Cohomology of Algebraic Groups

David IIertzig ${ }^{\text {² }}$
Mathematics Department, Purdue University, Lafayette, Indiana

Communicated by I. N. Herstein
Received August 14, 1966

The purpose of this paper is to expound a technique for the computation of certain cohomology of algebraic groups. A natural approach is to restrict attention to a Borel subgroup B. Since B splits as a semidirect product of B_{u} (unipotent part) and a maximal torus T, a standard exact-sequence argument leads to the heart of the problem, namely cohomology of B_{u} with action of the torus T. One now notes that B_{u} is a product of "one-parameter subgroups" and the procedure is to consider the restriction of a cocycle to these elementary subgroups and derive conditions on it so that it may extend to the whole group. Using the cohomology relation it is possible to find a neat normal form for a cocycle. In the case of the field with two elements a maximal torus is trivial and hence the trivial action of T does not give helpful restrictions on a cocycle; it is in this case that the computation is most tedious.

The special case worked out in detail in this paper is in fact quite general and gives a sufficiently complete exposition of the technique to enable one to make the computations in a particular special case.

Such explicit computation appears necessary in the cohomological approach to the "congruence subgroup problem" and the desirability of a technique was pointed out to the author by H. Bass.

Let G be a subgroup of $G L(n, k)$, the group of $n \times n$ nonsingular matrices with coefficients in the field k of characteristic p. Note G operates by inner automorphism on the space $\mathfrak{M}_{n}(k)$ of all $n \times n$ matrices over k; let \mathfrak{g} be a subspace of $\mathbb{M}_{n}(k)$ stable under this operation. Recall that a 1-cocycle from G to g is a map

$$
f: G \rightarrow g
$$

satisfying

$$
f\left(g g^{\prime}\right)=f(g)+f\left(g^{\prime}\right)^{g}
$$

[^0]for all $g, g^{\prime} \in G$. The set of all 1-cocycles from G to g is a commutative group $Z^{1}(G, \mathfrak{g})$. A 1 -cocycle $f \in Z^{1}(G, \mathfrak{g})$ is a 1 -coboundary if there exists $A \in \mathfrak{g}$ such that
$$
f(g)=A^{g}-A
$$
for all $g \in G$. The set of all 1-coboundaries is a subgroup $B^{1}(G, \mathfrak{g})<Z^{1}(G, \mathfrak{g})$. The quotient group $H^{1}(G, \mathfrak{g})$ is the 1-cohomology group of G into \mathfrak{g}.

If H is a subgroup of $G L(n, k)$ which normalizes G, and also under which g is stable, we can consider the action of H in the cohomology. More precisely, we denote $Z_{0}{ }^{1}(G, \mathfrak{g})$ the subgroup of $Z^{1}(G, \mathfrak{g})$ consisting of the cocycles f satisfying

$$
f\left(g^{h}\right)=f(g)^{h}
$$

for all $h \in H, g \in G$. We denote $H_{0}{ }^{1}(G, \mathfrak{g})$ the image of $Z_{0}{ }^{1}(G, \mathfrak{g})$ in $H^{1}(G, \mathfrak{g})$.
In this paper we restrict our considerations to the following situations:

$$
\begin{aligned}
G= & \text { triangular unipotent matrices } \\
H= & \text { diagonal unimodular matrices } \\
\mathfrak{g}= & \mathfrak{M}_{n}(k) \\
\mathfrak{g}_{0}= & \text { matrices of trace } 0 \\
G_{\rho \mu}= & \text { subgroup of } G \text { consisting of the elementary } \\
& \text { matrices }\left\{I+x e_{\rho \mu}\right\}_{x \in k}(\rho<\mu), \text { where, as usual, } \\
& e_{\rho \mu} \text { is the matrix whose }(\rho, \mu) \text { th coordinate is } 1 \text { and } \\
& \text { all others are } 0 .
\end{aligned}
$$

If f is a 1-cocycle from G to g , its restriction $f^{\rho \mu}$ to $G_{\rho \mu}$ is a 1-cocycle from $G_{\rho \mu}$ to \mathfrak{g}. The isomorphism $x \rightarrow I+x e_{\rho \mu}$ of k with $G_{\rho \mu}$ will be used to identify $G_{\rho \mu}$ with k. Then if $f^{\rho \mu}(x)$ is the matrix $\left(f_{i j}^{\rho \mu}(x)\right)$, we have n^{2} functions

$$
f_{i j}^{p \mu}: k \rightarrow \mathrm{~g}
$$

satisfying

$$
f_{i j}^{p \mu}(x+y)=f_{i j}^{\rho \mu}(x)+f_{i j}^{p \mu}(y)+\delta_{i \rho} x f_{\mu j}^{\rho \mu}(y)-\delta_{j_{\mu}} x f_{i_{\rho}}^{\rho \mu}(y)-\delta_{i_{\rho}} \delta_{j_{u}} x^{2} f_{\mu}^{\rho \mu}(y)
$$

Since $f_{i j}^{p \mu}(x+y)=f_{i j}^{p \mu}(y+x)$, we must have

$$
\begin{aligned}
& \delta_{i \rho} x f_{\mu j}^{\rho \mu}(y)-\delta_{j \mu} x f_{i \rho}^{\rho \mu}(y)-\delta_{i_{\rho}} \delta_{j u} x^{2} f_{\mu \rho}^{\rho \mu}(y) \\
= & \delta_{i \rho} y f_{\mu j}^{\rho \mu}(x)-\delta_{j \mu} y f_{i \rho}^{\rho \mu}(x)-\delta_{i_{\rho}} \delta_{j \mu} y^{2} f_{\mu \rho}^{\rho \mu}(x)
\end{aligned}
$$

Therefore for $i=\rho, j \neq \mu$ we get

$$
x f_{\rho j}^{\rho \mu}(y)=y f_{\mu j}^{\rho \mu}(x)
$$

and for $i \neq \rho, j=\mu$ we get

$$
x f_{i \rho}^{\rho \mu}(y)=y f_{i \rho}^{\rho \mu}(x) .
$$

Denoting $c_{i j}^{\rho \mu}=f_{i j}^{\rho \mu}(1)$, the above imply

$$
\begin{array}{ll}
f_{i \rho}^{\rho \mu}(x)=c_{i \rho}^{\rho \mu} x & (i \neq p), \\
f_{\mu j}^{\rho \mu}(x)=c_{\mu j}^{\rho \mu} x & (j \neq \mu) .
\end{array}
$$

Then taking $i=\rho, j=\mu$ we find

$$
f_{\mu \mu}^{\rho \mu}(x)-f_{\rho \rho}^{\rho \mu}(x)=\left(c_{\mu, \mu}^{\rho \mu}-c_{\rho \rho}^{\rho \mu}\right) x+c_{\mu \rho}^{\rho \mu}\left(x-x^{2}\right) .
$$

