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a b s t r a c t

For a discrete time second-order stationary process, the Levinson–Durbin recursion is used
to determine the coefficients of the best linear predictor of the observation at time k + 1,
given k previous observations, best in the sense of minimizing the mean square error.
The coefficients determined by the recursion define a Levinson–Durbin sequence. We also
define a generalized Levinson–Durbin sequence and note that binomial coefficients form a
special case of a generalized Levinson–Durbin sequence. All generalized Levinson–Durbin
sequences are shown to obey summation formulas which generalize formulas satisfied
by binomial coefficients. Levinson–Durbin sequences arise in the construction of several
autoregressive model coefficient estimators. The least squares autoregressive estimator
does not give rise to a Levinson–Durbin sequence, but least squares fixed point processes,
which yield least squares estimates of the coefficients unbiased to order 1/T , where T is
the sample length, can be combined to construct a Levinson–Durbin sequence. By contrast,
analogous fixed point processes arising from the Yule–Walker estimator do not combine
to construct a Levinson–Durbin sequence, although the Yule–Walker estimator itself does
determine a Levinson–Durbin sequence. The least squares and Yule–Walker fixed point
processes are further studied when the mean of the process is a polynomial time trend
that is estimated by least squares.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Levinson–Durbin recursion has long been a fixture in time series analysis. It is commonly viewed in two
contexts. One is that of prediction for a discrete time, second-order stationary process {yt} with known structure. Given
y1, . . . , yk, for any k ≥ 1 the recursion determines the coefficients αj,k, j = 1, . . . , k, of the best linear predictor of
yk+1,

ŷk+1 = −α1,kyk − · · · − αk,ky1, (1.1)

best in the sense ofminimizing themean square error. The recursion beginswith specification ofα1,1, and at thenth stage one
obtainsα1,n, . . . , αn,n. Themean square error of the predictor is also specified at each step. Levinson [1] devised the recursion
to give a simple procedure for construction of the best linear predictor when the structure of the process is known. His paper
was reprinted as Appendix B toWiener’smonograph on time series [2].Wiener’swork had originally been issued in February
1942 as a classified government report. For some details of this history see [3]. The second context for the recursion is that
of estimation of the coefficients of an autoregressive model of finite order, given data y1, . . . , yT . The sample Yule–Walker
equations are commonly used to construct an estimator of the coefficients. Bartlett [4, pp. 264–265], Daniels [5, p. 183] and
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Durbin [6] all derived the recursion as a simple method of solving the sample Yule–Walker equations, which are linear in
the coefficients.
The recursion determines a double sequence αj,n, j = 1, . . . , n, n = 1, 2, . . .. The sequence αn,n, n = 1, 2, . . . ,

determines all of the values αj,n.
In this paper we study properties of sequences produced by the Levinson–Durbin recursion, and we further study

generalization of such sequences.

Definition 1. αj,n, j = 1, . . . , n, n = 1, 2, . . ., is a Levinson–Durbin sequence if the coefficients, all real-valued, satisfy

αj,n = αj,n−1 + αn,nαn−j,n−1, j = 1, . . . , n− 1, n = 2, 3, . . . , (1.2)

and ∣∣αn,n∣∣ < 1, n = 1, 2, . . . . (1.3)

If (1.2) holds and the αn,n’s are not subject to (1.3), we say that the αj,n’s form a generalized Levinson–Durbin sequence.

For the prediction problem the recursion (1.2) is used together with (1.3) and the −αn,n’s defined to be the partial
correlations of the process being predicted. In the context of autoregressive estimation, the Yule–Walker estimator uses
(1.2) and (1.3) and defines the−αn,n’s to be the sample partial correlations. Other estimators (the Burg and Kay procedures,
mentioned below) employ (1.2) and (1.3) and define the αn,n’s differently. A generalized Levinson–Durbin sequence allows
arbitrary specification of the αn,n’s. If (1.3) does hold, the sequence of−αn,n’s forms the partial correlation function for some
second-order stationary process.
Levinson–Durbin sequences arise, e.g., from (i) Yule–Walker and tapered Yule–Walker estimation of the coefficients of an

autoregressive process, (ii) fixed point models arising in least squares estimation of the autoregressive process coefficients,
(iii) estimation of the autoregressive process coefficients by Burg’s method and (iv) estimation of the autoregressive process
coefficients by Kay’s method [7].
If αn,n = 1 for each n, then (1.2) generates the binomial coefficients. Taking into account the symmetric structure

of binomial coefficients, we see that (1.2) is simply an expression of Pascal’s triangle if αn,n = 1 for each n. The
binomial coefficients also arise as the limit of a sequence of fixed point models determined by least squares estimation
of autoregressive process coefficients, as noted in [8]. This will be discussed in Section 3.
The Yule–Walker estimator of the coefficients of an autoregressive process of known finite order p is determined by a

