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Suppose that [z(t)] is a non-Gaussian vector stationary process with spectral
density matrix f (*). In this paper we consider the testing problem
H : �?

&? K[ f (*)] d*=c against A: �?
&? K[ f (*)] d*{c, where K[ } ] is an appropriate

function and c is a given constant. For this problem we propose a test Tn based on
�?

&? K[ f� n(*)] d*, where f� n(*) is a nonparametric spectral estimator of f (*), and we
define an efficacy of Tn under a sequence of nonparametric contiguous alternatives.
The efficacy usually depnds on the fourth-order cumulant spectra f Z

4 of z(t). If it
does not depend on f Z

4 , we say that Tn is non-Gaussian robust. We will give suf-
ficient conditions for Tn to be non-Gaussian robust. Since our test setting is very
wide we can apply the result to many problems in time series. We discuss interrela-
tion analysis of the components of [z(t)] and eigenvalue analysis of f (*). The
essential point of our approach is that we do not assume the parametric form of
f (*). Also some numerical studies are given and they confirm the theoretical
results. � 1996 Academic Press, Inc.
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1. Introduction

The ordinary nonparametric approach for independently and identically
distributed random variables has developed in various directions. For
example Hallin, Ingenbleek, and Puri [9] and Hallin and Puri [10] intro-
duced a class of linear serial rank statistics for the problem of testing a
given ARMA model against other ARMA models. They derived the
asymptotic distributions of the proposed test statistics under the null as
well as alternative hypotheses and gave an explicit formulation of the
asymptotically most powerful test under a sequence of contiguous ARMA
alternatives. Dzhaparidze [6] considered a class F of goodness-of-fit tests
for testing a simple hypothesis about the form of the spectral density. He
investigated the asymptotic properties of test T # F under a sequence of
nonparametric contiguous alternatives.

Suppose that [z(t); t=0, \1, ...] is a p-dimensional non-Gaussian
vector stationary process with spectral density matrix f (*). In this paper we
consider the testing problem

H : |
?

&?
K[ f (*)] d*=c,

against

A: |
?

&?
K[ f (*)] d*{c, (1.1)

where K[ } ] is a holomorphic function defined on C p2
and c is a given

constant. For this problem we propose a test statistic Tn based on
�?

&? K[ f� n(*)] d*, where f� n(*) is a nonparametric spectral estimator of f (*).
In Section 2 we investiage the asymptotic properties of Tn , and introduce
an efficacy of Tn , eff(Tn), which measures a goodness of Tn . Usually eff(Tn)
depends on the fourth-order cumulant spectra of [z(t)]. If it does not
depend on the fourth-order cumulant spectra, then we say that Tn is non-
Gaussian robust. For a Gaussian scalar process, Taniguchi and Kondo
[20] and Kondo and Taniguchi [14] proved some superiority of Tn to the
existing methods. In this paper we develop the discussion beyond their
scope. In Section 3 we give sufficient conditions for Tn to be non-Gaussian
robust in typical examples of K[ } ]. Our test setting is unexpectedly wide
and can be applied to many problems in time series. In Section 4 we dis-
cuss interrelation analysis of the components of [z(t)]. The measure of
linear dependence FX, Y is known to be an important quantity in
econometrics and is related to the causality (e.g., Geweke [8]). We can see
that our setting (1.1) includes the testing problem

H: FX, Y=c against A: FX, Y{c.
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In Section 5 we deal with a testing problem for the integral of certain func-
tion of the eigenvalues of f (*). It is shown that our setting (1.1) also
includes this problem. We apply this to the principal components analysis
of [z(t)].

The functional of the spectral density matrix �?
&? K[ f (*)] d* represents

so many important indices in time series analysis. Therefore we will be able
to find many other unexpected applications of (1.1). Here it may be noted
that we will establish the - n-consistent asymptotic theory for
�?

&? K[ f� n(*)] d*.
Our approach is designed for essentially nonparametric hypotheses and

so is different from that of Hallin et al. [9, 10]. Also, since Dzhaparidze's
class F of tests is based on �x

&x [In(*) f (*)&1] d*, where In(*) is the
periodogram, his problem does not include our testing problem (1.1).

As for the notations used in this paper, we denote the set of all integers
by J, and denote Kronecker's delta by $(t, s).

2. Basic Theory

In this section we formulate some basic theorems concerning the non-
parametric testing problem. Let [z(t); t # J] be a vector-valued linear
process generated as

z(t)= :
�

s=0

G(s) e(t&s), t # J,

where the z(t)'s have p components and the e(t)'s are p-vectors such that
E[e(t)]=0 and E[e(t) e(s)$]=$(t, s) 0, with 0 a p_p positive definite
matrix; the G(s)'s are p_p matrices. We denote the (a, b) component of 0
and G(s) by 0ab and Gab(s), respectively, and denote the a th component
of z(t) and e(t) by za(t) and ea(t), respectively. Initially, we make the
following assumption.

Assumption 1. (i) For a, b=1, ..., p,

:
�

s=0

(1+s2)|Gab(s)|<�.

(ii) In the unit disc |z|�1,

det { :
�

s=0

G(x) zs={0.