It then follows that

$$
\begin{array}{lr}
f_{i j}^{\rho \mu}(x+y)=f_{i j}^{\rho \mu}(x)+f_{i j}^{\rho \mu}(y) & (i \neq \rho, j \neq \mu), \\
f_{i \mu}^{\rho \mu}(x+y)=f_{i \mu}^{\rho \mu}(x)+f_{i \mu}^{\rho \mu}(y)-c_{i \rho}^{\rho \mu} x y & (i \neq \rho), \\
f_{\rho j}^{\rho \mu}(x+y)=f_{\rho j}^{\rho \mu}(x)+f_{\rho j}^{\rho \mu}(y)+c_{\mu j}^{\rho \mu} x y & (j \neq \mu), \\
f_{\rho \mu}^{\rho \mu}(x+y)=f_{\rho \mu}^{\rho \mu}(x)+f_{\rho \mu}^{\rho \mu}(y)+\left(c_{\mu \mu}-c_{\rho \rho}^{\rho \mu}\right) x y+c_{\mu \rho}^{\mu}\left(x y-x^{2} y-x y^{2}\right),
\end{array}
$$

with

$$
\begin{array}{ll}
f_{i \rho}^{p \mu}(x)=c_{i \rho^{\prime}}^{\rho \mu} x & (i \neq \rho), \\
f_{\mu j}^{p \mu}(x)=c_{\mu j}^{\rho \mu}(x) & (j \neq \mu),
\end{array}
$$

and

$$
f_{\mu \mu}^{\rho \mu}(x)-f_{\rho \rho}^{\rho \mu}(x)=\left(c_{\mu \mu}^{\rho \mu}-c_{\rho \rho}^{\rho \mu}\right) x+c_{\mu \rho}^{\rho \mu}\left(x-x^{2}\right)
$$

For the case $n=2$ we have $G=G_{12}$ and necessarily $\rho=1, \mu=2$; we simply denote $f_{i j}^{\rho \mu}=f_{i j}$ and $c_{i j}^{\rho \mu}=c_{i j}(1 \leqslant i, j \leqslant 2)$. The relations reduce to

$$
\begin{aligned}
f_{11}(x+y) & =f_{11}(x)+f_{11}(y)+c_{21} x y \\
f_{12}(x+y) & =f_{12}(x)+f_{12}(y)+\left(c_{22}-c_{11}+c_{21}\right) x y-c_{21}\left(x y^{2}+x^{2} y\right) \\
f_{21}(x) & =c_{21} x \\
f_{22}(x) & =f_{11}(x)+\left(c_{22}-c_{11}+c_{21}\right) x-c_{21} x^{2} .
\end{aligned}
$$

If $p=2$, setting $x=y$ gives $c_{21}=c_{22}-c_{11}+c_{21}=0$. If $p=3$, setting $x= \pm y$ leads to $c_{\mathbf{2 1}}=0$.

Define

$$
\begin{aligned}
& \alpha=\left\{\begin{array}{lll}
\frac{1}{2}\left(c_{22} \cdots c_{11}+c_{21}\right) & \text { if } & p \neq 2, \\
0 & \text { if } & p=2 ;
\end{array}\right. \\
& \beta=\left\{\begin{array}{lll}
\frac{1}{6} c_{21} & \text { if } & p \neq 2,3, \\
0 & \text { if } & p=2,3 .
\end{array}\right.
\end{aligned}
$$

Then we may write

$$
f(x)=\left(\begin{array}{ll}
\rho_{0}(x) & \rho_{1}(x) \\
0 & \rho_{0}(x)
\end{array}\right)+\alpha\left(\begin{array}{rr}
-x & x^{2} \\
0 & x
\end{array}\right)+\beta\left(\begin{array}{rr}
3 x^{2} & -2 x^{3} \\
12 x & -3 x^{2}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \rho_{0}(x+y)=\rho_{0}(x)+\rho_{0}(y) \\
& \rho_{1}(x+y)=\rho_{1}(x)+\rho_{1}(y) .
\end{aligned}
$$

If

$$
h=\left(\begin{array}{ll}
u & 0 \\
0 & u^{-1}
\end{array}\right)
$$

and

$$
g=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

the condition $f\left(g^{h}\right)=f(g)^{h}$ becomes

$$
f\left(u^{2} x\right)=\left(\begin{array}{lr}
f_{11}(x) & u^{2} f_{12}(x) \\
u^{-2} f_{21}(x) & f_{22}(x)
\end{array}\right)
$$

or

$$
\begin{aligned}
\rho_{0}\left(u^{2} x\right)-\alpha u^{2} x+3 \beta u^{4} x^{2} & =\rho_{0}(x)-\alpha x+3 \beta x^{2}, \\
\rho_{1}\left(u^{2} x\right)+\alpha u^{4} x^{2}-2 \beta u^{6} x^{3} & =u^{2} \rho_{1}(x)+\alpha u^{2} x^{2}-2 \beta u^{2} x^{3}, \\
12 \beta u^{2} x & =12 \beta u^{-2} x, \\
\rho_{0}\left(u^{2} x\right)+\alpha u^{2} x-3 \beta u^{4} x^{2} & =\rho_{0}(x)+\alpha x-3 \beta x^{2} .
\end{aligned}
$$

From the third equation we obtain

$$
\beta=0 \quad \text { unless } \quad k=\mathbf{F}_{5} .
$$

From the first and fourth equations we obtain

$$
\alpha=0 \quad \text { unless } \quad k=\mathbf{F}_{3} .
$$

However, if $k=F_{s}$ we may take

$$
A=\left(\begin{array}{ll}
0 & 0 \\
\infty & 0
\end{array}\right)
$$

so that

$$
A^{x}-A=-\alpha\left(\begin{array}{ll}
-x & x^{2} \\
0 & x
\end{array}\right)
$$

hence, up to cohomology, there is no loss of generality in assuming $\alpha=0$.

We also have

$$
\begin{aligned}
& \rho_{0}\left(u^{2} x\right)=\rho_{0}(x) \\
& \rho_{1}\left(u^{2} x\right)=u^{2} \rho_{1}(x)
\end{aligned}
$$

Suppose $k \neq \mathbf{F}_{2}, \mathbf{F}_{3}$; choose $u \in k, u \neq 0$, such that $u^{2} \neq 1$, i.e., $v=u-u^{-1} \neq 0$. Then for $x \in k$

$$
\begin{aligned}
\rho_{0}(x) & =\rho_{0}\left(v^{2} x\right)=\rho_{0}\left(u^{2} x\right)-2 \rho_{0}(x)+\rho_{0}\left(u^{-2} x\right) \\
& =\rho_{0}(x)-2 \rho_{0}(x)+\rho_{0}(x)=0 .
\end{aligned}
$$

Therefore, $\rho_{0}(x)=\gamma x$ with $\gamma=0$ unless $k=\mathbf{F}_{2}$ or \mathbf{F}_{3}. If $k=\mathbf{F}_{2}$ we may take

$$
A=\left(\begin{array}{ll}
0 & 0 \\
\gamma & 0
\end{array}\right)
$$

so that

$$
A^{x}-A=\left(\begin{array}{cc}
\gamma x & \gamma x \\
0 & \gamma x
\end{array}\right)
$$

then up to cohomology we see there is no loss of generality in assuming $\gamma=0$ unless $k=\mathbf{F}_{3}$.

The condition on ρ_{1} implies

$$
\rho_{1}\left(x^{2}\right)=\delta x^{2}
$$

so that

$$
\begin{aligned}
\delta(1+x)^{2} & =\rho_{1}\left((1+x)^{2}\right)=\rho_{1}(1)+2 \rho_{1}(x)+\rho_{1}\left(x^{2}\right) \\
& =\delta+2 \rho_{1}(x)+\delta x^{2}
\end{aligned}
$$

and

$$
2 \rho_{1}(x)=2 \delta x
$$

Therefore if $p \neq 2, \rho_{1}(x)=\delta x$. On the other hand, if $p=2$ and k is perfect, every element is a square and again we have $\rho_{1}(x)=\delta x$. It is easy to construct other examples if k is not perfect.

If $p \neq 2$ let

$$
A=\left(\begin{array}{cc}
-\frac{1}{2} \delta & 0 \\
0 & \frac{1}{2} \delta
\end{array}\right)
$$

so that

$$
A^{x}-A=\left(\begin{array}{rr}
0 & \delta x \\
0 & 0
\end{array}\right)
$$

then, up to cohomology, there is no loss of generality in assuming $\delta=0$ unless $p=2$.