Levinson–Durbin recursion which defines a sequence for which αj,n = αj,p, j = 1, . . . , p, and αj,n = 0, j = p + 1, . . . , n,
for all n > p. The values −αn,n, n = 1, . . . , p, are the Yule–Walker sample partial correlations. For sample length T the
order 1/T bias of the Yule–Walker estimator has been discussed in [9,10]. For each value of p numerical calculations show
that there is a unique autoregressive process of order p (unique up to scale) for which the order 1/T bias of the Yule–Walker
estimator is 0. This process is called a fixed point process because it is given by the fixed point of a contractionmapping. This
result may be extended to the case where a polynomial trend in time is estimated by least squares and the Yule–Walker
estimator is subsequently calculated from the trend residuals. The Yule–Walker fixed point processes differ according to
the autoregressive order p and the degree of the estimated polynomial trend, and they can be determined numerically
by iterating the contraction mappings. Although the Yule–Walker estimator itself yields a Levinson–Durbin sequence, it is
interesting that the Yule–Walker fixed point processes for a given degree of estimated polynomial trend do not combine
to form a Levinson–Durbin sequence. These comments also hold for the tapered Yule–Walker estimator, with the proviso
that the fixed point processes depend upon the specific data taper chosen. The tapered Yule–Walker estimator is considered
in [11,12].
The order 1/T bias of the least squares estimator of the coefficients of an autoregressive process of known finite order

p has been derived in [9,10,13]. The bias expression is linear in the autoregressive parameters and defines a contraction
mapping. A fixed point process which is unique up to scale and for which the least squares estimator is unbiased to order
1/T can be derived analytically for each autoregressive order p and degree of estimated polynomial trend in time. Moreover,
for eachdegree of estimatedpolynomial trend, the fixedpoint processes forma sequence of projections froman infinite order
fixed point process. In contrast to the Yule–Walker situation, the least squares estimator does not yield a Levinson–Durbin
sequence, but the least squares fixed point processes for a given degree of estimated polynomial trend do combine to form
a Levinson–Durbin sequence.
The Burg and Kay estimators both generate Levinson–Durbin sequences. Burg’s algorithm determines the αn,n’s by

minimizing a sequence of sums of squares of forward and backward one-step prediction errors. The remaining αj,n values
are then determined from (1.2). For a description of the Burg estimator see, for example, [14, pp. 147–8]. Kay’s estimator [7]
of the autoregressive coefficients is a recursive maximum likelihood procedure. The parameter αn,n is estimated at the nth
stage by maximizing a partial Gaussian likelihood and then (1.2) is applied to determine α1,n, . . . , αn−1,n.
This paper is organized as follows. In Section 2 some properties of generalized Levinson–Durbin sequences are presented.

These results generalize relations satisfied by binomial coefficients. It is also noted that the Levinson–Durbin sequences
define minimum phase filters. Least squares estimation bias and least squares fixed point processes are described in
Section 3. Section 4 is devoted to Yule–Walker estimation bias and fixed point processes. Concluding discussion appears
in Section 5, and proofs are in Section 6.
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2. Properties of generalized Levinson–Durbin sequences

2.1. Cholesky factorization

Let {yt} be a discrete time, second-order stationary process with positive definite covariance sequence γ (j), j =
0,±1,±2, . . .. Let 0n denote the covariance matrix of (y1, . . . , yn)′ and γn = (γ (1), . . . , γ (n))′, and let αn =
(α1,n, . . . , αn,n)

′ be the vector of coefficients specifying the best linear predictor of yn+1, as indicated in (1.1), given
knowledge of y1, . . . , yn. Then 0nαn = −γn, and the Levinson–Durbin recursion is given by (1.2) and

αn,n = −
γ (n)+ α1,n−1γ (n− 1)+ · · · + αn−1,n−1γ (1)
γ (0)+ α1,n−1γ (1)+ · · · + αn−1,n−1γ (n− 1)

.

See, e.g., (7) in [6]. It is well-known that these αn,n’s satisfy (1.3) and that the αj,n’s are used to form the lower matrix in the
Cholesky factorization of the inverse of 0n.

2.2. Minimum phase

If
{
αj,n
}
is a generalized Levinson–Durbin sequence, that is, it satisfies (1.2), define the polynomials

An(z) =
n∑
j=0

αj,nzn−j, n = 1, 2, . . . , (2.1)

where α0,n = 1, n ≥ 1. From (1.2) it follows that

An(z) = zAn−1(z)+ αn,nzn−1An−1(z−1). (2.2)

Proposition 1. If
{
αj,n
}
is a Levinson–Durbin sequence, then the zeros of the polynomials An(z) lie strictly inside the unit circle

|z| = 1.

This result is well-known. The proof can be given using induction on n. It follows from (2.2) and application of Rouché’s
theorem and is identical to the proof of Theorem 5 in [8]. The result states that An(z) determines a minimum phase filter for
each n.
In the context of parametrization of an autoregressive process of order p, [15] considers the set of all coefficient vectors

(α1,p, . . . , αp,p) forwhich the zeros of Ap(z) lie strictly inside |z| = 1. Themappingwhich transforms such (α1,p, . . . , αp,p) to
the partial correlations (α1,1, . . . , αp,p) is shown to be one-to-one and onto (−1, 1)p. Moreover, themapping and its inverse
are both continuously differentiable. Thus, while it is difficult to specify criteria for the zeros of Ap(z) to lie strictly inside
|z| = 1 in terms of the coefficients α1,p, . . . , αp,p, it is trivial to do so in terms of the partial correlations. Criteria in terms of
the coefficient vectors and explicit results for p = 1, . . . , 4 are given in [16].