261NON-GAUSSIAN VECTOR PROCESSES
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Under this assumption the process [z(t)] is a second-order stationary
process with the spectral density matrix

f (*)=
1

2?
A(*) 0A(*)*, &?<*�?,

where A(*)=��
s=0 G(s) ei*s. The (a, b) component of f (*) and A(*) are

denoted by fab(*) and Aab(*), respectively. For a partial realization
[z(1), ..., z(n)], the periodogram matrix is defined as

In(*)=
1

2?n { :
n

i=1

z(t) ei*t={ :
n

t=1

z(t) ei*t=*
.

Since Gaussianity is not assumed for the process we need the following
assumption.

Assumption 2. (i) [e(t)] is fourth-order stationary. (ii) The joint
fourth-order cumulants ce

abcd (t1 , t2 , t3) of ea(t), eb(t+t1), ec(t+t2),
ed (t+t3) satisfy

:
�

t 1 , t 2 , t3=&�

|ce
abcd (t1 , t2 , t3)|<�, a, b, c, d=1, ..., p.

Then [e(t)] has the fourth-order cumulant spectral density

f e
abcd (*1 , *2 , *3)=\ 1

2?+
3

:
�

t 1 , t 2 , t 3=&�

ce
abcd (t1 , t2 , t3) e&i (* 1 t 1+*2 t2+*3t 3).

Similarly we can define cz
abcd (t1 , t2 , t3) and f z

abcd (*1 , *2 , *3), respectively,
the fourth-order cumulant and spectral density of the process [z(t)].

Assumption 3. Let D be an open subset of C p2
. K : D � R is

holomorphic.

Consider the testing problem

H : |
?

&?
K[ f (*)] d*=c,

against

A: |
?

&?
K[ f (*)] d*{c, (2.1)

where c is a given constant. This test setting is unexpectedly wide and can
be applied to many problems in time series. Several important applications
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will be given in Sections 3�5. For the problem (2.1) we propose a test
based on �?

&? K[ f� n(*)] d*, where f� n(*) is a nonparametric spectral
estimator of f (*). In this paper we use

f� n(*)=|
?

&?
Wn(*&+) In(+) d+.

Here Wn( } ) satisfies the following.

Assumption 4. (i) W(x) is bounded, even, nonnegative and such that

|
�

&�
W(x) dx=1.

(ii) For M=0(n:)( 1
4<:< 1

2), the function Wn(*)=MW (M*) can be
expanded as

Wn(*)=
1

2?
:
l

w \ l
M+ exp(&il*),

where w(x) is a continuous, even function with w(0)=1, |w(x)|�1 and
��

&� w(x)2 dx<�, and satisfies

lim
|x| � 0

1&w(x)
|x| 2 =}2<�.

Under our assumptions it is not difficult to check that the assumptions
of Theorems 9 and 10 in Hannan [11, Section V] are satisfied, whence

f� n(*)&f (*)=Op [- M�n], (2.2)

uniformly in * # [&?, ?].
We proceed to discuss the asymptotic theory for �?

&? K[ f� n(*)] d*. For
this we impose the following conditions on the process [z(t)], as in
Hosoya and Taniguchi [12]. We denote the _-field generated by
[e(s): s�t] by B(t).

Assumptions 5. (i) For a, b=1, ..., p and m # J,

Var[E[ea(t) eb(t+m) | B(t&{)]&$(m, 0) 0ab]=O({&2&=), =>0,

uniformly in t.

(ii) E |E[ea(t1) eb(t2) ec(t3) ed (t4)| B(t1&{)]&E[ea(t1) eb(t2) ec(t3)
ed (t4)]|=O({&1&'), uniformly in t1 , where t1�t2�t3�t4 and '>0.

263NON-GAUSSIAN VECTOR PROCESSES
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First, we state the following basic result, whose proof we have put in
Section 6.

Theorem 1. Suppose that Assumptions 1�5 hold. Under the null
hypothesis H,

Sn=- n _|
?

&?
K[ f� n(*)] d*&c&

has asymptotically a normal distribution with mean zero and variance
&1( f )+&2( f z

4), where

&1( f )=4? |
?

&?
tr[ f (*) K (1)[ f (*)]]2 d*

and

&2( f z
4)=2? :

p

r, t, u, s=1
| |

?

&?
K (1)

rt (*1) K (1)
us (*2) f z

rtus(&*1 , *2 , &*2) d*1 d*2 .

Here K (1)[ f (*)] is the first derivative of K[ f (*)] at f (*) (see [15]), and
K (1)

rt (*) is the (r, t) component of K (1)[ f (*)].

Here it should be noted that - n consistency holds in Theorem 1 despite
(2.2). This is due to the fact that integration of f� n recovers - n consistency.
For the testing problem (2.1) we are led to estimate the asymptotic
variance &1( f )+&2( f z

4) of Sn . In view of Theorem 1 we can propose &1( f� n)
as a consistent estimator of &1( f ). Regarding estimation of &2( f z

4),
Taniguchi [18] and Keenan [13] gave consistent estimators of &2( f z

4)
when the process concerned is scalar-valued. In what follows we extend
Taniguchi's estimator to the case when the process is vector-valued. This
extension is not straightforward and requires a modification of the scalar
case.

