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Abstract

We perform the stochastic quantization of scalar QED based on a generalization of the stochastic gauge fixing sc
its geometric interpretation. It is shown that the stochastic quantization scheme exactly agrees with the usual pat
formulation.
 2004 Elsevier B.V. Open access under CC BY license.
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1. Introduction

The stochastic quantization scheme of Parisi an
Wu [1] has been applied to QED since many yea
Nice agreement with conventional calculations was
found in several explicit examples (for reviews s
e.g., [2,3]), a general equivalence proof so far w
lacking.

The main idea of “stochastic quantization” is
view Euclidean quantum field theory as the equil
rium limit of a statistical system coupled to a the
mal reservoir. This system evolves in a new additio
time direction which is called stochastic time un
it reaches the equilibrium limit for infinite stochast
time. In the equilibrium limit the stochastic averag
become identical to ordinary Euclidean vacuum ex
pectation values.

There are two equivalent formulations of stochas
quantization: in one formulation all fields have an a
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ditional dependence on stochastic time. Their stochas
tic time evolution is determined by a Langevin equ
tion which has a drift term constructed from the g
dient of the classical action of the system. The exp
tation values of observables are obtained by ensem
averages over the Wiener measure.

Equivalently one has a Fokker–Planck equation
the probability distribution characterizing the stoch
tic evolution of the system. Now expectation values
observables are defined in terms of functional integ
with respect to the stochastic time dependent Fokk
Planck probability distribution. The equilibrium lim
of the probability distribution provides the Euclide
path integral density.

One of the most interesting aspects of this n
quantization scheme lies in its rather unconventio
treatment of gauge field theories, in specific of Yan
Mills theories. We recall that originally it was fo
mulated by Parisi and Wu [1] without the introdu
tion of gauge fixing terms and without the usu
Faddeev–Popov ghost fields; later on a modified
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proach named stochastic gauge fixing was given
Zwanziger [4]; further generalizations and a globa
valid path integral were advocated in [5–8].

The main difficulty for providing an equivalenc
proof in the case of QED appears to be a rather n
trivial topological obstruction; all previous attemp
failed in the past years to identify the standard—ga
fixed—QED action as a Fokker–Planck equilibriu
distribution.

In this Letter we introduce new modifications
the original Parisi–Wu stochastic process of QE
yet keeping expectation values of gauge invariant
servables unchanged: the modified stochastic pro
not only has damped flows along the vertical dir
tion [4] but also is modeled on a specific manifold
gauge and matter fields with associatedflat connection
[5–8]. It is precisely in this case that the standard
gauge fixed—QED path integral density can indeed
identified with the equilibrium limit of the underlying
Fokker–Planck probability distribution.

In Section 2 the geometrical setting for QED
introduced and the associated bundle structure
the space of gauge potentials and matter field
summarized. We introduce adapted coordinates,
corresponding vielbeins and metrics.

The generalized stochastic process for QED
presented in Section 3, Section 4 is devoted to
derivation of the conventional QED path integ
density as the equilibrium solution.

2. The geometrical setting of QED

In this section we present the major geometri
structures of QED. We collect in a somewhat form
style all the necessary ingredients which are nee
for a compact and transparent formulation of
stochastic quantization scheme of QED.

2.1. Gauge fields

Let P → M be a principalU(1)-bundle over
the n-dimensional boundaryless connected, sim
connected and compactEuclidean manifoldM. The
photon fields are regarded as elements of the a
spaceA of all connections onP . The gauge group
G is given byG = C∞(M;U(1)) with Lie algebra
LieG = C∞(M;u(1)); here Lie(U(1)) = u(1) = iR.
The action ofG onA is defined by

(2.1)A → Ag = A + g−1 dg.