2.3. Relations for generalized Levinson–Durbin sequences

In this section we state some summation formulas satisfied by generalized Levinson–Durbin sequences. They are
generalizations of formulas for binomial coefficients. A list of binomial coefficient summations is given in Section 0.15 of [17],
for example. First we note that if none of the partial correlations equals − 1 and if α1,1 is not equal to 1/n for n = 2, 3, . . . ,
a symmetric generalized Levinson–Durbin sequence has trivial structure.

Theorem 1. Suppose
{
αj,n
}
is a generalized Levinson–Durbin sequence for which αj,n = αn−j,n, j = 1, . . . , n−1, n = 2, 3, . . ..

If αn,n 6= 1, n = 1, 2, . . . , then αj,n = α1,1/(1− (n− 1)α1,1), j = 1, . . . , n, n = 2, 3, . . ., for any choice of α1,1 not equal to
1/k, k = 1, 2, . . ..

Some binomial coefficient summation formulas are simple and widely used. The next theorem gives the generalizations
of
∑n
j=0

(
n
j

)
= 2n and

∑n
j=0(−1)

j
(
n
j

)
= 0.

Theorem 2. If
{
αj,n
}
is a generalized Levinson–Durbin sequence,

n∑
j=0

αj,n =

n∏
j=1

(1+ αj,j), n = 1, 2, . . . , (2.3)

n∑
j=0

(−1)jαjn =
n∏
j=1

{1+ (−1)jαjj}, n = 1, 2, . . . , (2.4)

where α0,n = 1.

Formula (2.3) was given by Daniels [5]; see (11.4) and the expression directly above it in his paper.
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Remark 1. Theorem 2 indicates that
∑n
j=0 αj,n > 0 and

∑n
j=0(−1)

jαj,n > 0 are necessary conditions for
{
αj,n
}
to be a

Levinson–Durbin sequence.
Generalizations of the binomial coefficient summations

∑n
j=1 j

(
n
j

)
= n2n−1 and

∑n
j=1(−1)

j−1j
(
n
j

)
= 0 can also be

expressed in terms of αj,j, j = 1, 2, . . . , n.

Theorem 3. If
{
αj,n
}
is a generalized Levinson–Durbin sequence,

n∑
j=1

jαj,n =
n∑
l=1

l−1∏
j=1

(1+ αj,j)lαl,l
n∏

k=l+1

(1− αk,k), n = 1, 2, . . . , (2.5)

n∑
j=1

(−1)j−1jαj,n =
n∑
l=1

l−1∏
j=1

{1+ (−1)jαj,j}(−1)l−1lαl,l
n∏

k=l+1

{1− (−1)kαk,k}, n = 1, 2, . . . , (2.6)

where
∏0
1(·) =

∏n
n+1(·) = 1.

Each of the binomial sums 1+
(
n
2

)
+

(
n
4

)
+ · · · and

(
n
1

)
+

(
n
3

)
+ · · · is equal to 2n−1. Define the decomposition

r∏
k=1

(1+ xk) =
r∏
k=1

(even)(1+ xk)+
r∏
k=1

(odd)(1+ xk), (2.7)

where
∏
(even)

(∏
(odd)

)
is the sum of terms from the left-hand side of (2.7), each of which is the product of an even (odd)

number of xk’s. For example, if r = 4,
∏
(even) is 1 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x1x2x3x4 and

∏
(odd) is

x1 + x2 + x3 + x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4.

Theorem 4. If
{
αi,n
}
is a generalized Levinson–Durbin sequence,

S1,n := 1+ α2,n + α4,n + · · · =

[
1
2 n
]∏

j=1

(1+ α2j,2j)

[
1
2 (n+1)

]∏
k=1

(even)(1+ α2k−1,2k−1), n = 1, 2, . . . , (2.8)

S2,n := α1,n + α3,n + · · · =

[
1
2 n
]∏

j=1

(1+ α2j,2j)

[
1
2 (n+1)

]∏
k=1

(odd)(1+ α2k−1,2k−1), n = 1, 2, . . . , (2.9)

where αj,n = 0 for j > n,
∏0
1(·) = 1 and [x] denotes the integer part of x.

2.4. Autoregressive processes of finite order

An order p autoregressive process {yt}, AR(p), is defined by
p∑
j=0

αj(yt−j − µ) = εt , t = 0,±1,±2, . . . , (2.10)

where µ = E(yt), α1, . . . , αp are the autoregressive coefficients, α0 = 1, and {εt} is an iid sequence with mean 0 and
variance σ 2. In addition, the zeros of Ap(z) defined at (2.1) are assumed to lie strictly inside |z| = 1. Calculation of the best
linear predictor of yn+1, given y1, . . . , yn, n = 1, 2, . . . , leads to a Levinson–Durbin sequence with αj,p = αj, j = 1, . . . , p,
and for all n > p, αj,n = αj, j = 1, . . . , p, and αj,n = 0, j = p + 1, . . . , n. The partial correlation at lag p is −αp, and all
partial correlations at lags greater than p are 0. The Yule–Walker equations for the AR(p) process (2.10) are

p∑
l=0

αlγ (j− l) = 0, j = 1, 2, . . . . (2.11)