All moments of [z(t)] up to eighth-order are assumed to exist and we
set

cz
a1 } } } ak

(t1 , ..., tk&1)=cum[za 1
(0), za2

(t1), ..., za k(tk&1)],

a1 , ..., ak=1, ..., p; k=1, 2, ..., 8.

Assumption 6. For each j=1, 2, ..., k&1 and any k-tuple a1 , a2 , ..., ak

we have

:
�

t1 , ..., tk&1=&�

|tj cz
a1 } } } ak

(t1 , ..., tk&1)|<�,

k=2, 3, ..., 8.
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Under Assumption 6 we may define the k th order (k=2, ..., 8) cumulant
spectral density by

f z
a 1 } } } ak

(*1 , ..., *k&1)

=(2?)&k+1 :
�

t1 , ..., t k&1=&�

cz
a1 } } } ak

(t1 , ..., tk&1) exp \&i :
k&1

j=1

*jtj+ .

Define

daj (*)= :
n

t=1

zaj (t) eit*.

We impose a further assumption.

Assumption 7. (i) H(x) is a real-valued function, even, of bounded
variation, and such that

|
?

&?
H(x) dx=1,

and H(x)=0 for x � [&?, ?].

(ii) [Bn] is a sequence which satisfies Bn � 0, B2
n n � � as n � �.

Henceforth we set Hn(x)=B&1
n H(B&1

n x). The following proposition
gives a consistent estimator of

| |
?

&?
K(*1 , *2) f z

a1a 2a3 a4
(&*1 , *2 , &*2) d*1 d*2 , (2.3)

where K(*1 , *2) is continuous on [&?, ?]_[&?, ?].

Proposition 1. Under Assumptions 1�7, the following is a consistent
estimator of (2.3):

Un=\2?
n +

3

:
j 1

:
j2

:
j 3

Hn {2?( j2+j3)
n = K \2?j1

n
,

2?j2

n +
_

1
8?3n

da 1 {2?(&j1+j2+j3)
n = da2 \2?j1

n + da3 \&2?j2

n + da4 \&2?j3

n +
(2.4.1)

&|
?

&?
[K(*, &*) f� a1a3

(&*) f� a2a 4
(*)+K(*, *) f� a 1a4

(&*) f� a3a3
(*)& d*

(2.4.2)

265NON-GAUSSIAN VECTOR PROCESSES
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&
H(0)

Bn \2?
n +

2

:
j1

:
j2

K \2?j1

n
,

2?j2

n +
_\ 1

2?n+
2

da1 \&2?j1

n + da 2 \2?j1

n + da 3 \&2?j2

n + da4 \2?j2

n + , (2.4.3)

where, here and subsequently, sums with respect to j1 , ... are from
[&n�2]+1 to [n�2], and f� a ka j (*) is the nonparametric spectral estimator of
fa k a j (*) defined previously.

The proof is given in Section 6.
Let &̂2 be the consistent estimator of &2( f z

4) given in the manner of
Proposition 1. Then, Theorem 1, Proposition 1, and Slutsky's theorem
together yield the following.

Theorem 2. Suppose that Assumptions 1�7 hold. Then, under the null
hypothesis H,

Tn=Sn�- &1( f� n)+&̂2

has asymptotically the standard normal distribution N(0, 1). In particular, if
the process is Gaussian,

T G
n =Sn�- &1( f� n)

converges in distribution to N(0, 1).

From Theorem 2 we can propose the test of H given by the critical
region

[|Tn |>t:], (2.5)

where t: is defined by

|
�

t:

(2?)&1�2 exp \&
x2

2 + dx=
:
2

.

Next we introduce a measure of goodness of our test. Let a(*) be a p_p
matrix whose entries akl (*) (k, l=1, ..., p) are square integrable functions
on [&?, ?]. We assume that a(*) is positive definite for each * # [&?, ?].
Consider a sequence of alternative spectral density matrices

gn(*)=f (*)+
1

- n
a(*). (2.6)

266 TANIGUCHI, PURI, AND KONDO
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Let Egn ( } ) and Vf ( } ) denote the expectation under gn(*) and the variance
under f (*), respectively. It is natural to define an efficacy of Tn by

eff(Tn)= lim
n � �

Eg n (Sn)

- Vf (Sn)
, (2.7)

in line with the usual definition for a sequence of ``parametric alternatives''
(e.g., Randles and Wolfe [16, pp. 147�149]). Then we see that

eff(Tn)= lim
n � �

- n �?
&? [K[gn(*)]&K[ f (*)]] d*

- &1( f )+&2( f z
4)

=
�?

&? tr[K (1)[ f (*)] a(*)] d*

- &1( f )+&2( f z
4)

. (2.8)

For another test Tn* we can define an asymptotic relative efficiency (ARE)
of Tn relative to Tn* by

ARE(Tn , Tn*)={ eff(Tn)
eff(Tn*)=

2

. (2.9)

For a Gaussian scalar process, Taniguchi and Kondo [20] and Kondo
and Taniguchi [14] proved some superiority of Tn to the existing methods.
In this paper we develop the discussion beyond their scope. In later sec-
tions we will discuss non-Gaussian robustness of Tn , interrelation analysis
for the components of [z(t)] and eigenvalue analysis of the spectral density
matrix.