Let us define the subgroupG0 ⊂ G where G0 =
G/U(1) denotes the group of all gauge transform
tions reduced by the constant ones. SinceG0 acts
freely on A we consider the principalG0 bundle
π̂ :A → M = A/G. One can prove thatA → M is
trivializable, a global section̂σ :M → A being given
by σ̂ ([A]) = Aω(A)−1

. Hereω(A) ∈ G0 is defined by

(2.2)ω(A) = exp
[
�−1d∗(A − A0)

]
,

where � denotes the invertible Laplacian which
acting on the Lie algebra LieG0; A0 ∈ A is a chosen
fixed background connection. Note thatω(A) fulfills

(2.3)ω
(
Ag

) = ω(A)g

with g ∈ G0.

2.2. Matter fields

In order to discuss scalar matter fieldsφ we chose
a representationρ of g ∈ G0 on the vector spac
V = C; ρ(g) simply denotes multiplication withg. We
consider the associated vector bundlesE = P ×ρ V on
M. Scalar fields are described by appropriately cho
sections ofE. In the following we denote byF the
space of scalar fields.

The action ofG0 onΦi := (A,φ) ∈A×F is given
by

Φi = (A,φ) −→
(2.4)

(
Φg

)i = (
Ag,φg

) = (
A + g−1dg,g−1φ

)
.

We remind thatA×F π−→A×G0 F is trivializable iff

A π̂−→M is trivializable. Indeed, using the previou
construction ofω(A) we obtain a global sectio
σ :A×G0 F → A×F by defining

σ
([A,φ]) = (

σ̂
([A]), φω(A)−1)

(2.5)= (
Aω(A)−1

, φω(A)−1)
.

The tangent space of the configuration spaceA × F
is given byT(A,φ)(A × F) = Ω1(M; iR) × F . Not-
ing thatvφ ∈ F by construction transforms equivar
antly we obtain aG-invariant Riemannian metri
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h :T (A×F) × T (A×F) → R by defining

(2.6)

h(A,φ)

((
τ1
A,v1

φ

)
,
(
τ2
A,v2

φ

)) = 〈
τ1
A, τ2

A

〉 + 〈
v1
φ, v2

φ

〉
.

Here

(2.7)〈α,β〉 = 1

2

∫
M

(ᾱ ∧ ∗β + α ∧ ∗β̄)

andα,β ∈ TA, or TF , respectively;∗ is the hodge
operator onM, ᾱ denotes complex conjugation ofα.

2.3. Adapted coordinates

Let the globally defined gauge fixing surfaceΣ in
A×F be defined by

Σ = Imσ

= {
(B,ψ) ∈ A×F |

(2.8)(B,ψ) = (
Aω(A)−1

, φω(A)−1)}
,

where ω is given by (2.2). Note thatB and ψ are
invariant under the action ofG0 which trivially follows
from (2.4) and from (2.3);B satisfies the “gauge fixin
condition”

(2.9)d∗(B − A0) = 0.

We define the adapted coordinatesΨ µ = {B, ψ, g}
via the bundle mapsχ :Σ × G0 → A × F and
χ−1 :A×F → Σ × G0, where

(2.10)χ(B,ψ,g) = (
Bg,ψg

)
and

χ−1(A,φ) = (
σ
([A,φ]),ω(A)

)
(2.11)= (

Aω(A)−1
, φω(A)−1

,ω(A)
)
.

The differentialsT χ andT χ−1 are calculated straigh
forwardly (compare also with [7])

T χ(ζB, vψ ,Yg)

(2.12)= (
ζB + dθg(Yg), g−1(vψ − θg(Yg)Φ

))
,

as well as

T χ−1(τA, vφ)

(2.13)

= (
PτA,ω(A)

(
vφ + (

�−1 d∗τA

)
φ
)
,

ω(A)�−1 d∗τA

)
.