3. Least squares estimation

Let y1, . . . , yT be observations from the AR(p) process defined at (2.10). We deal with a constant mean µ, as specified in
(2.10), and we also allow the mean to be a polynomial time trend, µ(t) =

∑k−1
j=0 βjt

j, for t = 1, . . . , T . Define covariance
estimators by

ci,j =
1

T − p

T∑
t=p+1

(yt−i − µ)(yt−j − µ), i, j = 0, 1, . . . , p, (3.1)
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ifµ (orµ(t)) is known. If themean is unknown, we replaceµ in (3.1) by the samplemean ȳ or by the least squares estimator
µ̂(t) of the polynomial time trend. Let αp = (α1, . . . , αp)′. The least squares estimator of αp is α̂kp = −C

−1
p cp, where Cp is

the p× pmatrix with ci,j in row i and column j, i, j = 1, . . . , p, and cp is the p× 1 vector with c0,i in row i, i = 1, . . . , p. Here
the superscript k indicates that the degree of the estimated polynomial time trend is k − 1, and k = 0 is used to designate
a known mean. As p varies, this estimator does not determine a Levinson–Durbin sequence, because the coefficients of the
estimator do not generally satisfy Proposition 1.

3.1. The bias approximation

To ensure the validity of the bias approximations used in this paper we assume that the errors εt have finite moment of
order 16 and that

E(‖C−1p − 0
−1
p ‖

k) = O(1) as T →∞ for k ≤ 8; (3.2)

see [18]. Here ‖A‖ is the largest absolute eigenvalue of A and 0p is the covariance matrix of (y1, . . . , yp)′. Also see [19],
whose assumption (A3) is stronger than (3.2).
The details following in this section were given explicitly in [8] for processes with zeromean and constant mean, and are

presented here for the general case of a polynomial time trend for reference in the proofs of Theorem 6 and Lemma 2.
Let ej be the (p + 1) × 1 vector with 1’s in rows j + 3, j + 5, . . . , p + 1 − j and 0’s elsewhere, dj the (p + 1) × 1

vector with 1’s in rows j + 2, j + 4, . . . , p + 1 − j and 0’s elsewhere, and 0p+1 the (p + 1) × 1 vector of 0’s. Define
the (p + 1) × (p + 1) matrices B1p = diag (0, 1, 2, . . . , p); B2p = [−e0,−e1, . . . ,−ep/2−1, 0p+1, ep/2−1, . . . , e1, e0] if
p is even and B2p = [−d1,−d2, . . . ,−d(p−1)/2, 0p+1, d(p−1)/2, . . . , d1, d0] if p is odd; B3p with (i, j) entry equal to −1 for
j < i ≤ p+ 2− j, 1 for p+ 2− j < i ≤ j, and 0 otherwise, i, j = 1, . . . , p+ 1; and Bkp = B1p + B2p + kB3p, where k is the
number of unknown parameters in the polynomial time trend. For example,

Bk7 =



0 0 0 0 0 0 0 0
−k 1 0 0 0 0 0 k+ 1
−k− 1 −k 2 0 0 0 k+ 1 k
−k −k− 1 −k 3 0 k+ 1 k k+ 1
−k− 1 −k −k− 1 −k k+ 5 k k+ 1 k
−k −k− 1 −k 0 0 k+ 6 k k+ 1
−k− 1 −k 0 0 0 0 k+ 7 k
−k 0 0 0 0 0 0 k+ 8


,

Bk8 =



0 0 0 0 0 0 0 0 0
−k 1 0 0 0 0 0 0 k
−k− 1 −k 2 0 0 0 0 k k+ 1
−k −k− 1 −k 3 0 0 k k+ 1 k
−k− 1 −k −k− 1 −k 4 k k+ 1 k k+ 1
−k −k− 1 −k −k− 1 0 k+ 6 k k+ 1 k
−k− 1 −k −k− 1 0 0 0 k+ 7 k k+ 1
−k −k− 1 0 0 0 0 0 k+ 8 k
−k− 1 0 0 0 0 0 0 0 k+ 9


.

The approximate bias of α̂kp is a linear function of the αj’s. It is given by(
1
E(α̂kp)

)
= (Ip+1 − Bkp/T )

(
1
αp

)
+ o(1/T ), (3.3)

where Ip+1 is the (p+ 1)× (p+ 1) identity matrix and here αp denotes the p× 1 vector of autoregressive coefficients. For
details of this bias derivation see [10,8,13]. Estimation of the polynomial time trend by least squares contributes the term
involving kB3p to the bias. This follows from Theorems 10.32 and 10.34 in [20]. See also [21, p. 1177].

3.2. Least squares fixed point model coefficients

For each order p of the autoregressive process and each degree k − 1 of the polynomial time trend, up to scale there is
a unique autoregressive model for which the least squares estimator is unbiased to terms of order 1/T . This is stated in the
following theorem, which was given in [8] for k = 0, 1.