3. Non-Gaussian Robustness

In the previous section we evaluated the efficacy of Tn . If the process is
not Gaussian, it depends on a non-Gaussian quantity &2( f z

4). Henceforth
we say that Tn is non-Gaussian robust if &2( f z

4)=0. This definition means
that if Tn is non-Gaussian robust then its efficacy attains the ``Gaussian
efficacy''

|
?

&?
tr[K (1)[ f (*)] a(*)] dy�- &1( f ) (3.1)

267NON-GAUSSIAN VECTOR PROCESSES
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although the process is not Gaussian. We deal with the same process [z(t)]
as in Section 2. We impose a further assumption on the innovation process
[e(t)].

Assumption 8. (i) [e(t); t # J] is a family of i.i.d. random vectors with
E[e(t)]#0 and the variance matrix 0.

(ii) The fourth-order cumulants

}abcd=cum[ea(t), eb(t), ec(t), ed (t)],

exist for a, b, c, d=1, ..., p, and t # J.

Then we get the following proposition, whose proof we have put in
Section 6.

Proposition 2. Suppose that Assumptions 1 and 8 hold. If

|
?

&?
A*(*) K (1)[ f (*)] A(*) d*=0 ( p_p-null matrix), (3.2)

then &2( f z
4)=0.

In this section we consider the testing problem related to the following
three measures of nearness between p_p-spectral density matrices f (*) and
g(*).

(I) Likelihood ratio measure. Define

DLR( f, g)=|
?

&? _log
det[g(*)]
det[f (*)]

+tr[ f (*) g(*)&1]&p& d*. (3.3)

Altough the process concerned is not Gaussian, we can formally make the
Gaussian likelihood ratio GLR. The above measure is an approximation of
n&1E(GLR). We refer to it as a likelihood ratio measure between f (*) and
g(*). If we are interested in the testing problem

HLR: DLR \ f,
1

2?
Ip+=c,

against

ALR: DLR \ f,
1

2?
Ip+{c, (3.4)

where c is a given constant and Ip is the p_p-identity matrix, we can set
down

DLR \ f,
1

2?
Ip+=|

?

&?
KLR[ f (*)] d*,

268 TANIGUCHI, PURI, AND KONDO
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where KLR[ f (*)]=&log det[ f (*)]+2? tr[ f (*)]&p&p log 2?. Let T (LR)
n

be the test statistic for (3.4) which is given in the manner of Theorem 2. By
T (LR)

n , the nearness of f (*) to the white noise will be examined.

(II) :-entropy measure. For : # (0, 1), Albrecht [1] introduced the
:-entropy measure between f (*) and g(*),

D:( f, g)=
1

4? |
?

&?
[log det[(1&:) Ip+:f (*) g(*)&1]

&: log det[ f (*) g(*)&1]] d*,

which measures a nearness of f (*) to g(*). We set down

D: \ f,
1

2?
Ip+=|

?

&?
K:[ f (*)] d*,

where

K:[ f (*)]=(1�4?)[log det[(1&:) Ip+2?:f (*)]&: log det[2?f (*)]].

Consider the testing problem

H: : |
?

&?
K:[ f (*)] d*=c

against

A: : |
?

&?
K:[ f (*)] d*{c. (3.5)

Similarly we can make the test statistic T (:)
n for (3.5) in the manner of

Theorem 2.

(III) Log-square distance. Define

DLOG=|
?

&?
[log det[ f (*)]&log det[ g(*)]]2 d*.

We set down

DLOG( f, Ip)=|
?

&?
KLOG[ f (*)] d*,

where KLOG[ f (*)]=[log det[ f (*)]]2. For the testing problem

HLOG : |
?

&?
KLOG[ f (*)] d*=c,

269NON-GAUSSIAN VECTOR PROCESSES



F
ile

:6
83

J
15

93
12

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

13
:0

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

24
56

Si
gn

s:
12

26
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

against

ALOG : |
?

&?
KLOG[ f (*)] d*{c, (3.6)

we can construct the test statistic T (LOG)
n in the manner of Theorem 2.

The above three measures DLR( } ), D:( } ), and DLOG( } ) enable us to test
how f (*) is distant from the white noise process nonparametrically. The
following theorem is concerned with the non-Gaussian robustness of
T (LR)

n , T (:)
n , and T (LOG)

n .

Theorem 3. Suppose that Assumptions 1�8 hold.

(i) For the testing problem (3.4), T (LR)
n is non-Gaussian robust if

:
�

j=0

G( j )$ G( j )=0&1. (3.7)

(ii) For the testing problem (3.5), T (:)
n is non-Gaussian robust if

|
?

&?
[(1&:) A(*)&1 A*(*)&1 0&1+:Ip]&1 d*=2?Ip . (3.8)

(iii) For the testing problem (3.6), T (LOG)
n is non-Gaussian robust if the

spectral density matrix is expressed as

f (*)=exp { :
j{0

Aj cos( j*)= , (3.9)

where the Aj 's are p_p-matrices and exp[ } ] is the matrix exponential ( for
the definition, see Bellman [2, p. 169]).

Now we give a numerical example related to Theorem 3.

