda$ this gives no information; assume then $\rho \neq \lambda$. Since this is symmetric in ρ and λ , we might as well assume $\rho < \lambda < \mu$. Then

$$egin{aligned} &c^{
ho\mu}_{
ho\lambda}=c^{\lambda\mu}_{\mu\mu}+c^{\lambda\mu}_{
ho
ho},\ &c^{\lambda\mu}_{\lambda
ho}=c^{
ho\mu}_{\mu\mu}+c^{
ho\mu}_{\lambda\lambda}\,,\ &c^{\lambda\mu}_{i
ho}=c^{
ho\mu}_{i\lambda}\qquad ext{for}\qquad i
eq\lambda,
ho. \end{aligned}$$

Similarly, considering the case $\lambda = \rho$, $\sigma < \mu$ (and replacing σ by λ), we have for $\rho < \lambda < \mu$

Finally, in the case $\sigma \neq \mu$ and $\rho \neq \lambda$ we obtain

$$egin{aligned} &c^{\lambda\mu}_{\sigma j}=c^{
ho\sigma}_{\mu j}=0 & ext{for} \quad j
eq\sigma,\mu,\ &c^{\lambda\mu}_{i
ho}=c^{
ho\sigma}_{i\lambda}=0 & ext{for} \quad i
eq
ho,\lambda,\ &c^{\lambda\mu}_{\sigma\mu}=c^{
ho\sigma}_{
ho\lambda}, \quad &c^{\lambda\mu}_{\lambda
ho}=c^{
ho\sigma}_{\mu\sigma}, \quad &c^{\lambda\mu}_{
ho\rho}=c^{
ho\sigma}_{\sigma\sigma}, \quad &c^{
ho\sigma}_{\lambda\lambda}=c^{
ho\sigma}_{\lambda\mu}. \end{aligned}$$

Now suppose $\rho < \lambda < \mu$ and take

$$g_1 = I + e_{\lambda\mu}, \quad g_2 = I + e_{\rho\lambda}, \quad g_3 = I + e_{\rho\mu}.$$

Then $g_2g_1 = g_1g_2g_3$ so that

$$f(g_2) + f(g_1)^{g_2} = f(g_1) + f(g_2)^{g_1} + f(g_3)^{g_1g_2}$$

or

$$f(g_3)^{g_1g_2} = f(g_1) + f(g_1)^{g_1} + f(g_2) + f(g_2)^{g_2}.$$

We have

$$f(g_1) + f(g_1)^{g_2} = [e_{\rho\lambda}, c^{\lambda\mu}] + c^{\lambda\mu}_{\lambda\rho} e_{\rho\lambda}$$

$$= \sum_{i \neq \rho} c^{\lambda\mu}_{i\rho} e_{i\lambda} + \sum_{j \neq \lambda} c^{\lambda\mu}_{\lambda j} e_{\rho j} + (c^{\lambda\mu}_{\rho\rho} + c^{\lambda\mu}_{\lambda\lambda} + c^{\lambda\mu}_{\lambda\rho}) e_{\rho\lambda}$$

$$= c^{\lambda\mu}_{\lambda\rho} e_{\lambda\lambda} + \sum_{j \neq \lambda} c^{\lambda\mu}_{\lambda j} e_{\rho j} + (c^{\lambda\mu}_{\rho\rho} + c^{\lambda\mu}_{\lambda\lambda} + c^{\lambda\mu}_{\lambda\rho}) e_{\rho\lambda}$$

and

$$\begin{split} f(g_2) + f(g_2)^{g_1} &= [e_{\lambda\mu} , c^{o\lambda}] + c^{\rho\lambda}_{\mu\lambda} e_{\lambda\mu} \\ &= \sum_{i \neq \lambda} c^{o\lambda}_{i\lambda} e_{i\mu} + \sum_{j \neq \mu} c^{\rho\lambda}_{\mu j} e_{\lambda j} + (c^{\rho\lambda}_{\lambda\lambda} + c^{\rho\lambda}_{\mu\mu} + c^{\lambda}_{\mu\lambda}) e_{\lambda\mu} \\ &= \sum_{i \neq \lambda} c^{\rho\lambda}_{i\lambda} e_{i\mu} + c^{\rho\lambda}_{\mu\lambda} e_{\lambda\lambda} + (c^{\rho\lambda}_{\lambda\lambda} + c^{\rho\lambda}_{\mu\mu} + c^{\rho\lambda}_{\mu\lambda}) e_{\lambda\mu} \,. \end{split}$$

