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The purpose of this paper is to expound a technique for the computation 
of certain cohomology of algebraic groups. A natural approach is to restrict 
attention to a Bore1 subgroup B. Since B splits as a semidirect product of 

B, (unipotent part) and a maximal torus T, a standard exact-sequence argu- 
ment leads to the heart of the problem, namely cohomology of B, with 
action of the torus T. One now notes that B, is a product of “one-parameter 
subgroups” and the procedure is to consider the restriction of a cocycle to 

these elementary subgroups and derive conditions on it so that it may extend 
to the whole group. Using the cohomology relation it is possible to find a 
neat normal form for a cocycle. In the case of the field with two elements a 
maximal torus is trivial and hence the trivial action of T does not give helpful 
restrictions on a cocycle; it is in this case that the computation is most 
tedious. 

The special case worked out in detail in this paper is in fact quite general 
and gives a sufficiently complete exposition of the technique to enable one to 
make the computations in a particular special case. 

Such explicit computation appears necessary in the cohomological 
approach to the “congruence subgroup problem” and the desirability of a 
technique was pointed out to the author by I-1. Bass. 

Let G be a subgroup of GL(n, k), the group of IZ x n nonsingular matrices 
with coefficients in the field k of characteristic p. Note G operates by inner 
automorphism on the space %Rn(k) of all n x II matrices over k; Iet g be a 
subspace of V&(k) stable under this operation. Recall that a I-cocycle from G 

to 8 is a map 

f:G+g 

satisfying 

fkg') ==fk) ffW 
i This paper was written while the author was on leave from Purdue University, 

and temporarily employed by the Institute for Defense.tialysis,Princeton, New Jersey. 
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for all g, g’ E G. The set of all I-cocycles from G to g is a commutative group 
Zl(G, g). A 1-cocycle f E Z1(G, g) is a 1-coboundary if there exists A E g 
such that 

f(g)=L@ --A 

for allg E G. The set of all I-coboundaries is a subgroup EP(G, g) < z1(G, g). 
The quotient group Hi(G, g) is the I-cohomology group of G into g. 

If  H is a subgroup of GL(n, k) which normalizes G, and also under which g 
is stable, we can consider the action of H in the cohomology. More precisely, 

we denote Z,,r(G, g) the subgroup of Z1(G, g) consisting of the cocycles f 
satisfying 

f(gh) =f(gY 
for all h E H, g E G. We denote H,1(G, g) the image of Z,,l(G, g) in H1(G, g). 

In this paper we restrict our considerations to the following situations: 

G = triangular unipotent matrices 

H = diagonal unimodular matrices 

g = Wdk) 

go = matrices of trace 0 

G,, = subgroup of G consisting of the elementary 

matrices (1+ xe,},,, (p < ,u), where, as usual, 
eP,, is the matrix whose (p, p)th coordinate is 1 and 
all others are 0. 

I f f  is a 1-cocycle from G to g, its restriction f Pk to G,, is a 1-cocycle from 
G,, to g. The isomorphism x + I + ze,, of k with GPF will be used to iden- 
tify GPP with k. Then if f p”(x) is the matrix (f i;(x)), we have n2 functions 

satisfying 

Since f 3(x + y) = f zr(y + x), we must have 

Therefore for i = p, j # p we get 
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and for i=+p,j =p we get 

xf?jt (y) = Yffpi:: (4. 

Denoting c$‘ =fzr(l), the above impiy 

f;; (x) = c”i;x (i # PI, 
f;(x) = c;x (i f 4. 

Then taking i = p, j = p we find 

f;;(x) -f;;(x) = (CE - c”,“d) x + c$(, - 3”). 

It then follows that 

(i f p), 

and 

f E(x) -f $(x) = (CZ - c”,;, x + CZ(X - 2). 

For the case z = 2 we have G = G12 and necessarily p = 1, p = 2; we 
simply denote f ; f  = fij and czy = cii (1 ,( i, j < 2). The relations reduce tcr 

fib + Y) =f&) +f,dY) + C&YY, 

f& + Y) = f&) + fiz(Y) + (c22 - Cl1 + 4 ?Y - c&Y2 + eY)Y 

f&) = %5 

f&) = f&4 + cc22 - Cl1 + 4 x - %1X2* 

I f  p = 2, setting x = y  gives cm = c22 - c,, + czl = 0. If  p = 3, setting 
x=&yleadstoc,=O. 