Theorem 5. If T > (p + k + 1)/2, the expectation mapping Ip+1 − Bkp/T is a contraction with fixed point (1, α̃
k′
p )
′ satisfying

(Ip+1 − Bkp/T )(1, α̃
k′
p )
′
= (1, α̃k′p )

′, k = 0, 1, . . . , p = 1, 2, . . .. The fixed point for which the first coordinate is equal to 1 is
unique.
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Remark 2. The fixed point vector α̃kp is obtained by solving the equations

Bkp

(
1
α̃kp

)
= 0p+1. (3.4)

Define

Bkp =
(
0 0′p
bkp Bk22p

)
, (3.5)

where Bk22p is p× p. Then (3.4) is equivalent to

Bk22pα̃
k
p = −b

k
p, (3.6)

where, for p = 1,−bkp is the scalar k, and

− bkp+1 = (−b
k′
p , fp(k))

′, (3.7)

where fp(k) is k + 1 if p is odd and is k if p is even. In addition, the matrices Bk22p are also related for successive values of p.
Let Jp denote the p× p permutation matrix with 1’s along the main skew diagonal and 0’s elsewhere. Then

Bk22,p+1 =
(
Bk22p − fp(k)Jp −Jpbkp

0′p p+ k+ 2

)
. (3.8)

The equations (3.6) are equivalent to the Yule–Walker equations for the fixed point coefficient vector α̃kp . Denote by γ̃
k
p (j)

the lag j covariance of the AR(p) process with the fixed point coefficient vector, and let 0̃kp be the p × p covariance matrix
for this process and γ̃ kp = (γ̃

k
p (1), . . . , γ̃

k
p (p))

′. The Yule–Walker equations are 0̃kpα̃
k
p = −γ̃

k
p , and if we premultiply them

by Bk22p
(
0̃kp
)−1
we obtain (3.6).

For each value of k the coefficients of the least squares fixed point models implied by Theorem 5 combine to form a
Levinson–Durbin sequence. For k = 0 and k = 1 these sequences were given in [8]. Theorem 5 implies that the bias of least
squares estimation of the autoregressive coefficients pulls the estimate toward the fixed point coefficient vector.
Parts of the next theorem were given in [8]. The expressions for α̃kp,p for k = 0 and 1 can be deduced from Theorems 2

and 3, respectively, in [8], and the Levinson–Durbin structure cited in the theorem was proved by a different method for
k = 1 in Lemma 5 of [8].

Theorem 6. Let α̃kp = (α̃
k
1,p, . . . , α̃

k
p,p)
′ be the fixed point defined in Theorem 5. For each k = 0, 1, 2, . . . , the coefficients of the

autoregressive models for which least squares estimates are unbiased to terms of order 1/T combine to form a Levinson–Durbin
sequence {α̃kj,p, j = 1, . . . , p, p = 1, 2, . . .} with

α̃kp,p =
k

p+ k+ 1
, p odd,

=
k+ 1
p+ k+ 1

, p even.

Remark 3. As k→∞, α̃kj,p converges to the binomial coefficient
(
p
j

)
. This was noted in [8].

Table 1 displays the coefficient vectors for the least squares fixed pointmodels for p = 1, . . . , 6. Each of the coefficients is
a ratio of polynomials in k, the number of parameters in the polynomial time trend. As p increases, some of the polynomials
in k in the numerator of α̃kj,p become complicated, and there is no evident completely general pattern.

For a fixed p the binomial coefficients satisfy

j
(
p
j

)
= (p+ 1− j)

(
p

p+ 1− j

)
,

j = 1, . . . , p. According to the following lemma, the least squares fixed point coefficients satisfy this same condition for p
odd, but for p even there is a more complicated relation among the coefficients. The lemma will be proved and will be used
in the proof of Theorem 6.
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Table 1
Least squares fixed point parameter vectors for p = 1, . . . , 6.

p α̃k′p

1
( k
k+2

)
2

( 2k
k+3 ,

k+1
k+3

)
3

(
3k
k+4 ,

3k2+5k+4
(k+3)(k+4) ,

k
k+4

)
4

(
4k
k+5 ,

2(3k2+5k+4)
(k+4)(k+5) ,

4k(k+2)
(k+4)(k+5) ,

k+1
k+5

)
5

(
5k
k+6 ,

2(5k2+7k+6)
(k+5)(k+6) ,

2k(5k2+21k+28)
(k+4)(k+5)(k+6) ,

5k2+7k+6
(k+5)(k+6) ,

k
k+6

)
6

(
6k
k+7 ,

3(5k2+7k+6)
(k+6)(k+7) ,

4k(5k2+21k+28)
(k+5)(k+6)(k+7) ,

3(k+3)(5k2+7k+6)
(k+5)(k+6)(k+7) ,

6k(k+2)
(k+6)(k+7) ,

k+1
k+7

)

Lemma 1. If p is odd,

jα̃kj,p − (p+ 1− j)α̃
k
p+1−j,p = 0, j = 1, . . . , p. (3.9)

If p is even,

jα̃kj,p − (p+ 2− j)α̃
k
p+1−j,p +

j−1∑
i=0

(−1)j−1−iα̃ki,p +
j−2∑
i=0

(−1)j−2−iα̃kp−i,p = 0, j = 1, . . . , p, (3.10)

where α̃k0,p = 1 and
∑
−1
0 (·) = 0.

