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Abstract

We perform the stochastic quantization of scalar QED based on a generalization of the stochastic gauge fixing scheme and
its geometric interpretation. It is shown that the stochastic quantization scheme exactly agrees with the usual path integral

formulation.
0 2004 Elsevier B.V. Open access under CC BY license.

1. Introduction

The stochastic quantidan scheme of Parisi and
Wu [1] has been applied to QED since many years.
Nice agreement with convéonal calculations was
found in several explicit examples (for reviews see,
e.g., [2,3]), a general equivalence proof so far was
lacking.

The main idea of “stochastic quantization” is to
view Euclidean quantum field theory as the equilib-
rium limit of a statistical system coupled to a ther-
mal reservoir. This system evolves in a new additional
time direction which is called stochastic time until
it reaches the equilibrium limit for infinite stochastic
time. In the equilibrium limit the stochastic averages
become identical to ordimg Euclidean vacuum ex-
pectation values.

There are two equivalent formulations of stochastic
guantization: in one formulation all fields have an ad-
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ditional dependence on staxstic time. Their stochas-

tic time evolution is determined by a Langevin equa-
tion which has a drift term constructed from the gra-
dient of the classical action of the system. The expec-
tation values of observables are obtained by ensemble
averages over the Wiener measure.

Equivalently one has a Fokker—Planck equation for
the probability distribution characterizing the stochas-
tic evolution of the system. Now expectation values of
observables are defined in terms of functional integrals
with respect to the stochastic time dependent Fokker—
Planck probability distribution. The equilibrium limit
of the probability distribution provides the Euclidean
path integral density.

One of the most interesting aspects of this new
guantization scheme lies in its rather unconventional
treatment of gauge field theories, in specific of Yang—
Mills theories. We recall that originally it was for-
mulated by Parisi and Wu [1] without the introduc-
tion of gauge fixing terms and without the usual
Faddeev—Popov ghost fields; later on a modified ap-
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proach named stochastic gauge fixing was given by The action ofG on A is defined by

Zwanziger [4]; further generalizations and a globally i 1

valid path integral were advocated in [5-8]. A—> AS=A+g " dg. (2.1)
The main difficulty for providing an equivalence | ot ;s define the subgrougo C G where Go =

proof in the case of QED appears to be a rather non- 1 (1) genotes the group of all gauge transforma-

trivial topological obstruction; all previous attempts tions reduced by the constant ones. Sirkeacts

failed in the past years to identify the standard—gauge freely on .4 we consider the principalo bundle

fixed—QED action as a Fokker—Planck equilibrium - : A — M = A/G. One can prove thatl — M is

dis;[ritf[l;]t,iorl' " introd dificati ¢ trivializable, a global sectiof : M — A being given
n this Letter we introduce new modifications o by 5 ([A]) = A2 Herew(A) € Go is defined by

the original Parisi-Wu stochastic process of QED,
yet keeping expectation values_o_f gauge inv;_iriant ob- w(A) = quAfld*(A _ Ao)], 2.2)
servables unchanged: the modified stochastic process

not only has damped flows along the vertical direc- where A denotes the invertible Laplacian which is
tion [4] but also is modeled on a specific manifold of acting on the Lie algebra Li&; Ao € A is a chosen
gauge and matter fields with associafieticonnection  fixed background connection. Note thatA) fulfills
[5-8]. It is precisely in this case that the standard—

gauge fixed—QED path integral density can indeed be w(A%) =w(A)g (2.3)
identified with the equili.b_riun_] Iimit qf the underlying  wjth ¢ e Go.

Fokker—Planck probability distribution.

_ In Section 2 the geomeFricaI setting for QED is 5 o Matter fields

introduced and the associated bundle structure of
the space of gauge potentials and matter fields is
summarized. We introduce adapted coordinates, the

corresponding vielbeins and metrics. V =C; p(g) simply denotes multiplication witp. We

The generalized stochastic process for QED is ., «iderthe associated vector bundies P x, V on

presented in Section 3, Section 4 is devoted to the 3, geqa; fields are described by appropriately chosen
denv_atlon of the _gor_wentlona_l QED path integral sections ofE. In the following we denote byF the
density as the equilibrium solution. space of scalar fields.