Example 1. Let [z(t); t # J] be a scalar process with spectral density
f (*)=exp[a cos *] and Ez(t)=0. For this process we consider the testing
problem (3.6), i.e.,

HLOG : |
?

&?
[log f (*)]2 d*=a2?

(3.10)

ALOG : |
?

&?
[log f (*)]2 d*{a2?.

Then the test statistic is

T (LOG)
n =

- n[�?
&? [log f� n(*)]2 d*&a2?]

4 - ? [�?
&? [log f� n(*)]2 d*]1�2

.
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TABLE I

a Case (1) Case (2)

0.5 Mean of T (LOG)
n &0.028 0.040

Variance of T (LOG)
n 0.972 1.078

Frequency of T (LOG)
n <&1.64 0.050 0.058

Frequency of T (LOG)
n >1.64 0.040 0.056

0.6 Mean of T (LOG)
n &0.036 0.016

Variance of T (LOG)
n 1.066 1.015

Frequency of T (LOG)
n <&1.64 0.056 0.062

Frequency of T (LOG)
n >1.64 0.060 0.042

In view of Theorem 3, T (LOG)
n is evidently non-Gaussian robust. For this

fact we deal with the following two cases. We can express z(t) as

z(t)= :
�

s=0

g(s) e(t&s), t # J.

Case (1). e(t); t # J, are i.i.d. as N(0, 1) (Gaussian case).
Case (2). e(t); t # J, are i.i.d. with probability density

p(x)=exp(&x+1)

(non-Gaussian case).
For Cases (1) and (2) we generated z(1), ..., z(1024), respectively. Then

we calculated T (LOG)
n with M=100 for Cases (1) and (2) and iterated this

procedure 1000 times. We get Table I. The table agrees with our theoretical
results approximately.

4. Interrelation Analysis of the Components of the Process

Our test can be applied to testing for interrelation of the components of
[z(t)]. Suppose that the process [z(t); t # J] has the form

z(t)=\x(t)
y(t)+

with x(t), q vector-valued, and y(t), r vector-valued; q+r=p and has the
spectral density matrix

f (*)=_ fxx(*)
fyx(*)

fxy (*)
fyy (*)& . (4.1)
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Denote by H[ } ] the linear closed manifold generated by [ } ] and denote
by proj[x(t) | H[ } ]] the projection of x(t) on H[ } ]. We consider the
residual process

u1(t)=x(t)&proj[x(t) | H[x(t&1), x(t&2), ...]],

v1(t)=y(t)&proj[y(t) | H[y(t&1), y(t&2), ...]],

u2(t)=x(t)&proj[x(t) | H[x(t&1), x(t&2), ...; y(t&1), y(t&2), ...]],

v2(t)=y(t)&proj[y(t) | H[x(t&1), x(t&2), ...; y(t&1), y(t&2), ...]],

and

u3(t)=x(t)&proj[x(t) | H[x(t&1), x(t&2), ...; y(t), y(t&1), ...]].

The measure of linear feedback from Y=[y(t)] to X=[x(t)] is defined by

FY � X=log[det[Var(u1(t))]�det[Var(u2(t))]].

Symmetrically,

FX � Y=log[det[Var(v1(t))]�det[Var(v2(t))]].

The measure of instanteous linear feedback

FX } Y=log[det[Var(u2(t))]�det[Var(u3(t))]]

has motivation similar to that of the above two measures. The following

FX, Y=log[det[Var(u1(t))] det[Var(v1(t))]�det 0]

is called the measure of linear dependence. Then it is known that

FX, Y=FY � X+FX � Y+FX } Y (4.2)

and

FX, Y=|
?

&?
K[ f (*)] d*, (4.3)

where

K[ f (*)]=&
1

2?
log[det[Iq&fxy (*) f&1

yy (*) fyx(*) f&1
xx (*)]]

(see [8]). Since FY � X , FX � Y , and FX } Y are important econometric
measures which represent ``strength of causality,'' the testing problem

H: FX, Y=c,
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against

A: FX, Y{c (4.4)

is important. This is exactly an example of our testing problem. Hence we
can test (4.4) by using Tn in Theorem 2.

Example 2. Let z(t)=[x(t), y(t)]$ be a two-dimensional linear process
generated by

z(t)=e(t)+\1
=

=
1+ e(t&1), t # J, (4.5)

where e(t)'s are i.i.d. N(0, I2). We denote the spectral density matrix of z(t)
by

f (*)=\ fxx(*)
fyx(*)

fxy(*)
fyy(*)+ .

Consider the testing problem

H: FX, Y=|
?

&?
K[ f (*)] d*=c,

against,

A: FX, Y{c, (4.6)

where K[ f (*)]=&(1�2?) log[1&fxy(*) f &1
yy (*) fyx(*) f &1

xx (*)]. For this
problem we generated z(1), ..., z(1024) given by (4.5) for ==1.15, 1.20, 1.25.
Then we calculated Tn in Theorem 2 and iterated this procedure 500 times.
The results are given by Table II. We can see that they agree with the
theoretical results.