Remark 4. Let Ãkp(z) be defined as in (2.1) for the least squares fixed point model of order p and with degree k − 1 for
the polynomial time trend. Numerical calculations show that the zeros of Ãkp(z) occur in complex pairs except for a single
real zero which is negative for p odd. For k = 0 their arguments are distributed approximately evenly spaced around
the circle. The zeros increase in modulus as p increases, and they tend toward z = −1 as k increases. The zeros for
(p, k) = (4, 0), (4, 1), (20, 0) and (20, 1) are pictured in Figure 1 of [8].

4. Yule–Walker estimation

Although it can have substantial bias [9], the Yule–Walker estimator is commonly used by practitioners, themain reasons
apparently being that it is easy to compute and its coefficients determine a minimum phase filter. The estimator is obtained
from the biased covariance estimators

gj =
1
T

T−j∑
t=1

(yt − µ)(yt+j − µ), j = 0, 1, . . . , p, (4.1)

forµ (orµ(t)) known. If the mean is unknown, we replaceµ in (4.1) by the sample mean ȳ or by the least squares estimator
µ̂(t) of the trend. The Yule–Walker estimator of the parameter vector αp is the solution of the sample analogue of the
Eq. (2.11) and is given by α̂kYWp = −G−1p gp, where Gp is the p × p Toeplitz matrix with g|i−j| in row i and column j, i,
j = 1, . . . , p, and gp denotes the p×1 vectorwith gi in row i, i = 1, . . . , p. Aswith the notation for the least squares estimator,
the superscript k indicates that the degree of the estimated polynomial time trend is k − 1, and k = 0 designates a known
mean.
The expected value of α̂kYWp to terms of order 1/T is(

1
E(α̂kYWp )

)
= (Ip+1 − Bkp/T )

(
1
αp

)
+

(
0
G−1p dp/T

)
+ o(1/T ), (4.2)

where dp is the p× 1 vector with elements

dj,p =
p∑
l=0

|j− l| γ (j− l)αl, j = 1, . . . , p, (4.3)

with the αl’s in (4.3) the autoregressive coefficients; see [9,10]. That is, the order 1/T bias expression for the Yule–Walker
estimator is that of the least squares estimator, plus an additional term. This added term arises from bias introduced in (4.1).
Unlike the result for the least squares estimator, the order 1/T bias expression for the Yule–Walker estimator is not a linear
function of the autoregressive coefficients.
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Table 2
Comparison of least squares and Yule–Walker fixed point parameter vectors.

p Least squares Yule–Walker

Fixed point parameter vectors, k = 1

1 (0.3333) (0.25)
2 (0.5, 0.5) (0.2668, 0.3287)
3 (0.6, 0.6, 0.2) (0.2474, 0.3396, 0.1132)
4 (0.6667, 0.8, 0.4, 0.3333) (0.2386, 0.3474, 0.1350, 0.1888)
5 (0.7143, 0.8571, 0.5143, 0.4286, 0.1429) (0.2205, 0.3450, 0.1386, 0.1976, 0.0717)
6 (0.75, 0.9643, 0.6429, 0.6429, 0.3214, 0.25) (0.2141, 0.3341, 0.1383, 0.2147, 0.0886, 0.1317)

Fixed point parameter vectors, k = 2

1 (0.5) (0.4)
2 (0.8, 0.6) (0.4408, 0.4158)
3 (1.0, 0.8667, 0.3333) (0.4092, 0.4471, 0.1941)
4 (1.1429, 1.2381, 0.7619, 0.4286) (0.3953, 0.4618, 0.2402, 0.2465)
5 (1.25, 1.4286, 1.0714, 0.7143, 0.25) (0.3630, 0.4558, 0.2484, 0.2710, 0.1248)
6 (1.3333, 1.6667, 1.4286, 1.1905, 0.6667, 0.3333) (0.3524, 0.4405, 0.2485, 0.2987, 0.1604, 0.1738)

Remark 5. Numerical calculations show that the bias mapping of the Yule–Walker estimator is a contraction, thus for each
p and k yielding a unique fixed point model with coefficients α̃kYWj,p , j = 1, . . . , p, for which the order 1/T terms in (4.2) are
zero. However, for each value of k these fixed pointmodel coefficients do not combine as p varies to form a Levinson–Durbin
sequence.

Remark 6. Simulation shows that the order 1/T bias expression in (4.2) does not accurately estimate the bias of the
Yule–Walker estimator throughout the region where the AR(p) coefficients vary and define a minimum phase filter. The
discrepancy between the actual bias and that implied by (4.2) can be substantial. However, (4.2) is accurate in the vicinity of
the fixed point model coefficients. Numerical properties of the bias of the Yule–Walker estimator are currently under study
and will be reported in a subsequent paper.

Table 2 displays the coefficient vectors for Yule–Walker fixed pointmodels for k = 1, 2 and p = 1, . . . , 6. For comparison
the corresponding least squares fixed point coefficient vectors are included in the table.
Let ÃkYWp (z) be defined as in (2.1) for the Yule–Walker fixed pointmodel of order p and for degree k−1 for the polynomial

time trend. The zeros of ÃkYWp (z) and of Ãkp(z) increase in modulus as p increases, and they tend toward z = −1 as k
increases. For given p and k the Yule–Walker fixed point zeros have smaller modulus and are farther from z = −1 than
the corresponding least squares fixed point zeros.