We have

$$f(g_3)^{g_2} = c^{\rho\mu} + [e_{\rho\lambda}, c^{\rho\mu}] + c^{\rho\mu}_{\lambda\rho} e_{\rho\lambda}$$
$$= c^{\rho\mu} + \sum c^{\rho\mu}_{i\rho} e_{i\lambda} + \sum c^{\rho\mu}_{\lambda j} e_{\rho j}$$
$$= c^{\rho\mu} + (c^{\rho\mu}_{\rho\rho} + c^{\rho\mu}_{\lambda\lambda}) e_{\rho\lambda} + c^{\rho\mu}_{\lambda\mu} e_{\rho\mu}.$$

Now

$$\begin{split} (c^{\rho\mu})^{g_1} &= c^{\rho\mu} + [e_{\lambda\mu} , c^{\rho\mu}] + c^{\rho\mu}_{\mu\lambda} e_{\lambda\mu} = c^{\rho\mu} + \sum c^{\rho\mu}_{i\lambda} e_{i\mu} + \sum c^{\mu\mu}_{\muj} e_{\lambda j} \\ &= c^{\rho\mu} + c^{\rho\mu}_{\mu\lambda} e_{\rho\mu} + (c^{\rho\mu}_{\lambda\lambda} + c^{\rho\mu}_{\mu\mu}) e_{\lambda\mu} , \\ (e_{\rho\lambda})^{g_1} &= e_{\rho\lambda} + e_{\rho\mu} , \qquad (e_{\rho\mu})^{g_1} = e_{\rho\mu} \end{split}$$

and so

$$\begin{split} f(g_3)^{g_1g_2} &= c^{\rho\mu} + (c^{\rho\mu}_{\rho\rho} + c^{\rho\mu}_{\lambda\lambda}) e_{_{\lambda\lambda}} + (c^{\rho\mu}_{\lambda\lambda} + c^{\rho\mu}_{\mu\mu}) e_{_{\lambda\mu}} \\ &+ (c^{\rho\mu}_{_{\rho\lambda}} + c^{\rho\mu}_{_{\rho\rho}} + c^{\rho\mu}_{_{\lambda\lambda}} + c^{\rho\mu}_{_{\lambda\mu}}) e_{_{\rho\mu}} \,. \end{split}$$

Therefore,

$$\begin{split} \sum_{i \neq \lambda, \rho} c^{\rho \lambda}_{i\lambda} e_{i\mu} + \sum_{j \neq \lambda, \mu} c^{\lambda \mu}_{\lambda j} e_{\rho j} + (c^{\rho \lambda}_{\mu \lambda} + c^{\lambda \mu}_{\lambda \rho}) e_{\lambda \lambda} + (c^{\lambda \mu}_{\rho \rho} + c^{\lambda \mu}_{\lambda \lambda} + c^{\lambda \mu}_{\lambda \rho}) e_{\rho \lambda} \\ &+ (c^{\rho \lambda}_{\rho \lambda} + c^{\lambda \mu}_{\lambda \mu}) e_{\rho \mu} + (c^{\rho \lambda}_{\lambda \lambda} + c^{\rho \lambda}_{\mu \mu} + c^{\rho \lambda}_{\mu \mu}) e_{\lambda \mu} \\ &= c^{\rho \mu} + (c^{\rho \mu}_{\rho \rho} + c^{\rho \mu}_{\lambda \lambda}) e_{\rho \lambda} + (c^{\rho \mu}_{\lambda \lambda} + c^{\rho \mu}_{\mu \mu}) e_{\lambda \mu} + (c^{\rho \mu}_{\rho \lambda} + c^{\rho \mu}_{\rho \rho} + c^{\rho \mu}_{\lambda \lambda} + c^{\rho \mu}_{\lambda \mu}) e_{\rho \mu} \\ &= \sum_{j \neq \lambda, \mu} c^{\rho \mu}_{\rho j} e_{\rho j} + \sum_{i \neq \rho, \lambda} c^{\rho \mu}_{i \mu} e_{i \mu} + \sum_{i \neq \rho, \mu, \lambda} c^{\rho \mu}_{i i} e_{i i} + c^{\rho \mu}_{\lambda \lambda} e_{\lambda \lambda} \\ &+ (c^{\rho \mu}_{\rho \rho} + c^{\rho \mu}_{\lambda \lambda} + c^{\rho \mu}_{\rho \lambda}) e_{\rho \lambda} + (c^{\rho \mu}_{\lambda \mu} + c^{\rho \mu}_{\rho \mu}) e_{\lambda \mu} \\ &+ (c^{\rho \mu}_{\rho \rho} + c^{\rho \mu}_{\rho \rho} + c^{\rho \mu}_{\lambda \lambda} + c^{\rho \mu}_{\lambda \mu} + c^{\rho \mu}_{\rho \mu}) e_{\rho \mu} + \sum_{\substack{i \neq \rho, \mu \\ j \neq \rho, \mu \\ i \neq j}} c^{\rho \mu}_{i \neq j} e_{i j}}. \end{split}$$