Next, we turn to an investigation of another interrelation analysis. Let
z(t)=[u(t)$, v(t)$, w(t)$)$ be a p-dimensional process satisfying all the

TABLE II

Frequency of Frequency of
= Mean of Tn Variance of Tn Tn< &1.64 Tn>1.64

1.15 0.077 1.073 0.058 0.058
1.20 0.067 1.006 0.042 0.056
1.25 0.076 1.000 0.050 0.052
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assumptions in Section 2, where u(t), v(t), and w(t) are q, r, and s compo-
nent processes, respectively. Correspondingly we have the partition

fuu(*) fuv(*) fuw(*)

f (*)=_ fvu(*) fvv(*) fvw(*)& ,

fwu(*) fwv(*) fww(*)

and the spectral representation

z(t)=|
?

&?
e&it* d!(*),

with d!(*)=(d!u(*)$, d!v(*)$, d!w(*)$)$. Hannan [11] considered a test for
association for u=[u(t)] with v=[v(t)] (at frequency *) after allowing for
any effects of w=[w(t)]. The hypothesis is given by

H* : fuv(*)&fuw(*) fww(*)&1 fwv(*)=0, (4.7)

which means that d!u(*)&fuw(*) fww(*)&1 d!w(*) is incoherent with
d!v(*)&fvw(*) fww(*)&1 d!w(*) and all of the apparent association between
u and v is truly due only to their common association with w. For a given
*, Hannan [11] developed the testing theory for (4.7) based on the
asymptotic normality of the finite Fourier transformations of [z(t)] in a
neighborhood of *. In view of our testing problem we can consider a test
for association for u with v at ``all the frequency * # [&?, ?]'' after allowing
for any effects of w. The hypothesis is written as

H : fuv(*)&fuw(*) fww(*)&1 fwv(*)=0 for all * # [&?, ?],

which is equivalent to

H : |
?

&?
K[ f (*)] d*=0, (4.8)

where

K[ f (*)]=tr[[fuv(*)&fuw(*) fww(*)&1 fwv(*)]

_[ fvu(*)&fvw(*) fww(*)&1 fwu(*)]].

Therefore we can apply all the results in Section 2 to this testing problem.

5. Eigenvalue Analysis of the Spectral Density Matrix

It is well known that the eigenvalues play a fundamental role in multi-
variate problems. In this section we investigate the principal components
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analysis of vector time series, which is related to the eigenvalues of the
spectral density matrix. First, we state the following lemma which is due to
Magnus and Neudecker [15].

Lemma 1. Let +1 , ..., +p be the eigenvalues of a matrix M0 # C p2 and
assume that +i is simple (i.e., +1>+2> } } } >+p). Then a scalar function + (i )

exists, defined in a neighborhood N(M0)/C p 2 of M0 , such that +(i )(M0)=
+i and +(i )(M) is a simple eigenvalue of M for every M # N(M0). Moreover,
+(i ) is � time differentiable on N(M0), and the differential is

d+(i )=tr _{ `
p

j=1
j{1

\+jIp&M0

+j&+i += dM& . (5.1)

Next we turn to discuss the principal components analysis of the vector
linear process z(t) defined in Section 2. Suppose that the spectral density
matrix f (*) has the simple eigenvalues +1(*)>+2(*)> } } } >+p(*). Then
the variance of the error series by the q (q<p) principal components is
given by

|
?

&? { :
p

j=q+1

+j (*)= d*. (5.2)

If we are interested in the degree of the above measure we can set down the
testing problem

H : |
?

&?
K[ f (*)] d*=c,

against

A: |
?

&?
K[ f (*)] d*{c, (5.3)

where K[ f (*)]=� p
j=q+1 +j (*). In view of Lemma 1 the derivative of K[ } ]

is

K (1)[ f (*)]= :
p

i=q+1
_ `

p

j=1
j{1

{+j (*) Ip&f (*)
+j (*)&+i (*) =& .

Thus we may construct the test Tn of Theorem 2 for (5.3), whence we can
test (5.3) by using Tn .

In Sections 3, 4, and 5 we gave several applications of our testing
problem. Since the functional of the spectral density matrix �?

&? K[ f (*)] d*
represents so many important indices in time series analysis, we will be able
to find many other unexpected applications of our testing problem.
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At this end of this section we summarize the merits of our approach:

(1) Our approach is designed for essentially nonparametric
hypotheses. So we do not need any parametric assumptions on the spectral
density matrix.

(2) Our test statistic is based on the nonparametric spectral
estimator. So we do not need iterative methods to calculate it.

(3) Since our approach is based on the integral of the spectral den-
sity matrix f (*) we can develop the - n-consistent asymptotic theory
(although the nonparametric spectral estimator f� n(*) is not a - n-consis-
tent estimator of f (*)).

(4) We do not assume the Gaussianity of the process [z(t)].

6. Some Proofs

Proof of Theorem 1. Let &a& be the norm of a=(a1 , ..., ap 2)$ # C p 2

defined by

&a&={ :
p2

j=1

|aj |
2=

1�2

.