Here (ζB, vψ) ∈ TBΣ , Yg ∈ TgG and (τA, vφ) ∈
T(A,φ)(A×F). The Maurer–Cartan form onG0 is de-
noted byθ , P is the transversal projectorP = 1 −
d�−1d∗. From the differentialsT χ and T χ−1 we
read off the vielbeinsei

µ = δΦi/δΨ µ and their in-
versesEµ

i = δΨ µ/δΦi corresponding to the chang
of variablesΨ µ = {B,ψ,g} ↔ Φi = {A,φ}.

Above we defined a Riemannian structure onA ×
F in terms of theG0 invariant metrich. In adapted
coordinates this metric is given now as the pullba
G = χ∗h; explicitly we obtain

G(B,ψ,g)

((
ζ 1
B, v1

ψ,Y 1
g

)
,
(
ζ 2
B, v2

ψ,Y 2
g

))
= 〈

ζ 1
B,Pζ 2

B

〉 + 〈
θg

(
Y 1

g

)
,
(
� + |ψ|2)θg

(
Y 2

g

)〉

(2.14)

+ 〈
v1
ψ, v2

ψ

〉 − 〈
θg

(
Y 1

g

)
ψ,v2

ψ

〉 − 〈
v1
ψ, θg

(
Y 2

g

)
ψ

〉
.

Here(ζ 1
B, v1

ψ), (ζ 2
B, v2

ψ) ∈ T(B,ψ)Σ andY 1
g , Y 2

g ∈ TgG.

In matrix notation we haveG = e† e andG−1 = EE†.
The determinant ofG is given by detG = �.

3. Parisi–Wu stochastic quantization

For scalar QED we have

(3.1)Sinv = 〈DAϕ,DAϕ〉 + m2〈ϕ,ϕ〉 + 1

2
〈F,F 〉,

whereDAϕ = (d − A)ϕ andF = dA. The Parisi–Wu
Langevin equations are given by

(3.2)dA= −δSinv

δA ds + dU,

(3.3)dϕ = −δSinv

δϕ̄
ds + dV,

where the Wiener increments fulfill

(3.4)dU dU = 2ds, dV dV̄ = 2ds.

This can be summarized by

(3.5)dΦ = −δSinv

δΦ
ds + dξ, dξ dξ† = 2 · 1 ds.

Using Ito calculus [9,10] we transform the Parisi–W
Langevin equations into adapted coordinates

(3.6)dΨ =
[
−G−1 δSinv

δΨ
+ δG−1

δΨ

]
ds + dζ,
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where

(3.7)dζ dζ † = 2G−1 ds.

The use of adapted coordinates allows to disenta
the complicated dynamics of gauge independent
gauge dependent degrees of freedom; it will be of g
value later on. For completeness we note the Fokk
Planck operator in the original variables

(3.8)L[Φ] = δ

δΦ

[
δSinv

δΦ
+ δ

δΦ

]
,

as well as in the adapted coordinates

(3.9)L[Ψ ] = δ

δΨ
G−1

[
δSinv

δΨ
+ δ

δΨ

]
.

We remark that in the case of the Parisi–Wu proces
diffusion along the vertical direction takes place a
no equilibrium distribution is approached. Thus
Fokker–Planck formulation of the Parisi–Wu stoch
tic quantization scheme is impossible: the gauge
variance of the actionSinv is leading to divergencie
along the vertical directions when trying to normali
the Fokker–Planck density.

4. Generalized stochastic quantization

4.1. Geometric obstruction

Our equivalence proof relies on specific allow
modifications of the metric on the field space, wh
governs the stochastic process. These modificat
correspondingly are implying changes of the ass
ated Fokker–Planck operator. We are going to sh
that this can be achieved in such a way that the
sulting Fokker–Planck operator has a positive ker
and is annihilated on itsright by the standard gaug
fixed QED path integral density. In order for this
be the case, however, a certain integrability condition
for the drift term of the considered stochastic proc
has to be fulfilled. Surprisingly similar as in the pu
Yang–Mills theory also in the Abelian QED case the
appears a violation of this condition; it is only aft
a nontrivial modification of the underlying stochas
processes (see next subsection) that this obstru
can be overcome.