4W6/3-4 
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Define 

o1 = 4 Cc22 - cl1 + czl) 
I 

if p # 2, 
0 if p =2; 

Then we may write 

if P # 2,3, 
if p = 2,3. 

where 

Po(X + Y) = PO(X) + PO(Y)1 

Pl(” + Y) = A(X) + P,(Y). 
I f  

and 

the condition f(g”) =f(g)h becomes 

or 
p&“x) - au4 + 3/3u4.@ = PO(X) - ax + 3/3x2, 

#q(u2x) + cdx2 - 2/3243x3 = z&J,(x) + cm2x2 - 2pzAc3, 

12pu3x = 12pu-3x, 

po(u2x) + au2x - 3/3zpxz = p&x) + a% - 3/3x2. 

From the third equation we obtain 

/3=0 unless k = F, . 

From the first and fourth equations we obtain 

a=0 unless k = F3 . 

However, if k = F3 we may take 

so that 

R 
0 0 S 

( 1 5! 0 

.&--A = -a(,” f); 

hence, up to cohomology, there is no loss of generality in assuming 01 = 0. 
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We also have 

p&“x) = PO(“), 

p&L2x) = U”&(X). 

Suppose k # F, , F,; choose a E k, zc f  0, such that u2 # 1, i.e.: 
w = E - 21-l # 0. Then for x E k 

/Jo(“) = po(+x) = po(~2x) - &Jo(“) + p@(u-24 

= PO(X) - h%c4 + PO(X) = 0. 

Therefore, pa(~) = YX with y  = 0 unless k = F, or F, - I f  k = F, we may take 

so that 

A” - A = (EX ;;,; 

then up to cohomology we see there is no loss of generality in assuming y  = 0 

unless k = F, . 
The condition on pr implies 

pl(x”) = 6x2 

so that 

and 

q1 + 4” = Pl((l + x)“) = Pi(l) + 2&) + ,P&“> 
= s + 244 + 6x2 

2&X) = 26x. 

Therefore ifp # 2, pr(x) = 6x. On the other hand, ifp = 2 and k is perfect, 
every element is a square and again we have pr(x) = 8~. It is easy to construct 
other examples if k is not perfect. 

I f  p f  2 let 

( 
-+s 0, 

A= o i * 6. 

so that 

A” - A = (0” “;j; 

then, up to cohomology, there is no loss of generality in assuming 6 = 8 
unless p = 2. 
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Ifp = 2 in the case of cohomology into g we can take 

so that 

and then in this case too we may assume S = 0. 
We now have 

with y  = 0 unless k = F3, ,fl = 0 unless k = FS, p1 3 0 unless p = 2. 
If  p = 2 and k is perfect, pr(x) = Sx with S = 0 for cohomology into g. 

Moreover, iff(x) is to be of trace 0, y  = 0. Thus 

PROPOSITION 1. For n = 2, H,,l(G, g) = 0 provided k is perfect ifp = 2, 
except for k = F3 or F, in which cases H,,l(G, g) g k. 

Also ;fp # 2, H,,l(G, g,,) = 0, except for k = F, . In the cases k = F, OY 
p = 2 and k peqect, H,1(G, Q,,) E k. 

We now assume n > 3 and k # F, . Let 

0 %I 

with qua --- u, = 1. The condition 

f(P) =fW 
implies 

First consider the case IZ = 3, and let h # p, ~1 so that {A, p, PL) = (1, 2, 3). 
Suppose i = p; then 
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Taking up = y, uA =y-l, u, = 1, x = 1 we get 

f$yy) = c$.u;“r 

I 

e (i = ~1, 
= $3 (i = ~1, 

$YY2 (j = A). 

Then c$u,%@? = c~u,,u~~x~. Since U~U~U~ = 1, taking UP = t # 0, 1, this 

reduces to 

c$(l -- P) = 0. 

Thus if k # F, , c$ = 0. 
Suppose i = p; then 

f~/+4y;‘x) = u,uy-lf$yx) 

so that, for j # P, 

Therefore 

f$ =0 if k f: F3, 

f$=O if K#f~q. 

Also, 

Suppose i = A; then 

fgyupu;I1x) = u$L;*f$yx). 

Takingu,=l,u,=y-l,u,i=y,x=l,weget 

f?(y) = c$yzg 

(i = PL 

(j = P>, 

(j = A). 
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Then c$&u;% = u,&%$$x. Since up,+@ e 1, taking up = t # 0, 1, thiS 
reduces to 

c2(1 - t3) = 0. 

Thus if K # F, , then czz = 0. 
Also, c~~u,,“u,~x~ = u,p~~c~~x2 and again; ;if k # F4, t{f = 0. 
Combining this with the conditions already obtained for f pp to be a co- 

cycle we conclude 

fZ(x) = q$ (6 = 0 if k # F4), 

f;;(x) = /$x2 (4; =0 if k #F& 

f;;(x) = 0 otherwise. 