Since the function K is holomorphic in D it has the Taylor series expansion
in an open neighborhood U/D (e.g., Brillinger [5]; Stewart and Tall
[17]). Let

H� (*)=K[ f� n(*)]&K[ f (*)]&tr[K (1)[ f (*)][ f� n(*)&f (*)]]. (6.1)

Using Cauchy's estimate for the derivatives of K (see Bhattacharya and
Rao [3, p. 68]) we can see that there exists $>0 such that

H� (*)=O[& f� n(*)&f (*)&2], (6.2)

in the open ball B($)=[& f� n(*)&f (*)&�$].
For every =>0 there exists c>0 such that

P { |H� (*)|�c
M
n =�P { |H� (*)|�c

M
n

& B($)=+P[& f� n(*)&f (*)&>$]<=,

because of (2.2). Hence,

H� (*)=Op(M�n), (6.3)
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uniformly in *. Under the null hypothesis, Sn is written as

Sn=- n |
?

&?
[K[ f� n(*)]&K[ f (*)]] d*.

It follows from (6.3) that

Sn=- n |
?

&?
tr[K (1)[ f (*)][ f� n(*)&f (*)]] d*+op(1)

=Ln+op(1) (say). (6.4)

Putting

Jn=- n |
?

&?
tr[K (1)[ f (*)][In(*)&f (*)]] d*,

we next show that

|Ln&Jn |=op(1). (6.5)

From the definition of f� n , Ln is written as

Ln=- n |
?

&?
tr _K (1)[ f (*)] |

?

&?
[In(+)&f (+)] Wn(*&+) d+& d*

+- n |
?

&?
tr _K (1)[ f (*)] {|

?

&?
f (+) Wn(*&+) d+&f (*)=& d*

=L (1)
n +L (2)

n (say).

By changing variable M(*&+) � ' we obtain

L (1)
n =- n |

?

&?
|

M(?&+)

M(&?&+)
tr _K (1) {f \++

'
M+= W (') d'[In(+)&f (+)]& d+.

From Assumption 4(i), we can write

|Jn&L (1)
n |= }- n |

?

&?
tr[AM(+)[In(+)&f (+)]] d+ } ,

where

AM(+)=|
M(?&+)

M(&?&+)
K (1) { f \++

'
M+= W (') d'&K (1)[ f (+)] |

�

&�
W (') d'.
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In view of Lemma A.3.3 in Hosoya and Taniguchi [12],

E | Jn&L (1)
n | 2=4? |

?

&?
tr[ f (+) AM(+) f (+) AM(+)] d+

+2? :
p

r, t, u, v=1
| |

?

&?
Art

M(+1) Auv
M(+2)

_f z
rtuv(&+1 , +2 , &+2) d+1 d+2+o(1), (6.6)

where Art
M(+) is the (r, t) component of AM(+). By the dominated con-

vergence theorem it is shown that, for every =>0,

lim
M � �

&AM (+)&=0 for + # B= ,

where B==[&?+=, ?&=]. Hence, for every =>0,

I(B=)=|
B =

tr[ f (+) AM(+) f (+) AM(+)] d+ � 0,

(6.7)

Irtuv(B=_B=)=| |
B =_B=

Art
M(+1) Auv

M(+2) f z
rtuv(&+1 , +2 , &+2) d+1 d+2 � 0,

r, t, u, v=1, ..., p, as M � �. While all the components of AM(+), f (+), and
f z

rtuv( , , ) are bounded on B=[&?, ?], so there exists d>0 such that

|I(B&B=)|�d=, |Irtuv(B_B&B=_B=)|�d= for r, t, u, v=1, ..., p.

(6.8)

Since = is chosen arbitrarily, (6.6), (6.7), and (6.8) imply |Jn&L (1)
n |=oP(1).

Thus the proof of (6.5) is complete if we show L (2)
n =o(1). The bias evalua-

tion method (e.g., Hannan [11, p. 283]) yields

|
?

&?
f (+) Wn(*&+) d+&f (*)=O(M&2),

uniformly in * # B, which implies

L (2)
n =O(- n�M2) � 0 as n � �.

Thus we have proved that the asymptotic distribution of Sn is equivalent
to that of Jn . Applying Lemma A.3.3 of Hosoya and Taniguchi [12] to Jn ,
the proof is completed.

Proof of Proposition 1. First, we evaluate the expectation of the term
(2.4.1):
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E[(2.4.1)]=\2?
n +

3

:
j1

:
j2

:
j3

Hn {2?( j2+j3)
n = K \2?j1

n
,
2?j2

n + 1
8?3n

__cum _da1 {2?(&j1+j2+j3)
n = , da 2 \2?j1

n + ,

_da3 \&2?j2

n + , da4 \&2?j3

n +& (6.9.1)

+cum _da1 {2?(&j1+j2+j3)
n = , da2 \2?j1

n +&
_cum _da3 \&2?j2

n + , da4 \&2?j3

n +& (6.9.2)

+cum _da1 {2?(&j1+j2+j3)
n = , da3 \&2?j2

n +&
_cum _da2 \2?j1

n + , da4 \&2?j3

n +& (6.9.3)

+cum _da1 {2?(&j1+j2+j3)
n = , da4 \&2?j3

n +&
_cum _da2 \2?j1

n + , da3 \&2?j2

n +&& . (6.9.4)

It is known that

cum[da1
(*1), ..., da k (*k)]