If $p=2$ in the case of cohomology into \mathfrak{g} we can take

$$
A=\left(\begin{array}{ll}
\delta & 0 \\
0 & 0
\end{array}\right)
$$

so that

$$
A^{x}-A=\left(\begin{array}{cc}
0 & \delta x \\
0 & 0
\end{array}\right),
$$

and then in this case too we may assume $\delta=0$.
We now have

$$
f(x)=\left(\begin{array}{cc}
\gamma x+3 \beta x^{2} & \rho_{1}(x)-2 \beta x^{3} \\
2 \beta x & \gamma x-3 \beta x^{2}
\end{array}\right)
$$

with $\gamma=0$ unless $k=\mathbf{F}_{3}, \beta=0$ unless $k=\mathbf{F}_{5}, \rho_{1} \equiv 0$ unless $p=2$. If $p=2$ and k is perfect, $\rho_{1}(x)=\delta x$ with $\delta=0$ for cohomology into g. Moreover, if $f(x)$ is to be of trace $0, \gamma=0$. Thus

Proposition 1. For $n=2, H_{0}{ }^{1}(G, g)=0$ provided k is perfect if $p=2$, except for $k=\mathbf{F}_{3}$ or \mathbf{F}_{5} in which cases $H_{0}{ }^{1}(G, \mathfrak{g}) \cong k$.

Also if $p \neq 2, H_{0}{ }^{1}\left(G, g_{0}\right)=0$, except for $k=\mathbf{F}_{5}$. In the cases $k=\mathbf{F}_{5}$ or $p=2$ and k perfect, $H_{0}{ }^{1}\left(G, \mathfrak{g}_{0}\right) \cong k$.

We now assume $n \geqslant 3$ and $k \neq \mathbf{F}_{2}$. Let

$$
h=\left(\begin{array}{cccc}
u_{1} & & & 0 \\
& u_{2} & & \\
& & \ddots & \\
0 & & & u_{n}
\end{array}\right)
$$

with $u_{1} u_{2} \cdots u_{n}=1$. The condition

$$
f\left(g^{h}\right)=f(g)^{h}
$$

implies

$$
f_{i j}^{\rho \mu}\left(u_{\rho} u_{\mu}^{-1} x\right)=u_{i} u_{j}^{-1} f_{i j}^{\rho \mu}(x) .
$$

First consider the case $n=3$, and let $\lambda \neq \rho, \mu$ so that $\{\lambda, \rho, \mu\}=\{1,2,3\}$. Suppose $i=\rho$; then

$$
f_{\rho j}^{\rho \mu}\left(u_{\rho} u_{\mu}^{-1} x\right)=u_{\rho} u_{j}^{-1} f_{\rho j}^{\rho}(x)
$$

Taking $u_{\rho}=y, u_{\lambda}=y^{-1}, u_{\mu}=1, x=1$ we get

$$
\begin{aligned}
f_{\rho j}^{\rho \mu}(y) & =c_{\rho j}^{\rho \mu} u_{j}^{-1} y \\
& = \begin{cases}c_{\rho \rho}^{\rho \mu} & (j=\rho) \\
c_{\rho \mu}^{\rho \mu} y & (j=\mu) \\
c_{\rho j}^{\rho \mu} y^{2} & (j=\lambda)\end{cases}
\end{aligned}
$$

Then $c_{\rho \lambda}^{\rho \mu} u_{\rho}^{2} u_{\mu}^{-2} x^{2}=c_{\rho \lambda}^{\rho \mu} u_{\rho} u_{\lambda}^{-1} x^{2}$. Since $u_{\rho} u_{\lambda} u_{\mu}=1$, taking $u_{\mu}=t \neq 0$, 1 , this reduces to

$$
c_{p \lambda}^{\rho \mu}\left(1-t^{3}\right)=0 .
$$

Thus if $k \neq \mathbf{F}_{4}, c_{p \lambda}^{\rho \mu}=0$.
Suppose $i=\mu$; then

$$
f_{\mu j}^{p \mu}\left(u_{o} u_{\mu}^{-1} x\right)=u_{\mu} u_{j}^{-1} f_{\mu j}^{o \mu}(x)
$$

so that, for $j \neq \mu$,

$$
c_{\mu j}^{\rho \mu} u_{\rho} u_{\mu}^{-1} x=u_{\mu} u_{j}^{-1} G_{\mu j}^{\rho \mu} x, \quad c_{\mu j}^{o \mu}\left(u_{p} u_{j}-u_{\mu}^{2}\right)=0 .
$$

Therefore

$$
\begin{array}{llll}
f_{\mu \rho}^{p_{\mu}}=0 & \text { if } & k \neq \mathbf{F}_{3}, \\
f_{\mu, \lambda}^{\rho \mu}=0 & \text { if } & k \neq \mathbf{F}_{4} .
\end{array}
$$

Also,

$$
f_{\mu \mu}^{\rho \mu}\left(u_{\rho} u_{\mu}^{-1} x\right)=f_{\mu \mu}^{\rho \mu}(x)
$$

so that

$$
f_{\mu \mu}^{\rho \mu}(x)=\left\{\begin{array}{lll}
c_{\mu \mu}^{\rho \mu} & \text { for } & x \neq 0 \\
0 & \text { for } & x=0
\end{array}\right.
$$

Suppose $i=\lambda$; then

$$
f_{\lambda j}^{\rho \mu}\left(u_{\rho} u_{\mu}^{-1} x\right)=u_{\lambda} u_{j}^{-1} f_{\lambda j}^{\rho \mu}(x) .
$$

Taking $u_{\rho}=1, u_{\mu}=y^{-1}, u_{\lambda}=y, x=1$, we get

$$
\begin{aligned}
f_{\lambda j}^{\rho \mu}(y) & =c_{\lambda j}^{\rho \mu} y u_{j}^{-1} \\
& = \begin{cases}c_{i, j}^{\rho \mu} y & (j=\rho), \\
c_{\lambda \mu}^{\rho \mu} y^{2} & (j=\mu), \\
c_{\lambda \lambda}^{\rho \mu} & (j=\lambda) .\end{cases}
\end{aligned}
$$

Then $c_{\lambda \rho}^{\rho \mu} u_{\rho} u_{\mu}^{-1} x=u_{\lambda} u_{\rho}^{-1} c_{\lambda \rho}^{\rho \mu} x$. Since $u_{\rho} u_{\lambda} u_{\mu}=1$, taking $u_{\rho}=t \neq 0,1$, this reduces to

$$
c_{\lambda \rho}^{\rho \mu}\left(1-t^{3}\right)=0
$$

Thus if $k \neq \mathbf{F}_{4}$, then $c_{\lambda \rho}^{\rho \mu}=0$.
Also, $c_{\lambda \mu}^{\rho \mu} u_{\rho}^{2} u_{\mu}^{-2} x^{2}=u_{\lambda} u_{\mu}^{-1} c_{\lambda \mu}^{\rho \mu} x^{2}$ and again, if $k \neq \mathbf{F}_{4}, c_{\lambda \mu}^{\rho \mu}=0$.
Combining this with the conditions already obtained for $f^{\rho \mu}$ to be a cocycle we conclude

$$
\begin{array}{llll}
f_{\rho \mu}^{\rho \mu}(x)=c_{\rho \mu}^{\rho \mu} x, & & \\
f_{\rho \lambda}^{\rho \mu}(x)=c_{\rho \lambda}^{\rho \mu} x^{2} & \left(c_{\rho \lambda}^{\rho \mu}=0\right. & \text { if } & \left.k \neq \mathbf{F}_{4}\right), \\
f_{\lambda \mu}^{\rho \mu}(x)=c_{\lambda \mu}^{\rho \mu} x^{2} & \left(c_{\lambda \mu}^{\rho \mu}=0\right. & \text { if } & \left.k \neq \mathbf{F}_{4}\right), \\
f_{i j}^{\rho \mu}(x)=0 & \text { otherwise. } &
\end{array}
$$