Hence we must have

$$egin{aligned} &c^{
ho\lambda}_{i\lambda}=c^{
ho\mu}_{i\mu} & ext{for} & ext{i}
eq
ho,\lambda, \ &c^{
ho\mu}_{\lambda\beta}=c^{
ho\mu}_{
ho\beta} & ext{for} & ext{j}
eq
ho,\lambda,\mu, \ &c^{
ho\mu}_{ii}=0 & ext{for} & ext{i}
eq
ho,\lambda,\mu, \ &c^{
ho\mu}_{\lambda\lambda}=c^{
ho\lambda}_{\mu\lambda}+c^{
ho\mu}_{\lambda
ho}, \ &c^{
ho\mu}_{\lambda\lambda}+c^{
ho\mu}_{\lambda\mu}=c^{
ho\mu}_{
ho\rho}+c^{
ho\mu}_{
ho\lambda}+c^{
ho\mu}_{
ho\mu}, \ &c^{
ho\mu}_{\lambda\lambda}+c^{
ho\mu}_{\mu\lambda}=c^{
ho\mu}_{
ho\mu}+c^{
ho\mu}_{
ho\mu}+c^{
ho\mu}_{
ho\mu}, \ &c^{
ho\mu}_{\lambda\lambda}+c^{
ho\mu}_{\lambda\mu}=c^{
ho\mu}_{
ho\mu}+c^{
ho\mu}_{
ho\mu}+c^{
ho\mu}_{
ho\mu}, \ &c^{
ho\mu}_{\rho\lambda}+c^{
ho\mu}_{\lambda\mu}=c^{
ho\mu}_{
ho\mu}+c^{
ho\mu}_{
ho\mu}+c^{
ho\mu}_{
ho\mu}+c^{
ho\mu}_{\lambda\mu}, \ &c^{
ho\mu}_{ij}=0 & ext{for} & ext{i}
eq
ho,\mu, & ext{j}
eq
ho,\mu, & ext{i}
eq
ho. \end{aligned}$$

From the first two equations we obtain

$$c^{\rho\lambda}_{\mu\lambda} = c^{\rho\mu}_{\mu\mu}, \qquad c^{\lambda\mu}_{\lambda\rho} = c^{\rho\mu}_{\rho\rho},$$

so that $c_{\lambda\lambda}^{\rho\mu} = c_{\mu\lambda}^{\rho\lambda} + c_{\lambda\rho}^{\lambda\mu} = c_{\mu\mu}^{\rho\mu} + c_{\rho\rho}^{\rho\mu} = 0$, and we have $c_{ii}^{\rho\mu} = 0$ for $i \neq \rho$, μ . The other relations reduce to

$$c^{\lambda\mu}_{\lambda\lambda} + c^{\lambda\mu}_{
ho
ho} = c^{
ho\mu}_{
ho\lambda}, \qquad c^{
ho\lambda}_{\lambda\lambda} + c^{
ho\lambda}_{\mu\mu} = c^{
ho\mu}_{\lambda\mu}, \ c^{
ho\lambda}_{
ho\lambda} + c^{\lambda\mu}_{\mu\lambda} = c^{
ho\mu}_{
ho\mu} + c^{
ho\mu}_{
ho\lambda} + c^{
ho\mu}_{
ho
ho} + c^{
ho\mu}_{
ho\mu}.$$

We may summarize all the information as follows:

For $\rho < \mu$

$$egin{aligned} c^{
ho\mu}_{i
ho} &= 0 & (i
eq
ho), \ c^{
ho\mu}_{\mu j} &= 0 & (j
eq \mu), \ c^{
ho\mu}_{
ho
ho} &= c^{
ho\mu}_{\mu\mu}. \end{aligned}$$