=(2?)k&1 2n(*1+ } } } +*k) f z
a1 } } } a k

(&*2 , ..., &*k)+O(1), (6.10)

where 2n=�n
t=1 ei*t and O(1) is uniform in *1 , ..., *k (e.g., [5]). Using

(6.10), (6.9.1) is written as

\2?
n +

3

:
j1

:
j 2

:
j3
_Hn {2?( j2+j3)

n = K \2?j1

n
,

2?j2

n +
_f z

a 1a2 a3a 4 \&
2?j1

n
,
2?j2

n
,
2?j3

n ++O(n&1)&
=\2?

n +
2

:
j1

:
j2

* \ 2?
Bnn+ :

j

** _H \ 2?j
Bnn+ K \2?j1

n
,

2?j2

n +
_f z

a 1a2 a3a 4 \&
2?j1

n
,
2?j2

n
,
2?( j&j2)

n ++O(n&1)& , (6.11)
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where �*j 2
is the sum for j2 , satisfying

&_n
2&+1�j2�_n

2& and &_n
2&�j&j2�_n

2& ,

and �j** is the sum for j satisfying

&_Bn n
2 &+1� j�_Bnn

2 & .

We can see that (6.11) is equal to

| |
?

&?
K(*1 , *2) f z

a1a 2a3 a4
(&*1 , *2 , &*2) d*1 d*2+o(1).

Similarly,

(6.9.2)=
H(0)

Bn
| |

?

&?
K(*1 , *2) fa1a2

(&*1) fa3a4
(&*2) d*1 d*2+o(1),

(6.12)[(6.9.3)+(6.9.4)]=|
?

&?
[K(*, &*) fa1a3

(&*) fa2a4
(*)+K(*, *)

_fa1a4
(&*) fa2a3

(*)] d*+o(1).

In view of Theorem 1, (2.4.2) is a consistent estimator of (6.12). Also it is
easily shown that

lim
n � �

[E[(2.4.3)]+(6.9.2)]=0,

which implies that Un is an asymptotically unbiased estimator of (2.3).
From (6.10), it is not difficult to show that

lim
n � �

Var[(2.4.1)]=0, lim
n � �

Var[(2.4.3)]=0,

which completes the proof. In our vector-valued case, the term (2.4.2)
differs from the corresponding term of the scalar-valued case.

Proof of Proposition 2. Since the process [z(t)] is a linear process
satisfying Assumptions 1 and 8, by using fundamental properties of the
cumulant (e.g., [5]), we have

f z
rtus(&*1 , *2 , &*2)

=\ 1
2?+

3

:
p

a, b, c, d=1

}abcd Ara(&*1) Atb(*1) Auc(&*2) Asd (*2).
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From the definition of &2( f z
4) we obtain

&2( f z
4)=\ 1

2?+
2

:
p

a, b, c, d=1

}abcd { :
p

r, t=1
|

?

&?
K (1)

rt (*1) Ara(&*1) Atb(*1) d*1=
_{ :

p

u, s=1
|

?

&?
K (1)

us (*2) Auc(&*2) Asd (*2) d*2= . (6.13)

From (3.2) it follows that

:
p

r, t=1
|

?

&?
Ara(&*1) K (1)

rt (*1) Atb(*1) d*1=0,

for all a, b=1, ..., p, which implies that (6.13)=0.

Proof of Theorem 3. (i) From Magnus and Neudecker [15] it is easy
to see that

K (1)
LR[ f (*)]=2?Ip&f (*)&1 . (6.14)

Since f (*)=(1�2?) A(*) 0A(*)* with A(*)=��
j=0 G( j ) ei*j, we have

|
?

&?
A*(*) K (1)

LR[ f (*)] A(*) d*=|
?

&?
A*(*)[2?Ip&f (*)&1] A(*) d*

=|
?

&?
2?[A*(*) A(*)&0&1] d*. (6.15)

By (3.7), we can show that (6.15)=0. Hence, the assertion follows from
Proposition 2.

(ii) Similarly, we obtain

K (1)
: [ f (*)]=

:
4? _{(1&:)

Ip

2?
+:f (*)=

&1

&f (*)&1& , (6.16)

which shows that

|
?

&?
A*(*) K (1)

: [ f (*)] A(*) d*

=
:

4? |
?

&? _{(1&:)
1

2?
A(*)&1 A*(*)&1+:

0
2?=

&1

&2?0&1& d*. (6.17)

Evidently (6.17)=0 if (3.8) is satisfied, whence the assertion follows from
Proposition 2.

281NON-GAUSSIAN VECTOR PROCESSES



F
ile

:6
83

J
15

93
24

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

13
:0

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

30
62

Si
gn

s:
21

68
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

(iii) It is shown that

K (1)
LOG[ f (*)]=2 log det[ f (*)] f (*)&1. (6.18)

Then

|
?

&?
A*(*) K (1)

LOG[ f (*)] A(*) d*=4? |
?

&?
log det[ f (*)] 0&1 d*. (6.19)

For a p_p-matrix A, it is known that

det[exp A]=etr A, (6.20)

which implies that (6.19) is equal to

4? |
?

&?
tr { :

j{0

Aj cos( j*)= 0&1 d*=0.

Thus T (LOG)
n is non-Gaussian robust.
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