Let

$$
g_{1}=I+x e_{23}, \quad g_{2}=I+y e_{12}, \quad g_{3}=I+x y e_{13},
$$

so that

$$
g_{2} g_{1}=g_{1} g_{2} g_{3}
$$

Therefore

$$
f\left(g_{2}\right)+f\left(g_{1}\right)^{g_{2}}=f\left(g_{1}\right)+f\left(g_{2}\right)^{g_{1}}+f\left(g_{3}\right)^{g_{1} g_{2}}
$$

It is easily verified that this condition gives

$$
\begin{array}{llll}
f_{\rho \mu}^{\rho \mu}(x) & =c_{\rho \mu}^{\rho \mu} x, & & \\
f_{13}^{12}(x)=c_{13}^{12} x^{2} & \left(c_{13}^{12}=0 \quad\right. \text { if } & \left.k \neq \mathbf{F}_{4}\right), \\
f_{13}^{23}(x)=c_{13}^{23} x^{2} & \left(c_{13}^{23}=0 \quad\right. \text { if } & \left.k \neq \mathbf{F}_{4}\right), \\
f_{i j}^{\rho \mu}(x)=0 & \text { otherwise, } &
\end{array}
$$

along with

$$
c_{13}^{13}=c_{12}^{12}+c_{23}^{23}
$$

Taking

$$
A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & c_{12}^{12} & 0 \\
0 & 0 & -c_{12}^{12}
\end{array}\right)
$$

and setting $\bar{f}(g)=A^{g}-A$, we get

$$
f_{12}^{12}(x)=c_{12}^{12} x, \quad f_{13}^{13}(x)=-c_{12}^{12} x, \quad f_{23}^{723}(x)=-2 c_{12}^{12} x
$$

and $\bar{f}_{i j}^{p \mu}=0$ otherwise. Hence, up to cohomology, there is no loss of generality in assuming $c_{12}^{12}=0$.

If $p \neq 3$, let $a=\frac{1}{3} c_{13}^{13}$ and

$$
A=\left(\begin{array}{rrr}
-a & 0 & 0 \\
0 & -a & 0 \\
0 & 0 & 2 a
\end{array}\right)
$$

whereas if $p=3$, let $a=c_{13}^{13}$ and

$$
A=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & a
\end{array}\right)
$$

Then if $f(g)=A^{g}-A$, we get

$$
f_{13}^{13}(x)=c_{13}^{13} x, \quad \bar{f}_{23}^{23}(x)=c_{23}^{23} x, \quad f_{i j}^{\rho \mu}=0 \quad \text { otherwise. }
$$

We now have

$$
f:\left(\begin{array}{ccc}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & 0 & \alpha x^{2}+\beta y^{2}+\gamma z \\
0 & 0 & \gamma x \\
0 & 0 & 0
\end{array}\right)
$$

with $\alpha=0, \beta=0$ unless $k=\mathbf{F}_{4}$, and $\gamma=0$ unless $p=3$, and we are in the case of \mathfrak{g}_{0}.

Proposition 2. For $n=3$, and $k \neq \mathrm{F}_{2}$, if $p \neq 3$ and $k \neq \mathbf{F}_{4}$,

$$
H_{0}^{1}(G, \mathfrak{g})=H_{0}^{1}\left(G, g_{0}\right) \approx 0
$$

If $p=3$,

$$
H_{0}^{1}(G, \mathfrak{g})=0, \quad H_{0}^{1}\left(G, \mathfrak{g}_{0}\right) \cong k
$$

If $k=\mathbf{F}_{4}$,

$$
H_{0}^{1}(G, g)=H_{0}^{1}\left(G, g_{0}\right) \cong k^{(2)}
$$

Now assume $n \geqslant 4$. Taking $u_{\rho}=u_{\mu}=1$, we have

$$
\left(u_{i}-u_{j}\right) f_{i j}^{p \mu}(x)=0
$$

It follows easily that, except in the case $n=4$ and $k=\mathbf{F}_{3}$, we must have

$$
f_{i j}^{\rho \mu}=0 \quad \text { for } \quad i \neq \rho, \mu \quad \text { or } j \neq \rho, \mu
$$

We also easily deduce $f_{\rho \mu}^{\rho \mu}(x)=c_{\rho \mu}^{\rho \mu} x$, as well as $c_{\mu \rho}^{\rho \mu}=0$ if $k \neq \mathbf{F}_{3}$. The conditions

$$
\begin{aligned}
& f_{\mu \mu}^{\rho \mu}(x+y)=f_{\mu \mu}^{\rho \mu}(x)+f_{\mu \mu}^{\rho \mu}(y)-c_{\mu \rho}^{\rho \mu} x y \\
& f_{\rho \rho}^{\rho \mu}(x+y)=f_{\rho \rho}^{\rho \mu}(x)+f_{\rho \rho}^{\rho \mu}(y)+c_{\rho \rho}^{\rho \mu} x y
\end{aligned}
$$

imply

$$
c_{\mu \mu}^{\rho \mu}=-c_{\rho \rho}^{\rho \mu}=c_{\mu \rho}^{\rho \mu} .
$$

The relation

$$
f_{\rho \mu}^{\rho \mu}(x+y)=f_{\rho \mu}^{\rho \mu}(x)+f_{\rho \mu}^{\rho \mu}(y)+\left(c_{\mu \mu}^{\rho \mu}-c_{\rho \rho}^{\rho \mu}\right) x y+c_{\mu \rho}^{\rho \mu}\left(x y-x^{2} y-x y^{2}\right)
$$

then gives

$$
f_{\mu \rho}^{\mu \rho}=0, \quad f_{\rho \rho}^{\rho \mu}=0, \quad f_{\mu \mu}^{\rho \mu}=0
$$

Since for $i \neq \rho, \mu$ we have

$$
f_{i i}^{p \mu}(x+y)=f_{i i}^{p \mu}(x)+f_{i i}^{\rho \mu}(y)
$$

we also have $f_{i i}^{\rho \mu}=0$ in the case $n=4$ and $k=\mathbf{F}_{3}$.
Finally then, we must have

$$
f^{\rho \mu}(x)=\tau_{\rho \mu}^{\rho \mu} x e_{\rho \mu}
$$

except in the case $n=4$ and $k=\mathbf{F}_{3}$, in which case we can conclude

$$
f^{\rho \mu}(x)=x\left\{c_{\rho \mu}^{\rho \mu} e_{\rho \mu}+c_{\lambda \sigma}^{\rho \mu} e_{\lambda \sigma}+c_{\sigma \lambda}^{\rho \mu} e_{\sigma \lambda}\right\}
$$

where $\{\rho, \mu, \sigma, \lambda\}=\{1,2,3,4\}$.
Suppose $\rho<\lambda<\mu$ and let

$$
g_{1}=I+x e_{\lambda \mu}, \quad g_{2}=I+y e_{\rho \lambda}, \quad g_{3}=I+x y e_{\rho \mu}
$$

so that

$$
g_{2} g_{1}=g_{1} g_{2} g_{3}
$$

The cocycle condition

$$
f\left(g_{2}\right)+f\left(g_{1}\right)^{g_{2}}=f\left(g_{1}\right)+f\left(g_{2}\right)^{g_{1}}+f\left(g_{3}\right)^{g_{1} g_{2}}
$$

then gives

$$
c_{\rho \mu}^{\rho \mu}=c_{\rho \lambda}^{\rho \lambda}+c_{\lambda}^{\lambda \mu}
$$

and, in the case $n=4$ and $k=\mathbf{F}_{3}$,

$$
f_{\lambda \sigma}^{p \mu}=0,
$$

except for f_{14}^{23}.