For $\rho < \lambda < \mu$,

$$egin{aligned} c_{i
ho}^{\lambda\mu} &= 0 & (i
eq
ho, \lambda), \ c_{\mu j}^{
ho \mu} &= 0 & (j
eq \lambda, \mu), \ c_{i j}^{
ho \mu} &= 0 & (i
eq
ho \ and \ j
eq \mu), \ c_{i \mu}^{
ho \mu} &= c_{i \lambda}^{
ho \lambda} & (i
eq
ho, \lambda), \ c_{\rho \lambda}^{
ho \mu} &= c_{\lambda \lambda}^{
ho \mu} & (j
eq \lambda, \mu), \ c_{\rho \lambda}^{
ho \mu} &= c_{\lambda \lambda}^{
ho \mu} + c_{\rho \mu}^{
ho \mu}, \ c_{\rho \mu}^{
ho \mu} &= c_{\lambda \lambda}^{
ho \mu} + c_{\rho \mu}^{
ho \mu}, \ c_{\rho \mu}^{
ho \mu} &= c_{\lambda \lambda}^{
ho \mu} + c_{\rho \mu}^{
ho \mu} + c_{\rho \rho}^{
ho \lambda} + c_{\rho \mu}^{
ho \mu}. \end{aligned}$$

For $\rho < \mu, \lambda < \sigma, \{\rho, \mu, \lambda, \sigma\}$ distinct,

$$c^{
ho\mu}_{\sigma\mu}=c^{\lambda\sigma}_{\lambda
ho}$$
 .

Finally,

$$\begin{split} c_{ij}^{\rho,\rho+1} &= \delta_{1i}\delta_{nj}c_{1n}^{\rho,\rho+1} \qquad (i \neq \rho, j \neq \rho + 1, i \neq j), \\ c_{ii}^{\rho,\rho+1} &= c_{jj}^{\rho,\rho+1} \qquad (i \neq \rho, \rho + 1, j \neq \rho, \rho + 1). \end{split}$$

Define

$$\begin{aligned} \alpha_{\rho} &= \begin{cases} c_{11}^{\rho,\rho+1} & \text{for} & \rho > 1, \\ c_{1n}^{12} & \text{for} & \rho = 1; \end{cases} \\ \beta_{\rho} &= \begin{cases} c_{1n}^{\rho,\rho+1} & \text{for} & \rho < n, \\ 0 & \text{for} & \rho = n; \end{cases} \\ \gamma_{ij} &= \begin{cases} c_{1j}^{1i} & \text{for} & i > 1, \\ 0 & \text{for} & i = 1; \end{cases} \\ \epsilon_{ij} &= \begin{cases} c_{in}^{jn} & \text{for} & j < n, \\ 0 & \text{for} & j = n. \end{cases} \end{cases}$$

Then we may deduce

$$\epsilon_{i
ho} = egin{cases} \gamma_{i
ho} + (\delta_{i2} + \delta_{
ho,n-1}) lpha_o & ext{for} & i >
ho, \ \gamma_{i
ho} & ext{for} & 1 < i <
ho < n. \end{cases}$$

Also,

$$c_{ij}^{\rho\mu} = \begin{cases} \delta_{\mu,\rho+1}(\delta_{i1}\delta_{jn}\beta_{\rho} + \delta_{ij}\alpha_{\rho}) & \text{for} \quad i \neq \rho, \ j \neq \mu, \\ \gamma_{\mu j} + \delta_{j\rho}\delta_{\mu,\rho+1}(1 + \delta_{\rho1}) \alpha_{\rho} & \text{for} \quad i \neq \rho, \ j = \mu, \\ \epsilon_{i\rho} + \delta_{i\mu}\delta_{\mu,\rho+1}(1 + \delta_{\mu n}) \alpha_{\rho} & \text{for} \quad i \neq \rho, \ j = \mu, \\ \gamma_{\mu\rho} + \gamma_{\mu\mu} + \gamma_{\mu1} + \gamma_{\rho\rho} + \gamma_{\rho1} + \delta_{\rho2}\alpha_{1} & \text{for} \quad i = \rho, \ j = \mu. \end{cases}$$