5. Discussion

This paper has developed and connected two themes. One is that of Levinson–Durbin and generalized Levinson–Durbin
sequences. These sequences are shown to have some properties which generalize those of binomial coefficients. The second
theme considers estimation of the coefficients of an autoregressive model. Two common estimators are given by the least
squares and Yule–Walker procedures. The Yule–Walker procedure generates a Levinson–Durbin sequence, but the least
squares procedure does not. However, this contrast between the estimators is reversed for their corresponding fixed point
autoregressive processes, which yield estimates unbiased to order 1/T , where T is the length of the observed time series.
Namely, least squares fixed point processes do combine to form a Levinson–Durbin sequence, but Yule–Walker fixed point
processes do not do so.
Using the Levinson–Durbin sequence framework and other calculations, we have explored some of the structure of the

least squares fixed point autoregressive processes. The results have implications for understanding of the bias and other
properties of least squares estimators. Further study is needed to describe these issues more fully.
It is well-known that the Yule–Walker estimator can have substantial bias. The fixed point Yule–Walker autoregressive

processes are essentially free of Yule–Walker estimation bias, and so are processes close to these fixed point structures.
However, in some parts of the parameter space the estimation bias can be so great as to render the Yule–Walker estimates
very misleading. This is especially an issue if one is using the Yule–Walker estimation scheme to construct an estimate of
the partial autocorrelation function to aid in selecting values of p and q in fitting an ARMA(p, q) model to data. Tjøstheim
and Paulsen [9] study a modified estimator, with less bias than the Yule–Walker estimator. It arises from representing an
AR(p)model as a vector AR(1) model. Also, the bias of the Yule–Walker estimator may be reduced substantially by applying
tapering.
Whittle [22] extended the Levinson–Durbin recursion to vector stationary processes. His formulation requires

specification of two sequences of matrices, one for each direction of time. In [23] a generalized Levinson–Durbin–Whittle
sequence is defined from these two sequences ofmatrices, and the analogues of Theorems 2–4 for Levinson–Durbin–Whittle
sequences are presented.
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Other extensions of the Levinson–Durbin recursion have been considered by several authors. For example, Bondon [24]
gives Levinson–Durbin algorithms for h-step prediction, one allowing n to advance, and another allowing h to advance.
Brockwell and Dahlhaus [25] considers subset prediction generally, for which h-step prediction is a special case, and also
presents the h-step algorithm with advance of n. Theorem 2 in the present paper can be extended to the h-step algorithm
with advance of n, but the summations obtained are slightly more complicated than (2.3) and (2.4). The h-step algorithms
are being studied and will be discussed in a subsequent paper.

6. Proofs

We begin with the symmetry question addressed by Theorem 1.

Proof of Theorem 1. From (1.2), for n = 2, 3, . . . , αj,n+1 = αj,n + αn+1,n+1αn+1−j,n and αn+1−j,n+1 = αn+1−j,n +
αn+1,n+1αj,n, j = 1, . . . , n. Then, if symmetry holds,

(1− αn+1,n+1)αj,n = (1− αn+1,n+1)αn+1−j,n, j = 1, . . . , n,

and if αn+1,n+1 6= 1, αj,n = αn+1−j,n, j = 1, . . . , n. It follows that α1,n = · · · = αn,n, n = 2, 3, . . . , and then (1.2) implies
that αj,n = α1,1/(1− (n− 1)α1,1), j = 1, . . . , n, n = 2, 3, . . .. �

The remaining theorems in Section 2 are proved by induction.

Proof of Theorem 2. First consider (2.3). It is certainly true for n = 1. Then (2.3) follows by writing (2.2) for n + 1 with
z = 1 and applying the induction hypothesis. The proof of (2.4) follows similarly by writing (2.2) for n+1 with z = −1. �

Proof of Theorem 3. Consider (2.5), which clearly holds for n = 1. As an alternative to (2.1) define Bn(z) =
∑n
j=0 αj,nz

j
=

znAn(z−1). Then (2.2) implies

Bn(z) = Bn−1(z)+ αn,nznBn−1(z−1). (6.1)

The left-hand side of (2.5) is equal to dBn(z)/dz|z=1. Differentiating both sides of (6.1) for n+ 1 and applying (2.3), we have

n+1∑
j=1

jαj,n+1 = (1− αn+1,n+1)
n∑
j=1

jαj,n + (n+ 1)αn+1,n+1
n∏
j=1

(1+ αj,j).