The first condition may be reformulated as

$$
c_{\rho \mu}^{0 \mu}=c_{1 \mu}^{1 \mu}-c_{1 \rho}^{1 \rho} .
$$

Define α and β as follows:

$$
\begin{aligned}
& \alpha=\left\{\begin{array}{ccc}
0 & \text { if } & p \backslash n, \\
-\frac{1}{n} \sum_{i} c_{1 i}^{1 i} & \text { if } & p \nmid n ;
\end{array}\right. \\
& \beta=\left\{\begin{array}{ccc}
-\sum_{i} c_{1 i}^{1 i} & \text { if } & p \mid n, \\
0 & \text { if } & p \nmid n .
\end{array}\right.
\end{aligned}
$$

Define $A=\left(a_{i j}\right)$ as follows:

$$
a_{i j}=\delta_{i j}\left\{\alpha+c_{1 i}^{1 i}+\delta_{i n} \beta\right\} .
$$

Then if $f(g)=A^{g}-A$, we have

$$
f^{\rho u}(x)=c_{\rho \mu}^{\rho \mu} x e_{\rho \mu}+\delta_{\mu n} \beta x c_{\rho n}^{\rho n} e_{\rho n}
$$

so that, up to cohomology, we may assume

$$
f^{\rho \mu}(x)=\delta_{\mu n} \gamma x e_{\rho n}
$$

with $\gamma=0$ if $p+n$, except the case $n=4, k=\mathbf{F}_{3},(\rho, \mu)=(2,3)$, where we have

$$
f^{23}(x)=\delta x e_{14} .
$$

If $p \mid n$, let $A=\gamma e_{n n}$ and $f(g)=A^{g}-A$. Then

$$
\bar{f}^{\rho \mu}(x)=\delta_{\mu n} \gamma x e_{\rho n} .
$$

Proposition 3. For $n=4$ and $k \neq \mathbf{F}_{2}$, if $k \neq \mathbf{F}_{3}$,

$$
H_{0}^{1}(G, g)=0
$$

$$
\begin{aligned}
& \text { If } p \neq 2, H_{0}{ }^{1}\left(G, g_{0}\right)=0 \text { and if } p=2, H_{0}{ }^{1}\left(G, \mathfrak{g}_{0}\right) \cong k . \text { If } k=\mathrm{F}_{3}, \\
& H_{0}{ }^{1}(G, \mathfrak{g})=H_{0}{ }^{1}\left(G, \mathfrak{g}_{0}\right) \cong k .
\end{aligned}
$$

Proposition 4. For $n \geqslant 5$ and $k \neq \mathbf{F}_{2}$,

$$
H_{0}{ }^{1}(G, g)=0
$$

If $p \nmid n, H_{0}{ }^{1}\left(G, \mathfrak{g}_{0}\right)=0$ and if $p \mid n$,

$$
H_{0}^{1}\left(G, \mathfrak{g}_{0}\right) \cong k
$$

In the case $k=\mathbf{F}_{\mathrm{a}}$ the torus H is trivial and so compatibility with the action of H gives no conditions on the cocycles. However, every function $f: \mathbf{F}_{2} \rightarrow \mathbf{F}_{2}$ satisfying $f(0)=0$ is simply of the form $f(x)=c x(c=0$ or 1$)$, so that (in the earlier notation)

$$
f_{i j}^{\rho \mu}(x)=c_{i j}^{p \mu}
$$

or

$$
f^{\rho \mu}(x)=x c^{\rho \mu}
$$

for a constant matrix $c^{\rho \mu}$.
Thus $f^{\rho \mu}(x+y)=f^{\rho \mu}(x)+f^{\rho \mu}(y)$ and the cocycle condition then implies $c^{\rho \mu}$ must commute with $e_{\rho \mu}$. Hence

$$
c_{i \rho}^{\rho \mu}=\delta_{i \rho} c_{\mu \mu}^{\rho \mu}, \quad c_{\mu j}^{p \mu}=\delta_{j \mu} c_{\rho \rho}^{\rho \mu} .
$$

Now let $\lambda<\mu, \rho<\sigma, \sigma \neq \lambda, \rho \neq \mu$ and

$$
g_{1}=I+e_{\lambda \mu}, \quad g_{2}=I+e_{\rho \sigma}
$$

Then $g_{1} g_{2}=g_{2} g_{1}$ so that

$$
f\left(g_{1}\right)+f\left(g_{2}\right)^{g_{1}}=f\left(g_{2}\right)+f\left(g_{1}\right)^{g_{2}}
$$

or

$$
f\left(g_{1}\right)^{g_{2}}+f\left(g_{1}\right)=f\left(g_{2}\right)^{g_{1}}+f\left(g_{2}\right)
$$

which may be written

$$
\left[e_{\rho \sigma}, c^{\lambda \mu}\right]+c_{\sigma \rho}^{\lambda \mu} e_{\rho \sigma}=\left[e_{\lambda \mu}, c^{\rho \sigma}\right]+c_{\mu \lambda}^{\rho \sigma} e_{\lambda \mu}
$$

Hence

$$
\begin{aligned}
& \sum_{j \neq \sigma} c_{\sigma j}^{\lambda \mu} e_{\rho j}+\sum_{i \neq \rho} c_{i \rho}^{\lambda \mu} e_{i \sigma}+\left(c_{\sigma \sigma}^{\lambda \mu}+c_{\rho \rho}^{\lambda \mu}+c_{\sigma \rho}^{\lambda \mu}\right) e_{\rho \sigma} \\
= & \sum_{j \neq \mu} c_{\mu j}^{\rho \sigma} c_{\lambda j}+\sum_{i \neq \lambda} c_{i \lambda}^{\rho \sigma} e_{i \mu}+\left(c_{\mu \mu}^{\rho \sigma}+c_{\lambda \lambda}^{\rho \sigma}+c_{\mu \lambda}^{\rho \sigma}\right) e_{\lambda \mu} .
\end{aligned}
$$

If $\sigma=\mu$ this reduces to

$$
\sum_{i \neq \rho} c_{i \rho}^{\lambda \mu} e_{i \mu}+\left(c_{\mu \mu}^{\lambda \mu}+c_{\rho \rho}^{\lambda \mu}\right) e_{\rho \mu}=\sum_{i \neq \lambda} c_{i \lambda}^{\rho \mu} e_{i_{\mu}}+\left(c_{\mu \mu}^{\rho \mu}+c_{\lambda \lambda}^{\rho \mu}\right) e_{\lambda \mu} .
$$

If $\rho=\lambda$ this gives no information; assume then $\rho \neq \lambda$. Since this is symmetric in ρ and λ, we might as well assume $\rho<\lambda<\mu$. Then

$$
\begin{aligned}
c_{\rho \lambda}^{\rho \mu} & =c_{\mu \mu}^{\lambda \mu}+c_{\rho \rho}^{\lambda \mu} \\
c_{\lambda \rho}^{\lambda \mu} & =c_{\mu, /}^{\rho \mu}+c_{\lambda \lambda}^{\rho \mu}, \\
c_{i \rho}^{\lambda \mu} & =c_{i \lambda}^{\rho \mu} \quad \text { for } \quad i \neq \lambda, \rho .
\end{aligned}
$$