It now follows that

$$egin{aligned} c^{
ho\mu} &= \sum\limits_{i
eq
ho} \left(\gamma_{i
ho} + \delta_{i1} \epsilon_{1
ho}
ight) e_{i\mu} + \sum\limits_{j
eq \mu} \gamma_{\mu j} e_{
ho j} \ &+ \left(\gamma_{\mu
ho} + \gamma_{\mu \mu} + \gamma_{\mu 1} + \gamma_{
ho
ho} + \gamma_{
ho 1}
ight) e_{
ho \mu} \ &+ \delta_{\mu,
ho + 1} \{ lpha_{
ho} I + (1 + \delta_{
ho 1}) \left(1 + \delta_{\mu n}
ight) eta_{
ho} e_{1n} \} \ &+ \delta_{\mu 2} lpha_{1} e_{11} + \left(\delta_{
ho 1} + \delta_{
ho 2}
ight) lpha_{1} e_{2\mu} \,. \end{aligned}$$

Define A as follows:

$$a_{ij} = egin{cases} \gamma_{ij} + \delta_{i1}\epsilon_{1j} + \delta_{i2}\delta_{j1}lpha_1 & ext{for} & i
eq j, \ \gamma_{ii} + \gamma_{i1} + \delta_{i2}lpha_1 + a + \delta_{i1b} & ext{for} & i = j. \end{cases}$$

Then $\operatorname{Tr}(A) = \Sigma(\gamma_{ii} + \gamma_{i1}) + \alpha_1 + na + b$ so that, if *n* is odd, we may select b = 0 and *a* such that $\operatorname{Tr}(A) = 0$. However, if *n* is even we may only force one of *b* and $\operatorname{Tr}(A)$ to be 0.

We now have

$$c^{\rho\mu} = A^{I+e_{\rho\mu}} + A + \delta_{\rho I} b e_{1\mu} + \delta_{\mu,\rho+I} \{ \alpha_{\rho} I + (1+\delta_{\rho I}) (1+\delta_{\mu n}) \beta_{\rho} e_{1n} \}.$$

Hence, up to cohomology, we may assume with no loss of generality,

$$f: \begin{pmatrix} 1 & x_{12} & x_{13} & \cdots & x_{1n} \\ 0 & 1 & x_{23} & \cdots & x_{2n} \\ 0 & 0 & 1 & \cdots & x_{3n} \\ \vdots & \cdots & \cdots & \vdots \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \left(\sum_{\rho=1}^{n-1} \alpha_{\rho} x_{\rho,\rho+1}\right) I + \left(\sum_{\rho=2}^{n-2} \beta_{\rho} x_{\sigma,\rho+1}\right) e_{in} \\ + b \sum_{j=2} \sum_{k=1}^{n-1} \left(\prod_{i < k} x_{i,i+1}\right) x_{kj} e_{1j},$$

with b = 0 if *n* is odd or if we are in the case of cohomology into g. Moreover, it is easy to verify that for distinct choices of $\alpha_1, ..., \alpha_{n-1}, \beta_2, ..., \beta_{n-2}, b$, we get non-cohomologous cocycles. If we insist f(x) be of trace 0, if *n* is odd we simply have

$$f(x) = \left(\sum_{\rho=2}^{n-2} \beta_{\rho} x_{\rho, \rho+1}\right) e_{1n} \, .$$

PROPOSITION 5. For $k = \mathbf{F}_2$,

$$H_0^1(G,\mathfrak{g})\cong k^{(2n-4)}.$$

If $2 \nmid n$,

$$H_0^1(G, \mathfrak{g}_0) \cong k^{(n-3)}$$

and if $2 \mid n$

$$H_0^{1}(G,\mathfrak{g}_0)\cong k^{(2n-3)}.$$

We summarize Propositions 1-5.

THEOREM. Assuming k perfect for the case n = 2, p = 2, we have

$$H_0^1(G,\mathfrak{g})=0,$$

and if p + n

$$H_0^1(G,\mathfrak{g}_0)=0,$$

whereas if $p \mid n$

 $H_0^1(G,\mathfrak{g}_0)\cong k$

with the following table of exceptions.

n	k	$d = \dim_k H_0^1(G, \mathfrak{g})$	$d_0 = \dim_k H_0^1(G, \mathfrak{g}_0)$
2	F_3	1	0
2	\mathbf{F}_{5}	1	1
3	Fa	2	2
4	F ₃	1	1
odd	\mathbf{F}_2	2n - 4	n-3
even	\mathbf{F}_2	2n - 4	2n-3

ACKNOWLEDGMENT

The author expresses his appreciation to Dr. H. Bass for many stimulating conversations.