Proceeding step by step we first note (see Zwa
ger [4]) that a damping force along the gauge o
has to be introduced in order to maintain the pr
abilistic interpretation of the Fokker–Planck form
lation. Although knowing that this additional force
will not alter expectation values of gauge invaria
quantities it is disappointing to observe that due
its presence the standard—gauge fixed—QED action
will never annihilate the Fokker–Planck operator
its right side due to the following reason: we rec
that the bundle metrich(A,φ) on the associated fibe
bundleA × F → A ×G F which is invariant unde
the corresponding group action gives rise to a nat
connectionγ , whose horizontal subbundleH is or-
thogonal to the corresponding group. The horizon
bundleH[A × F;γ ] with respect toγ is defined by
H[A×F;γ ] ⊥h V (A×F), where the orthogonalit
is with respect toh(A,φ). Elements of the vertical bun
dleV (A,F) → A×G F are given in the form

Zξ (A,φ) = d

dt

∣∣∣∣
t=0

(
Aexptξ , φexptξ

)
(4.1)= (dξ,−ξφ),

where ξ ∈ C∞(M; iR). The orthogonal span wit
respect to the vertical bundle fulfills

d∗τA + 1

2
(v̄φφ − vφφ̄) = 0,

(4.2)τA ∈ TAA, vφ ∈ TφF
which follows from

0 = h(A,φ)

(
(τA, vφ),Zξ (A,φ)

)
= h(A,φ)

(
(τA, vφ), (dξ,−ξφ)

)
(4.3)= 〈τA, dξ〉 − 〈vφ, ξφ〉.

Explicitly we can prove that γ(A,φ)(τA, vφ) ∈
C∞(P ; iR)

γ(A,φ)(τA, vφ) = (
� + |φ|2)−1

(4.4)×
[
d∗τA + 1

2
(v̄φφ − vφφ̄)

]

defines a connection induced byh(A,φ) in the principal
bundle A × F → A ×G F and is U(1) invariant.
Calculating its curvatureΩ((τ1, v1), (τ2, v2)) we find
that it is nonvanishing and given by

Ω = (
� + |φ|2)−1(

v2φ̄ + v̄2φ
)(

� + |φ|2)−1

×
[
d∗τ1

A + 1

2

(
v̄1φ − v1φ̄

)]
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� + |φ|2)−1(

v1φ̄ + v̄1φ
)(

� + |φ|2)−1

+
[
d∗τ2

A + 1

2

(
v̄2φ − v2φ̄

)]

(4.5)× (
� + |φ|2)−1(

v1v̄2 − v̄1v2).
As a consequence [5–8] there does not exist (e
locally) a manifold whose tangent bundle is isom
phic to this horizontal subbundle. Specifically this im
plies that any vector field along the gauge group c
not be written as a gradient with respect to the m
ric h(A,φ). The total drift term—containing the extr
vertical force term—thus can never arise as deriva
of the standard gauge fixed QED action; the Fokk
Planck operator can never be annihilated on its r
by the standard QED path integral density; an equ
lence proof presently cannot be given.

4.2. The induced field metric with flat connection

The crucial observation in [5–8] is to consid
a larger class of modified stochastic processes
considered so far, yet always keeping expecta
values of gauge invariant observables unchanged:
introduces not only the extra vertical drift terms
discussed above but one also modifies the Wie
increments by specific extra terms and introduces extr
so-called Ito-terms, correspondingly.

The idea is to view the new terms multiplying th
Wiener increments as vielbeins giving rise to the in-
verse of a yet not specified metric on the spaceA×F .
The appearance of this metric induces a specific con
nection with a potentially analogous obstruction
discussed above. A necessary requirement to o
come this obstruction is therefore that the correspo
ing curvature has to vanish. The question how to fi
such a metric is reduced to the question how to fin
flat connection.