Similarly, considering the case $\lambda=\rho, \sigma<\mu$ (and replacing σ by λ), we have for $\rho<\lambda<\mu$

$$
\begin{aligned}
c_{\mu \lambda}^{\rho \lambda} & =c_{\lambda \lambda}^{\rho \mu}+c_{\rho \rho}^{\rho \mu} \\
c_{\lambda \mu}^{\rho \mu} & =c_{\mu \mu}^{\rho \lambda}+c_{\rho \rho}^{\rho \lambda} \\
c_{i j}^{\rho \mu} & =c_{\mu j}^{\rho \lambda} \quad \text { for } \quad j \neq \lambda, \mu_{e}
\end{aligned}
$$

Finally, in the case $\sigma \neq \mu$ and $\rho \neq \lambda$ we obtain

$$
\begin{aligned}
& c_{\sigma \dot{j}}^{\lambda \mu}=c_{\mu j}^{\rho \sigma}=0 \quad \text { for } \quad j \neq \sigma, \mu \\
& c_{i \rho}^{\lambda \mu}=c_{i \lambda}^{\rho \sigma}=0 \quad \text { for } \quad i \neq \rho, \lambda \\
& c_{\sigma \mu}^{\lambda \mu}=c_{\rho \lambda}^{\rho \sigma}, \quad c_{\lambda \rho}^{\lambda \mu}=c_{\mu \sigma}^{\rho \sigma}, \quad c_{\rho \rho}^{\lambda \mu}=c_{\sigma \alpha}^{\lambda \mu}, \quad c_{\lambda \lambda}^{\rho \sigma}=c_{\mu \mu}^{\rho \sigma}
\end{aligned}
$$

Now suppose $\rho<\lambda<\mu$ and take

$$
g_{1}=I+e_{\lambda \mu}, \quad g_{2}=I+e_{\rho \lambda}, \quad g_{3}=I+e_{\rho \mu}
$$

Then $g_{2} g_{1} \rightleftharpoons g_{1} g_{2} g_{3}$ so that

$$
f\left(g_{2}\right)+f\left(g_{1}\right)^{g_{2}}=f\left(g_{1}\right)+f\left(g_{2}\right)^{g_{1}}+f\left(g_{3}\right)^{g_{1} g_{2}}
$$

or

$$
f\left(g_{3}\right)^{g_{1} g_{2}}=f\left(g_{1}\right)+f\left(g_{1}\right)^{a_{1}}+f\left(g_{2}\right)+f\left(g_{2}\right)^{g_{2}}
$$

We have

$$
\begin{aligned}
f\left(g_{1}\right)+f\left(g_{1}\right)^{g_{\nu}} & =\left[e_{\rho \lambda}, c^{\lambda \mu}\right]+c_{\lambda \rho}^{\lambda \mu} e_{\rho \lambda} \\
& =\sum_{i \neq \rho} c_{i \rho}^{\lambda \mu} e_{i \lambda}+\sum_{j \neq \lambda} c_{\lambda j}^{\lambda \mu} e_{\rho j}+\left(c_{\rho \rho}^{\lambda \mu}+c_{\lambda \lambda}^{\lambda \mu}+c_{\lambda \rho}^{\lambda \mu}\right) e_{\Delta \lambda} \\
& =c_{\lambda \rho}^{\lambda \mu} e_{\lambda \lambda}+\sum_{j \neq \lambda} c_{\lambda j}^{\lambda \mu} e_{\rho j}+\left(c_{\rho \rho}^{\lambda \mu}+c_{\lambda \lambda}^{\lambda \mu}+c_{\lambda \rho}^{\lambda \mu}\right) e_{\rho \lambda}
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(g_{2}\right)+f\left(g_{2}\right)^{g_{1}} & =\left[e_{\lambda \mu}, c^{\rho \lambda}\right]+c_{\mu \lambda}^{\rho \lambda} e_{\lambda \mu} \\
& =\sum_{i \neq \lambda} c_{i \lambda}^{\rho \lambda} e_{i \mu}+\sum_{j \neq \mu} c_{\mu j}^{\rho \lambda} e_{\lambda j}+\left(c_{\lambda \lambda}^{\rho \lambda}+c_{\mu \mu}^{\rho \lambda}+c_{\mu \lambda}^{\lambda \lambda}\right) e_{\lambda \mu} \\
& =\sum_{i \neq \lambda} c_{i \lambda}^{\rho \lambda} e_{i \mu}+c_{\mu \lambda}^{\rho \lambda} e_{\lambda \lambda}+\left(c_{\lambda \lambda}^{\rho \lambda}+c_{\mu \mu}^{\rho \lambda}+c_{\mu \lambda}^{\rho \lambda}\right) \epsilon_{\lambda \mu} .
\end{aligned}
$$

We have

$$
\begin{aligned}
f\left(g_{3}\right)^{g_{2}} & =c^{\rho \mu}+\left[e_{\rho \lambda}, c^{\rho \mu}\right]+c_{\lambda \rho}^{\rho \mu} e_{\rho \lambda} \\
& =c^{\rho \mu}+\sum c_{i \rho}^{\rho \mu} e_{i \lambda}+\sum c_{\lambda j}^{\rho \mu} e_{\rho j} \\
& =c^{\rho \mu}+\left(c_{\rho \rho}^{\rho \mu}+c_{\lambda \lambda}^{\rho \mu}\right) e_{\rho \lambda}+c_{\lambda \mu}^{\rho \mu} e_{\rho \mu}
\end{aligned}
$$

Now

$$
\begin{aligned}
\left(c^{\rho \mu}\right)^{g_{\lambda}} & =c^{o \mu}+\left[e_{\lambda \mu}, c^{\rho \mu}\right]+c_{\mu \lambda}^{\rho \mu} e_{\lambda \mu}=c^{\rho \mu}+\sum c_{i \lambda}^{\rho \mu} e_{i \mu}+\sum c_{\mu j}^{\mu_{\mu}} e_{\lambda j} \\
& =c^{\rho \mu}+c_{\mu \lambda}^{\rho \mu} e_{\rho \mu}+\left(c_{\lambda \lambda}^{\rho \mu}+c_{\mu \mu}^{\rho \mu}\right) e_{\lambda \mu}, \\
\left(e_{\rho \lambda}\right)^{g_{1}} & =e_{\rho \lambda}+e_{\rho \mu}, \quad\left(e_{\rho \mu}\right)^{g_{1}}=e_{\rho \mu}
\end{aligned}
$$