The action 0Gg on @' := (A, ¢) € A x F is given
by

' =(A¢9) —

In order to discuss scalar matter fiellsve chose
a representatiorp of g € Go on the vector space

2. The geometrical setting of QED

In this section we present the major geometrical i ¢ g 1 1 24
structures of QED. We collect in a somewhat formal (@) = (4%,0%) =(A+g "dg.g¢). (2.4)
style all the necessary ingredients which are needed

: We remind tha: T is trivializable iff
for a compact and transparent formulation of the N WX F = Axgo

stochastic quantization scheme of QED. A5 M is trivializable. Indeed, using the previous
construction ofw(A) we obtain a global section
2.1. Gauge fields o:Axg, F— Ax F by defining

Let P — M be a principal U(1)-bundle over o ([A.¢]) = (6 ([A]), p*V l)
the n-dimensional boundaryless connected, simply _ (Aw(A)*l ¢w(A)*1) (2.5)
connected and compaEiclidean manifoldV. The ’ ' '
photon fields are regarded as elements of the affine The tangent space of the configuration space F
spaceA of all connections onP. The gauge group s given by T4 ¢)(A x F) = 21(M;iR) x F. Not-
G is given byG = C*(M; U (1)) with Lie algebra ing thatvg € F by construction transforms equivari-
LieG = C*®(M;u(1)); here LigU (1)) =u(1l) = iR. antly we obtain aG-invariant Riemannian metric
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h:T(Ax F)xT(AxF)— R bydefining

hoag) (T vp)s (74, 03)) = (i, 74) + (v5, v3)-
(2.6)
Here
(o, B) = f(aA*ﬂ+aA*ﬂ) 2.7)
M

anda, B8 € TA, or TF, respectivelyx is the hodge
operator oM, @ denotes complex conjugation @f

2.3. Adapted coordinates

Let the globally defined gauge fixing surfagein
A x F be defined by

Y =Imo
={B.¥) e AxF|

(B.y) = (A2 g™} (2.8)

where w is given by (2.2). Note thaB and  are
invariant under the action @fp which trivially follows
from (2.4) and from (2.3)B satisfies the “gauge fixing
condition”

d*(B — Ag) =0 (2.9)

We define the adapted coordinaté$ = {B, v, g}
via the bundle maps(:¥ x Go - A x F and
x LA x F— ¥ x Go, where

X (B, v, g) = (B, y?) (2.10)
and
xHA $) = (0 ([A, 9]). 0(A))

= (A2 2D 4(A)). (2.11)

The differentials” y andT x ~* are calculated straight-
forwardly (compare also with [7])

T x(¢B, vy, Yg)

= (¢B +dOe(Yy), g H(vy — 0,(Y)@)),  (2.12)
as well as
Tx (ra. vg)
= (Pta, 0(A)(vp + (A1 d*1a)9),
w(A)A d*Ty). (2.13)

Here (¢p,vy) € TpX, Y, € T,G and (ta,vg) €
T(a,¢)(A x F). The Maurer—Cartan form of is de-
noted by#, P is the transversal projectd? = 1 —
dA~1d*. From the differentialsTy and Tx 1 we
read off the vielbeing!, = §&'/s¥# and their in-
versesE®; = swH/8®! corresponding to the change
of variablest'* = (B, v/, g} <> @' = {A, ¢}.

Above we defined a Riemannian structure drx
F in terms of theGg invariant metrich. In adapted
coordinates this metric is given now as the pullback
G = x*h; explicitly we obtain

GB.y.0((¢5. vy Ye), (E5.v5. Y7))
= (¢35, PER) + (0 (Y7). (A + 1W12)6,(Y7))
+ (v, 05 ) = (0 (V) ¥, 0] ) — (v 0 (Y2) ).

(2.14)
Here(¢3, vi), (€5, v3) € Ty = andYy, Y7 € T,G.
In matrix notation we haveé = ¢' e andG 1 EET.
The determinant of; is given by deG = A.
3. Paris—Wu stochastic quantization

For scalar QED we have
1

Sinv = (Dag. Dag) +m?(p. ¢) + SFF), (31

whereDap = (d — A)p andF = dA. The Parisi-Wu
Langevin equations are given by
3 Sinv
dA=— ds+dU, 3.2
A s 0 + (3.2)
8S;
dp=——ds+ 4V, (3.3)
8¢
where the Wiener icrements fulfill
dU dU =2ds, dv dv =2ds. (3.4)
This can be summarized by
8S;
do = — 8£Vds+d§, de det =2 1ds. (3.5)

Using Ito calculus [9,10] we transform the Parisi—-Wu

Langevin equations into adapted coordinates

8Siv  8G71
nv +

14 1'4

dv = [—G—l ]ds +de, (3.6)



148 H. Hiffel, G. Kelnhofer / Physics Letters B 588 (2004) 145-150

where has to be introduced in order to maintain the prob-
" 1 abilistic interpretation of the Fokker—Planck formu-
dfd¢’ =2G"ds. (37 Jation. Although knowing tht this additional force