Let 

g,=I+xe,, 

so that 

Therefore 

g2=I+ye12, g3 = I + xm3 , 

&a = mT2.i?3 * 

f(g,) +fwga =f(g,) +f(g,P +fk3)g1gs- 

It is easily verified that this condition gives 

f:,"(x) = $x2 (c:,” = o if R # I?.& 

f,";(x) = c;;2 (t$3,=0 if K#F.J, 

j-$(x) = 0 otherwise, 

along with 

Taking 
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and setting&) = Ag -- A, we get 

f:(x) = c;:x, J;;(x) = - c$, f&) = - 2$X 

and& = 0 otherwise. Hence, up to cohomology, there is no loss of generality 
in assuming c:i = 0. 

whereas ifp - 3, let a = c:i and 

Then iff(g) = Ag - A, we get 

f:(x) = c$&, f:(x) = c& j$ = 0 otherwise. 

We now have 

0 ax2 +@Yz +yx 

with OL = 0, ,E = 0 unless k = F, , and y  = 0 unless p = 3, and we are in 
the case of go . 

PROPOSITION 2. For n = 3, and k # F, , if p # 3 and k # F, ) 

f&,YG, 9) = f&YG, go> = 0. 
1. P =3, 

W(G, 9) 5 0, &,YG, go) rz k. 
1-k =F4, 

H,,l(G, g) = H,,l(G, go) z kc2). 

Now assume n > 4. Taking u, = up = 1, we have 

(Ut - Uj) f$ (x) = 0. 

It follows easily that, except in the case p = 4 and k = F, , we must have 

ff+O for ifp, P or i + P, P. 
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We also easily deduce f  E(x) = I$, , &x aswellasc$=Oifk#Fs.Thecon- 
ditions 

f  ;xx + Y) =fK(x) +f 3.Y) - qt$!Y, 

imply 

fE(x +Y) =fgw +fgxY) + @Y, 

The relation 

f  gt(x + y) =f E(x) +f:“,(Y) + (c$ - $3 XY + gxy - CY - XY”) 

then gives 

f$=O, f$+0, fZ=O. 

Since for i # p, p we have 

f  2(x +Y) =.f:: (x) +K’ (Y) 

we also have f  zf = 0 in the case n = 4 and k = Fs . 
Finally then, we must have 

f P”(x) = cgxep, , 

except in the case n = 4 and k = Fs , in which case we can conclude 

f”“(x) = x{c~e,, + 4%, + @dl 

where {p, p, t-r, A] = {1,2,3,4). 
Suppose p < X < p and let 

g, = I + xeA, , g2 =I+ye,A, g3 = I + Ye,, 

so that 

g2g1 =‘&g2P; l 

The cocycle condition 

fk2) +.f(gJg2 =f(&) +fk21g1 +f(&)glu” 
then gives 

c;; = c$ f  c:a 

and, in the case n = 4 and k = F3, 

f? = 0, 

except for f  f:. 
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The first condition may be reformulated as 

c”d”, = cz - c;“, . 

Define (Y and /I as follows: 

Ci= 

1 

0 if Pin, 

--tF& if p-m; 

8i -p 

t 

if PI% 

0 if pT It. 

Define A = (aij) as follows: 

aii = &j(Ct + C:j + Si$)m 

Then iff(g) = Ag - A, we have 

fP”(x) = c~~xe,, + S&3xGPpnnepn 

so that, up to cohomology, we may assume 

fp+> = s,ipe,, 

with y = 0 if p 7 n, except the case n = 4, k = F3 , (p, ,u) = (2,3), where 
we have 

f”(x) = Sxe,, a 

If p 1 n, let A = ye,, andf(g) = An - A. Then 

p(x) = Spnyxepn . 

PROPOSITION 3. For n = 4 and k + I;, , g k # F, , 

H,$(G, g) = 0. 

If p f 2, H,,l(G, go) = 0 and ifp = 2, H,I(G, 90) z k. If k = F, , 

H,I(G, g) = fQ(G, s,) es k. 

PROPOSITION 4. For R > 5 and k # F, , 

H,1(G, g) = 0. 
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Ifp -Y n, Hi(G, go) = 0 and ifp j n, 

H,,l(G, go) s A. 

In the case k = F, the torus H is trivial and so compatibility with the 
action of H gives no conditions on the cocycles. However, every function 
f : F, ---f F, satisfyingf(0) = 0 is simply of the formf(&) = cx (c = 0 or l), 
so that (in the earlier notation) 

or 

for a constant matrix cpp. 
Thusfpp(X + y) =~w(x) +p(y) and the cocycle condition then implies 

cpp must commute with epW. Hence 

NOW let h -=z P, p -=c o, 0 # A, p # P and 

gl = I i- elp , g, = I + epo . 