Then (2.5) follows by substituting the induction hypothesis for
∑n
j=1 jαj,n on the right-hand side and rewriting the resulting

expression as a sum ranging from 1 to n + 1. The proof of (2.6) is the same except that one sets z equal to −1 after
differentiating and uses (2.4) instead of (2.3). �

Proof of Theorem 4. We apply induction. It suffices to prove (2.8), because (2.9) follows immediately from (2.8) and (2.3).
First note that (2.8) is valid for n = 1. Consider the case n odd. Using (1.2), we can write

S1,n+1 = 1+ α2,n+1 + α4,n+1 + · · · + αn+1,n+1
= 1+ α2,n + αn+1,n+1αn−1,n + α4,n + αn+1,n+1αn−3,n + · · · + αn−1,n + αn+1,n+1α2,n + αn+1,n+1
= S1,n + αn+1,n+1S1,n,

which by the induction hypothesis reduces to (2.8) for n+ 1. If n is even, we have, similarly to the above for n odd,

S1,n+1 = 1+ α2,n+1 + α4,n+1 + · · · + αn,n+1
= S1,n + αn+1,n+1S2,n,

which reduces to (2.8) for n+ 1. �

Proof of Theorem 5. The proof is straightforward. It is easy to show by direct calculation that the eigenvalues of the matrix
Ip+1−Bkp/T are its diagonal elements. Thus there is one eigenvalue equal to 1 and all the others are less than 1 in magnitude
if T > (p + k + 1)/2. The normalization with first coordinate equal to 1 gives the unique fixed point vector. By direct
calculation we find that a vector with first coordinate zero must be the zero vector if it defines a fixed point. �

Proof of Lemma 1. The proofs of (3.9) and (3.10) are identical. To obtain the result for j, subtract row p+ 1− j from row j
in the system of Eq. (3.6). Of course, only the subtractions for j = 1, . . . , [p/2] are needed. �

Stine and Shaman [8, Theorems 2,3 and Lemma 5] gives a proof of Theorem 6 for the cases k = 0 and k = 1. The proof of
Theorem 6 given here is for general k and is simpler.
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Proof of Theorem 6. To find the least squares fixed point vector α̃kp we need to solve the system of equations (3.6). The
equation from the last row of (3.6) [see also (3.7) and (3.8)] shows that α̃kp,p is k/(p+ k+1) for p odd and (k+1)/(p+ k+1)
for p even. The remaining values α̃kj,p can then be determined from (3.6) by solving in the order j = 1, p−1, 2, p−2, . . .. Next
we need to verify that for each value of k the fixed point solutions as p varies combine to form a Levinson–Durbin sequence.
For each k the coefficients α̃kp,p as p varies are less than 1 in magnitude, and thus verification that the fixed point coefficients
form a Levinson–Durbin sequence requires establishing for all p that

α̃kp+1 =

(
α̃kp
0

)
+ α̃kp+1,p+1

(
Jpα̃kp
1

)
=

(
Ip + α̃kp+1,p+1Jp 0p

0′p 1

)(
α̃kp

α̃kp+1,p+1

)
. (6.2)

To do so, it suffices to prove that (6.2) satisfies (3.6) for p+ 1.
(i) Consider p odd. Using (3.8) and (6.2), we have

Bk22,p+1α̃
k
p+1 =

(
Bk22p − (k+ 1)Jp + α̃

k
p+1,p+1B

k
22pJp − (k+ 1)α̃

k
p+1,p+1Ip −Jpbkp

0′p p+ k+ 2

)(
α̃kp

α̃kp+1,p+1

)
. (6.3)

The last row of (6.3) is simply equal to k + 1 on the right-hand side, as required. The following lemma provides workable
expressions for Bk22pJp.

Lemma 2. If p is odd,

Bk22pJp = diag (k+ 2, k+ 3, . . . , k+ p+ 1)(Ip + Jp)− B
k
22p. (6.4)

If p is even,

Bk22pJp = diag (k+ 2, k+ 3, . . . , k+ p+ 1)(Ip + Jp)− B
k
22p +

p−1∑
j=1

(−1)jUjp(Ip + Jp), (6.5)

where Up is the p× p matrix with 1’s along the first superdiagonal and 0’s elsewhere.

Proof. (i) First consider p odd. Inspecting the structure of Bk22p, we may write

Bk22p = diag (k+ 2, k+ 3, . . . , k+ p+ 1)+
p−1∑
j=1

nkj U
j
p(Ip − Jp),

where nkj is equal to k for j odd and k+1 for j even. Then (6.4) follows if wemultiply on the right by Ip+ Jp (note that J
2
p = Ip).

If p is even, the proof is similar. Write

Bk22p = diag (k+ 2, k+ 3, . . . , k+ p+ 1)+
p−1∑
j=1

(
nkj U

j
p − n

k
j+1U

j
pJp
)

and multiply on the right by Ip + Jp. �

By multiplication the first p rows of (6.3) reduce to

−bkp − (k+ 1)Jpα̃
k
p + α̃

k
p+1,p+1diag (k+ 2, k+ 3, . . . , k+ p+ 1)(α̃

k
p + Jpα̃

k
p)− (k+ 1)α̃

k
p+1,p+1α̃

k
p,

where we have used (6.4) and the fact that Jpbkp = b
k
p for p odd. With k+ 1 = (k+ p+ 2)α̃

k
p+1, p+1, this simplifies to

−bkp + α̃
k
p+1,p+1(jα̃

k
j,p − (p+ 1− j)α̃

k
p+1−j,p)j=1,...,p,

which is−bkp by Lemma 1. Combining this with the last row of (6.3), we complete the proof of Theorem 6 for p odd.
(ii) If p is even the proof follows similarly from (3.7), (3.8), (3.10) and (6.5). �
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