and so

$$
\begin{aligned}
f\left(g_{3}\right)^{g_{1} g_{2}}=c^{\rho \mu} & +\left(c_{\rho \rho}^{\rho \mu}+c_{\lambda \lambda}^{o \mu}\right) e_{\rho \lambda}+\left(c_{\lambda \lambda}^{o \mu}+c_{\mu \mu}^{\rho \mu}\right) e_{\lambda \mu} \\
& +\left(c_{\rho \lambda}^{\rho \mu}+c_{\rho \rho}^{o \mu}+c_{\lambda \lambda}^{\rho \mu}+c_{\lambda \mu}^{\rho \mu}\right) e_{o \mu} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{i \neq \lambda, \rho} c_{i \lambda}^{\rho \lambda} e_{i \mu} & +\sum_{j \neq \lambda, \mu} c_{\lambda j}^{\lambda \mu} e_{\rho j}+\left(c_{\mu \lambda}^{\rho \lambda}+c_{\lambda \rho}^{\lambda \mu}\right) e_{\lambda \lambda}+\left(c_{o \rho}^{\lambda \mu}+c_{\lambda \lambda}^{\lambda \mu}+c_{\lambda \rho}^{\lambda \mu}\right) e_{\rho \lambda} \\
& +\left(c_{\rho \lambda}^{\rho \lambda}+c_{\lambda \mu}^{\lambda \mu}\right) e_{\rho \mu}+\left(c_{\lambda \lambda}^{\rho \lambda}+c_{\mu \mu}^{\rho \lambda}+c_{\mu \lambda}^{\rho \lambda}\right) e_{\lambda \mu} \\
=c^{\rho \mu}+\left(c_{\rho \rho}^{\rho \mu}\right. & \left.+c_{\lambda \lambda}^{\rho \mu}\right) e_{\rho \lambda}+\left(c_{\lambda \lambda}^{\rho \mu}+c_{\mu \mu}^{\rho \mu}\right) e_{\lambda \mu}+\left(c_{\rho \lambda}^{\rho \mu}+c_{\rho \rho}^{\rho \mu}+c_{\lambda \lambda}^{\rho \mu}+c_{\lambda \mu}^{\rho \mu}\right) e_{\rho \mu \mu} \\
=\sum_{j \neq \lambda, \mu} c_{\mu j}^{\rho \mu} \rho_{p j} & +\sum_{i \neq \rho, \lambda} c_{i \mu}^{\rho \mu} e_{i \mu}+\sum_{i \neq \rho_{, \mu, \lambda}} c_{i \bar{j}}^{\rho \mu} e_{i i}+c_{\lambda \lambda}^{\rho \mu} e_{\lambda \lambda} \\
& +\left(c_{\rho \rho}^{\rho \mu}+c_{\lambda \lambda}^{\rho \mu}+c_{\rho \lambda}^{\rho \mu}\right) e_{\Gamma \lambda}+\left(c_{\lambda \lambda}^{\rho \mu}+c_{\mu \mu}^{\rho \mu}+c_{\lambda \mu}^{\rho \mu}\right) e_{\lambda \mu \mu} \\
& +\left(c_{\rho \lambda}^{\rho \mu}+c_{\rho \rho}^{\rho \mu}+c_{\lambda \lambda}^{\rho \mu}+c_{\lambda \mu}^{\rho \mu}+c_{\rho \mu}^{\rho \mu}\right) e_{\rho \mu}+\sum_{\substack{i \neq \rho, \mu \\
j \neq \rho, \mu}} c_{i \neq j}^{\rho \mu} e_{i j}
\end{aligned}
$$

Hence we must have

$$
\begin{aligned}
c_{i \lambda}^{\rho \lambda} & =c_{i \mu}^{\rho \mu} \quad \text { for } \quad i \neq \rho, \lambda, \\
c_{\lambda \mu}^{\lambda \mu} & =c_{\rho j}^{\rho \mu} \quad \text { for } \quad j \neq \lambda, \mu, \\
c_{i i}^{\rho \mu} & =0 \quad \text { for } \quad i \neq \rho, \lambda, \mu, \\
c_{\lambda \lambda}^{\rho \mu} & =c_{\mu \lambda}^{\rho \lambda}+c_{\lambda \rho}^{\lambda \mu}, \\
c_{\rho \rho}^{\lambda \mu}+c_{\lambda \lambda}^{\lambda \mu}+c_{\lambda \rho}^{\lambda \mu} & =c_{\rho \rho}^{\rho \mu}+c_{\lambda \lambda}^{\rho \mu}+c_{\rho \lambda}^{\rho \mu}, \\
c_{\lambda \lambda}^{\rho \lambda}+c_{\mu \mu}^{\rho \lambda}+c_{\mu \lambda}^{\rho \lambda} & =c_{\lambda \lambda}^{\rho \mu}+c_{\mu \mu}^{\rho \mu}+c_{\lambda \mu}^{\rho \mu}, \\
c_{\rho \lambda}^{\rho \lambda}+c_{\lambda \mu}^{\lambda \mu} & =c_{\rho \mu}^{\rho \mu}+c_{\rho \lambda}^{\rho \mu}+c_{\rho \rho}^{\rho \mu}+c_{\lambda \lambda}^{\rho \mu}+c_{\lambda \mu}^{\rho \mu}, \\
c_{i \mu}^{\rho \mu} & =0 \quad \text { for } \quad i \neq \rho, \mu, \quad j \neq \rho, \mu, \quad i \neq j .
\end{aligned}
$$

From the first two equations we obtain

$$
c_{\mu \lambda}^{\rho \lambda}=c_{\mu \mu}^{\rho \mu}, \quad c_{\lambda \rho}^{\lambda \mu}=c_{\rho \rho}^{\rho \mu},
$$

so that $c_{\lambda \lambda}^{\rho \mu}=c_{\mu \lambda}^{\rho \lambda}+c_{\lambda \rho}^{\lambda \mu}=c_{\mu \mu}^{\rho \mu}+c_{\rho \rho}^{\rho \mu}=0$, and we have $c_{i i}^{\rho \mu}=0$ for $i \neq \rho, \mu$. The other relations reduce to

$$
\begin{aligned}
& c_{\lambda \lambda}^{\lambda \mu}+c_{\rho \rho}^{\lambda \mu}=c_{\rho \lambda}^{\rho \mu}, \quad c_{\lambda \lambda}^{\rho \lambda}+c_{\mu \mu}^{\rho \lambda}=c_{\lambda \mu}^{\rho \mu}, \\
& c_{\rho \lambda}^{\rho \lambda}+c_{\mu \lambda}^{\lambda \mu}=c_{\rho \mu}^{\rho \mu}+c_{\rho \lambda}^{\rho \mu}+c_{\rho \rho}^{\rho \mu}+c_{\lambda \mu}^{\rho \mu} .
\end{aligned}
$$

We may summarize all the information as follows:
For $\rho<\mu$

$$
\begin{array}{ll}
c_{i \rho}^{o \mu}=0 & (i \neq \rho) \\
c_{\mu j}^{p \mu}=0 \\
c_{\rho \rho}^{\rho \mu}=c_{\mu \mu}^{\rho \mu}
\end{array} \quad(j \neq \mu),
$$

For $\rho<\lambda<\mu$,

$$
\begin{aligned}
c_{i \rho}^{\lambda \mu} & =0 \quad(i \neq \rho, \lambda), \\
c_{\mu j}^{\rho \lambda} & =0 \quad(j \neq \lambda, \mu), \\
c_{i j}^{\rho \mu} & =0 \quad(i \neq \rho \text { and } j \neq \mu), \\
c_{i \mu}^{\rho \mu} & =c_{i \lambda}^{\rho \lambda} \quad(i \neq \rho, \lambda), \\
c_{\rho j}^{\rho \mu} & =c_{\lambda j}^{\lambda \rho} \quad(j \neq \lambda, \mu), \\
c_{\rho \lambda}^{\rho \mu} & =c_{\lambda \lambda}^{\lambda \mu}+c_{\rho \rho}^{\lambda \mu}, \\
c_{i \mu}^{\rho \mu} & =c_{\rho \rho}^{\rho \lambda}+c_{\mu \mu}^{\lambda \mu}, \\
c_{\rho \lambda}^{\rho \lambda}+c_{\lambda \mu}^{\lambda \mu}+c_{\rho \mu \mu}^{\rho \mu} & =c_{\lambda \lambda}^{\lambda \mu}+c_{\rho \rho}^{\lambda \mu}+c_{\rho \rho}^{\rho \lambda}+c_{\mu \mu}^{\rho \lambda} .
\end{aligned}
$$

For $\rho<\mu, \lambda<\sigma,\{\rho, \mu, \lambda, \sigma\}$ distinct,

$$
c_{\sigma \mu}^{\rho \mu}=c_{\lambda \rho}^{\lambda \sigma}
$$

Finally,

$$
\begin{array}{ll}
c_{i j}^{\rho, \rho+1}=\delta_{1 i} \delta_{n j} c_{1 n}^{\rho, \rho+1} & (i \neq \rho, j \neq \rho+1, i \neq j), \\
c_{i i}^{\rho, \rho+1}=c_{j j}^{\rho, \rho+1} & (i \neq \rho, \rho+1, j \neq \rho, \rho+1) .
\end{array}
$$