Then grg, = g,g, so that 

fkl> + f(g21g1 = f&4 +.fwg2 

or 
fkl>“a + fkl) =fk2>g1 + f(g2h 

which may be written 

[%o 2 c”*] + ~$2~~ = [e,, ,y”l + cfihp . 

Hence 

If c = p this reduces to 
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If p = A this gives no information; assume then p # X. Since this is symmetric 

in p and A, we might as well assume p < X < p. Then 

Similarly, considering the case X = p, u < p (and replacing (T by A), we 
have for p < h < p 

Finally, in the case u # p and p # X we obtain 

Now suppose p < X < ~1 and take 

gl = I + eAp , g2=I+epd, g,=I+e 
PP *  

Then gig, -glggz so that 

f  w + fkJgz =f(g1) + f(gJgl + fk3F 

or 

We have 

ftg3)g1ga = fkl) + fkl)g’ + f  w + fkJgL* 

J(g,) +f(gdg2 = [epA , ~“‘1 + c$e,, 

= is; c$eia + La &ee,j + (c:g + & + 43 eoa 

= c$eAa + C &e,j + (c$ i 42 + 43 epA 
j#h 
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and so 

f(g3)gl”? = c” + (q$ + 43 e,, + (4!i + $3 e+ 

+ (~2 + $ + 6 + 43 cop - 

Therefore, 
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Hence we must have 
4; = &-P” w for i f p, A, 

CA? = pf 63 b-3 for j f A, i-4 

c;; = 0 for i + pI A, ps 

c$ = c$ + cg , 

c”,~t-&+c$=~+4~+c:!L 

4; + c”,“, + c$ = 6 + cg& + 6; ) 

c;xn + c$l = c: f P + cpp + c;; + cpp pi pp AP ) 

c’l? = 0 23 for i=#p,c”, j+p,h i#j. 

From the first two equations we obtain 

so that c;? = c$ + cz = cz + c% = 0, and we have c$ = 0 for i # p, p. 

The other relations reduce to 
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For p -=c p, h < U, (p, P, A, 4 distinct, 

p = p 
w AP *  

Finally, 

P.P,+l 
Gj = SliSnjCg;p+l (i f  p,j # P + 1, i #j>, 

P-P+1 D*o+l 
Cii = cjj (i # p, p + Lj # Pa P + 1). 

Define 
.pp+l 

i 
for 

ap = 
zn for 

I 
li 

Cli 
Yij = -0 

in 
Gin Efj = 
0 

Then we may deduce 

for 
for 

for 
for 

p > 1, 
p = 1; 

p < % 
p =n; 

i> 1, 
i= 1; 

j < w, 
j = n. 

‘Yip 
t 

+ Pi, + s,*,-1) % for 
Eip = 

Yip for 

Also, 

It now follows that 

i > p, 
1 <i<p<n. 

for i # p, j # PL, 
for i# p, j = b 
for i # P, j = cLy 
for i=p, j=p. 

Define A as follows: 

$- (Ypp + Ypp + Ypl + YPP + YPl> IPP 

+ S,.,+1{Q + (1 + S,l) (1 + S/m> BPed 

+ S,,ge,, + @,I 4 %2> W2@ - 

a, = 
I 

Yij + silEIJ + si$jlal for i #i 
yii + yil -+ sixq + a + &lb for ’ i =/. 
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Then Tr (A) = 2(yit + ril) + ~1~ + na + b so that, if IE is odd, we may 
select b = 0 and a such that Tr (A) = 0. However, if n is even we may only 
force one of b and Tr (A) to be 0. 

We now have 

Hence, up to cohomology, we may assume with no loss of generality, 

with b = 0 if n is odd or if we are in the case of cohomology into g. Moreover, 
it is easy to verify that for distinct choices of cyl ,..., 01,~~ , p2 ,..., )3nw2 , b, we 
get non-cohomologous cocycles. If we insistf(x) be of trace 0, if n is odd we 
simply have 

PROPOSITION 5. For k = F,, 

H,,l(G, g) gg k@‘-). 

If 2fn, 

and if 2 \ n 

Hol(G, g,,) s kc’-) 

f&,l(G, g,,) s k(an-3). 

We summarize Propositions l-5. 

THEOREM. Assukzg k perfect for the case TZ = 2, p = 2, we have 

and if pfn 

K,YG, 9) = 0, 

f&YG, cd = 0, 
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with th.e following table of exceptiom. 

n 

2 
2 
3 
4 

odd 
even 

k d = dim, HO1(G, g) 

F3 1 
FS 1 
F4 2 
F3 1 
FZ 211 - 4 
6 2n - 4 

ACKNOWLEDGMENT 

4 = dim, f&YG, goI 

0 
1 
2 
1 

n-3 
272 - 3 

The author expresses his appreciation to Dr. H. Bass for many stimulating con- 
versations. 