The use of adapted coordinates allows to disentangleWill not alter expectation values of gauge invariant
the complicated dynamics of gauge independent and quantities it is disappointing to observe that due to
gauge dependent degrees of freedom:; it will be of great its presence the standardjauge fixed—QED action

value later on. For completeness we note the Fokker—Will never annihilate the Fokker—Planck operator on

Planck operator in the original variables its right side due to the following reason: we recall
. that the bundle metrié 4,4, on the associated fiber
L[®] = i[as'”" + i] (3.8) bundle A x F — A xg F which is invariant under
oL@ o0 the corresponding group action gives rise to a natural
as well as in the adapted coordinates connectiony, whose horizontal subbundi® is or-
5 5 5 thogonal to the corresponding group. The horizontal
L[¥]= _Gl[ﬂ + _} (3.9) bundleH[A x F; y] with respect toy is defined by
¥ s v HLA x F; y1 L, V(A x F), where the orthogonality

We remark that in the case of the Parisi-Wu processesis with respect tdi (4 ¢). Elements of the vertical bun-
diffusion along the vertical direction takes place and dle V(A, F) — A xg F are given in the form

no equilibrium distribution is approached. Thus a d

Fokker—Planck formulation of the Parisi-Wu stochas- Z: (A, ¢) = o (ABXPIE | pBxPIE)

tic quantization scheme is impossible: the gauge in- 1=0

variance of the actioisiny is leading to divergencies = (d&, —£¢), (4.1)
along the vertical directions when trying to normalize where £ € C®(M:; iR). The orthogonal span with
the Fokker—Planck density. respect to the vertical bundle fulfills

1 -

d*ta + E(ﬁzpfp —vpp) =0,

T4 € TAA, vy € Ty F (4.2)
4.1. Geometric obstruction which follows from

4. Generalized stochastic quantization

Our equivalence proof relies on specific allowed 0= "/(a,4)((t4. vg), Zz (A, ¢))
modifications of the rr_1etric on the field space, yvhiph = hag)((Ta, vp), (dE, —£¢))
governs the stochastic process. These modifications
correspondingly are implying changes of the associ- — (T4, d&) = (vy, £6). (4-3)
ated Fokker—Planck operator. We are going to show Explicity we can prove thaty ¢ (ta,vs) €
that this can be achieved in such a way that the re- C*°(P;iR)
sulting Fokker—Planck operator has a positive kernel -1
and is annihilated on itsght by the standard gauge Y(4.9)(Ta. ) = (A + (¢
fixed QED path integral density. In order for this to 1._ -
be the case, however, a tan integraflity condition X [d*TA +5Wp¢ — v¢¢)] (4.4)
for the drift term of the considered stochastic process
has to be fulfilled. Surprisingly similar as in the pure
Yang-Mills theory also in the Abelian QED case there
appears a violation of this condition; it is only after
a nontrivial modification of the underlying stochastic
processes (see next subsection) that this obstructiong — (A + |¢|2)7l(v2<5 +0%9) (A + |¢|2)*1
can be overcome. 1

Proceeding step by step we first note (see Zwanzi- X [d*rj + = (171¢ — vlé)}
ger [4]) that a damping force along the gauge orbit 2

defines a connection induced by, 4) in the principal
bundle A x F - A xg F and is U(1) invariant.
Calculating its curvature ((<1, v1), (r2, v?)) we find
that it is nonvanishing and given by
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— (A +10P) 06+ '8) (A + 161D " We see that the horizontal subbun@fieis orthogonal
1 _ to the gauge orbits with respect to the induced field
+ [d*fg + 5(52¢ - v2¢)] metric; in particular the gauge fixing surface is then
1 orthogonal to the gauge orbits.
x (A +1¢17) " (v152 — 51?). (4.5) In the adapted coordinates the induced field metric

As a consequence [5-8] there does not exist (eveniS denoted bys = ' ¢. The just discussed orthogonal-
locally) a manifold whose tangent bundle is isomor- ity condition of the gauge fixing surface and the gauge
phic to this horizontal subbundle. Specifically this im- Orbit wit.h respect to the induced field metric is trans-
plies that any vector field along the gauge group can- formed into simply

not be written as a gradient with respect to the met- . . » PN

ric ha.g)- The total drift term—containing the extra (G )™ =(G =0, where

vertical force term—thus can never arise as derivative G = E ET with Ee= 1 (4.8)
of the standard gauge fixed QED action; the Fokker— _ o i o i