Define

$$
\begin{aligned}
& \alpha_{\rho}=\left\{\begin{array}{lll}
c_{11}^{\rho, \rho+1} & \text { for } & \rho>1 \\
c_{n n}^{2} & \text { for } & \rho=1
\end{array}\right. \\
& \beta_{\rho}=\left\{\begin{array}{lll}
c_{1 n}^{\rho, \rho+1} & \text { for } & \rho<n \\
0 & \text { for } & \rho=n
\end{array}\right. \\
& \gamma_{i j}=\left\{\begin{array}{lll}
c_{1 j}^{1 i} & \text { for } & i>1 \\
0 & \text { for } & i=1
\end{array}\right. \\
& \epsilon_{i j}=\left\{\begin{array}{lll}
c_{i n n}^{j n} & \text { for } & j<n \\
0 & \text { for } & j=n
\end{array}\right.
\end{aligned}
$$

Then we may deduce

$$
\epsilon_{i_{\rho} \rho}=\left\{\begin{array}{lll}
\gamma_{i \rho}+\left(\delta_{i 2}+\delta_{\rho, n-1}\right) \alpha_{o} & \text { for } & i>\rho \\
\gamma_{i \rho} & \text { for } & 1<i<\rho<n .
\end{array}\right.
$$

Also,

$$
c_{i j}^{\rho \mu}=\left\{\begin{array}{lll}
\delta_{\mu, \rho+1}\left(\delta_{i 1} \delta_{j n} \beta_{\rho}+\delta_{i j} \alpha_{\rho}\right) & \text { for } & i \neq \rho, j \neq \mu \\
\gamma_{\mu j}+\delta_{j \rho} \delta_{\mu, \rho+1}\left(1+\delta_{\rho 1}\right) \alpha_{\rho} & \text { for } & i \neq \rho, j=\mu \\
\epsilon_{i \rho}+\delta_{i \mu} \delta_{\mu, \rho+1}\left(1+\delta_{\mu n}\right) \alpha_{\rho} & \text { for } & i \neq \rho, j=\mu \\
\gamma_{\mu \rho}+\gamma_{\mu \mu}+\gamma_{\mu 1}+\gamma_{\rho \rho}+\gamma_{\rho 1}+\delta_{\rho 2} \alpha_{1} & \text { for } & i=\rho, j=\mu
\end{array}\right.
$$

It now follows that

$$
\begin{aligned}
\boldsymbol{c}^{\rho \mu}=\sum_{i \neq \rho}\left(\gamma_{i \rho}+\delta_{i 1} \epsilon_{1 \rho}\right) e_{i \mu} & +\sum_{j \neq \mu} \gamma_{\mu j} e_{\rho j} \\
& +\left(\gamma_{\mu \rho}+\gamma_{\mu \mu}+\gamma_{\mu 1}+\gamma_{\rho \rho}+\gamma_{\rho 1}\right) e_{\rho \mu} \\
& +\delta_{\mu, \rho+\mathbf{1}}\left\{\alpha_{\rho} I+\left(1+\delta_{\rho 1}\right)\left(1+\delta_{\mu n}\right) \beta_{\rho} e_{1 n}\right\} \\
& +\delta_{\mu 2} \alpha_{1} e_{11}+\left(\delta_{\rho 1}+\delta_{\rho 2}\right) \alpha_{1} e_{2 \mu}
\end{aligned}
$$

Define A as follows:

$$
a_{i j}=\left\{\begin{array}{lll}
\gamma_{i j}+\delta_{i 1} \epsilon_{1 j}+\delta_{i 2} \delta_{j 1} \alpha_{1} & \text { for } & i \neq j \\
\gamma_{i i}+\gamma_{i 1}+\delta_{i 2} \alpha_{1}+a+\delta_{i 1 b} & \text { for } & i=j
\end{array}\right.
$$

Then $\operatorname{Tr}(A)=\Sigma\left(\gamma_{i i}+\gamma_{i 1}\right)+\alpha_{1}+n a+b$ so that, if n is odd, we may select $b=0$ and a such that $\operatorname{Tr}(\Lambda)=0$. However, if n is even we may only force one of b and $\operatorname{Tr}(A)$ to be 0 .

We now have

$$
c^{\rho \mu}=A^{I+e_{\rho \mu}}+A+\delta_{\rho 1} b e_{1, \mu}+\delta_{\mu, \beta+1}\left\{\alpha_{\rho} I+\left(1+\delta_{\rho 1}\right)\left(1+\delta_{\mu n}\right) \beta_{\rho} e_{1 n}\right\} .
$$

Hence, up to cohomology, we may assume with no loss of generality,

$$
\left.\begin{array}{rl}
f: & \left(\begin{array}{ccccc}
1 & x_{12} & x_{13} & \cdots & x_{1 n} \\
0 & 1 & x_{23} & \cdots & x_{2 n} \\
0 & 0 & 1 & \cdots & x_{3 n} \\
\vdots & \cdots & \cdots & \vdots \\
0 & 0 & & 0 & 1
\end{array}\right) \rightarrow\left(\sum_{\rho=1}^{n-1} \alpha_{\rho} x_{\rho, \rho+1}\right) I
\end{array}+\left(\sum_{\rho=2}^{n-2} \beta_{\rho x_{0, \rho+1}}\right) e_{i n}\right\}
$$

with $b=0$ if n is odd or if we are in the case of cohomology into g . Moreover, it is easy to verify that for distinct choices of $\alpha_{1}, \ldots, \alpha_{n-1}, \beta_{2}, \ldots, \beta_{n-2}, b$, we get non-cohomologous cocycles. If we insist $f(x)$ be of trace 0 , if n is odd we simply have

$$
f(x)=\left(\sum_{\rho=2}^{n-2} \beta_{\rho} x_{\rho, \alpha+1}\right) e_{1 n} .
$$

Proposition 5. For $k=\mathrm{F}_{2}$,

$$
H_{0}^{1}(G, \mathfrak{g}) \cong k^{(2 n-4)}
$$

If $2 \nmid n$,

$$
H_{0}^{1}\left(G, g_{0}\right) \cong k^{(n-3)}
$$

and if $2 \mid n$

$$
H_{0}^{1}\left(G, \mathfrak{g}_{0}\right) \cong k^{(2 n-3)}
$$

We summarize Propositions 1-5.
Theorem. Assuming k perfect for the case $n=2, p=2$, we have

$$
H_{0}^{1}(G, \mathfrak{g})=0
$$

and if $p \nmid n$

$$
H_{0}{ }^{1}\left(G, g_{0}\right)=0
$$

whereas if $p \mid n$

$$
H_{0}^{1}\left(G, g_{0}\right) \cong k
$$

with the following table of exceptions.

n	k	$d=\operatorname{dim}_{k} H_{0}{ }^{1}(G, \mathfrak{g})$	$d_{0}=\operatorname{dim}_{k} H_{0}{ }^{1}\left(G, \mathfrak{g}_{0}\right)$
2	\mathbf{F}_{3}	1	0
2	\mathbf{F}_{5}	1	1
3	\mathbf{F}_{a}	2	2
4	\mathbf{F}_{3}	1	1
odd	\mathbf{F}_{2}	$2 n-4$	$n-3$
even	\mathbf{F}_{2}	$2 n-4$	$2 n-3$

Acknowledgment

The author expresses his appreciation to Dr. H. Bass for many stimulating conversations.

[^0]: ${ }^{i}$ This paper was written while the author was on leave from Purdue University, and temporarily employed by the Irstitute for Defense Analysis, Princeton, New Jersey.