Indeed, there exists a flat connectionγ̃ in our bun-
dle. This connection is the pull-back of the Maure
Cartan formθ on G0 via the global trivializationχ−1

and prG

(4.6)γ̃ = (
χ−1∗ pr∗G θ

)
(A,φ) = �−1d∗,

where pr∗G is the projectorΣ × G → G. The projector

onto the horizontal subbundlẽH[A × F; γ̃ ] with
respect toγ̃ is given by

(4.7)P̃ = 1 − DAγ̃ .
We see that the horizontal subbundleH̃ is orthogonal
to the gauge orbits with respect to the induced fi
metric; in particular the gauge fixing surface is th
orthogonal to the gauge orbits.

In the adapted coordinates the induced field me
is denoted byG̃ = ẽ† ẽ. The just discussed orthogona
ity condition of the gauge fixing surface and the gau
orbit with respect to the induced field metric is tran
formed into simply

(
G̃−1)ΣG = (

G̃−1)GΣ = 0, where

(4.8)G̃−1 = Ẽ Ẽ† with Ẽ ẽ = 1.

This condition is fulfilled providedẼ is defined as

(4.9)Ẽ =
(

EΣ

e
†
G

)
.

To complete our discussion we also have to spe
the vertical drift term; it is related to the gradient
SG , where we chose

(4.10)SG[g] = 1

2λ

〈
d∗g∗θU(1), d∗g∗θU(1)

〉
,

whereλ is a positive constant and whereθU(1) is the
Maurer–Cartan form onU(1). Note that in the origina
variables we obtain the standard background-ga
fixing term
(
χ−1∗ pr∗G SG

)
(A,φ)

(4.11)

= SG
(
ω(A)

) = 1

2λ

〈
d∗(A − A0), d

∗(A − A0)
〉
.

Summarizing we have

(4.12)dΨ =
[
−G̃

δStot

δΨ
+ δG̃

δΨ

]
ds + ζ̃ ,

where

(4.13)Stot = Sinv + SG and dζ̃ dζ̃ † = 2G̃−1 ds.

4.3. The equivalence proof

It is easy now to prove for QED the equivalen
of the stochastic quantization scheme with the p
integral quantization. For the formulation in terms
the adapted coordinatesΨ = {B,ψ,g} the associated
Fokker–Planck equation is derived in straightforwa
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(4.14)
∂ρ[Ψ, s]

∂s
= L[Ψ ]ρ[Ψ, s],

where the Fokker–Planck operatorL[Ψ ] is appearing
in just factorized form

(4.15)L[Ψ ] = δ

δΨ
G̃−1

[
δStot[Ψ ]

δΨ
+ δ

δΨ

]
.

Due to the positivity ofG̃ the fluctuation dissipation
theorem applies and the equilibrium Fokker–Plan
distributionρeq[Ψ ] obtains by direct inspection as

ρeq[Ψ ] = e−Stot[B,ψ,g]∫
Σ×G0

DB Dψ Dg e−Stot[B,ψ,g]

(4.16)

= e−Sinv[B,ψ] e−SG[g]∫
Σ DB Dψ e−Sinv[B,ψ] ∫

G0
Dg e−SG[g] .

This result is completely equivalent to the stand
background-gauge fixed QED path integral presc
tion. The additionalfinite contributions of the gaug
degrees of freedom always cancel out when evalu
on gauge invariant observables.

Similarly, in terms of the original variablesΦ =
{A,φ} the Fokker–Planck equilibrium distribution
given by the standard background-gauge fixed p
integral density

ρeq[Φ] = e−Stot[A,φ]∫
ADADφ e−Stot[A,φ]

(4.17)= e−Sinv[A,φ]−SG (ω(A))∫
ADADφ e−Sinv[A,φ]−SG(ω(A))

.
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