Planck operator can never be annihilated on its right THis condition is fulfilled provided is defined as

by the standard QED path integral density; an equiva- _ EZ
lence proof presently cannot be given. E= ( o ) (4.9)
g
4.2. The induced field metric with flat connection To complete our discussion we also have to specify

the vertical drift term; it is related to the gradient of

The crucial observation in [5-8] is to consider Sg, where we chose
a larger class of modified stochastic processes than 1
considered so far, yet always keeping expectation Sglgl = _(d*g*gUﬂ),d*g*@U(l)), (4.10)
values of gauge invariant observables unchanged: one A
introduces not only the extra vertical drift terms as wherea is a positive constant and whe#&™D s the
discussed above but one also modifies the Wiener Maurer—Cartan form oby (1). Note that in the original
increments by specific extranms and introduces extra  variables we obtain the standard background-gauge
so-called Ito-terms, correspondingly. fixing term

The idea is to view the new terms multiplying the
Wiener increments as viellms giving rise to the in- (xfl* prg Sg)(A, )

verse of a yet not specified metric on the space F. 1,., i
The appearance of this mietinduces a specific con- = Sg(w(A)) = ﬁ(d (A — Ao), d* (A — Ao)).
nection with a potentially analogous obstruction as (4.11)

discussed above. A necessary requirement to over-
come this obstruction is therefore that the correspond-
ing curvature has to vanish. The question how to find 58St 8G _
such a metric is reduced to the question how to find a d¥ = [—G v+ a—lp}ds +, (4.12)
flat connection.

Indeed, there exists a flat connectigrin our bun- where
dle. This connection is the pull-back of the Maurer— o o
Cartan formd on Go via the global trivializationy —2 Stot=Sinv+Sg and didi =2G""ds.  (4.13)
and pg

7=(x""pr5o) (A, ¢)= A", (4.6)
where p}; is the projector¥’ x G — G. The projector It is easy now to prove for QED the equivalence

onto the horizontal subbundI®{[A x F: 7] with of the stochastic quantization scheme with the path
respect to7 is given by Y integral quantization. For the formulation in terms of

) the adapted coordinatgs = {B, ¥, g} the associated
P=1—Duy. 4.7) Fokker—Planck equation is derived in straightforward

Summarizing we have

4.3. The equivalence proof
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manner given by the standard background-gauge fixed path
o[, integral densit
y = L[¥] p[¥, s], (4.14) J Y

s e StotlA.¢]

where the Fokker—Planck operatbf¥ | is appearing ~ #°1®]=
in just factorized form

8 ~_1[8Sttl¥] )
LIV]=— —+ —.

¥ cSlI/G [ "4 + sw]
Due to the positivity ofG the fluctuation dissipation

theorem applies and the equilibrium Fokker—Planck References
distribution p®9[¥ ] obtains by direct inspection as

fA DA D e—StwotlA.¢]
e~ SinvlA,¢]=Sg (w(A))

(4.15) = J4DADgeSnlA91=55((@) (4.17)

[1] G. Parisi, Y. Wu, Sci. Sinica 24 (1981) 483.

—Stotl B,¥.8 ;
PP = ¢ StilB.v:8] [2] P. Damgaard, H. Hffel, Phys. Rep. 152 (1987) 227.
fz><g DB Dy Dg e~ Stotl B, Y.l [3] M. Namiki, Stochastic Quantization, Springer, Heidelberg,
0 1992,
e SinvlB. V1 p=Sglgl [4] D. Zwanziger, Nucl. Phys. B 192 (1981) 259.
= f DB Dy e—Siv[B.¥] f Dg e—Sglel”’ [5] H. Huffel, G. Kelnhofer, Phys. Lett. B 408 (1997) 241.
> %o (4.16) [6] H. Huffel, G. Kelnhofer, Ann. Phys. 266 (1998) 417.

. . . [7] H. Huffel, G. Kelnhofer, Ann. Phys. 270 (1998) 231.
This result is completely equivalent to the standard [8] H. Hiiffel, G. Kelnhofer, Phys. Lett. B 472 (2000) 101.

background-gauge fixed QED path integral prescrip- [9] L. Arold, Stochastische Digrentialgleichungen, Oldenbourg,

tion. The additionafinite contributions of the gauge Miinchen, 1973.

degrees of freedom always cancel out when evaluated[10] Y. Belopolskaya, . Daletsk Stochastic Equations and Dif-

on gauge invariant observables. ferential Geometry, Kluwr Academic, Dordrecht, 1990.
Similarly, in terms of the original variable® =

{A, ¢} the Fokker—Planck equilibrium distribution is



	QED revisited: proving equivalence between path integral and stochastic quantization
	Introduction
	The geometrical setting of QED
	Gauge fields
	Matter fields
	Adapted coordinates

	Parisi-Wu stochastic quantization
	Generalized stochastic quantization
	Geometric obstruction
	The induced field metric with flat connection
	The equivalence proof

	References


