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Abstract

We present two general results that can be used to obtain asymptotic properties for statistical functionals
based on linear long-memory sequences. As examples for the first one we consider L- and V-statistics, in
particular tail-dependent L-statistics as well as V-statistics with unbounded kernels. As an example for
the second result we consider degenerate V-statistics. To prove these results we also establish a weak
convergence result for empirical processes of linear long-memory sequences, which improves earlier ones.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The appearance of strongly dependent data, i.e. data with long-memory, has been observed in
many areas, such as climate warming, economics and finance; cf. [3–5,27]. A lot of research
has focused on statistical inferences for long-memory sequences; for instance [5,19,22–24].
However, for several statistics, including L-statistics as well as U - and V - (von Mises-) statistics,
the asymptotic distribution has only been established in some special cases. In [10] degenerate
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U -statistics of transformations of Gaussian sequences were considered, and in [20] the limit of
U -statistics with bounded kernel was derived. But for general L-, U - and V -statistics there seem
to be no respective results in the literature so far. In this article, we will present two general
theorems that can be used to derive the asymptotic distribution of statistical functionals based
on linear long-memory sequences. We will also demonstrate that the results yield in particular
noncentral limit theorems (NCLTs) for tail-dependent L-statistics (cf. Example 3.1) as well as
U - and V -statistics with unbounded kernels (cf. Example 3.3).

Before presenting our results, we briefly explain the methods which will be used for deriving
them. The first method we explain can be used to establish an NCLT for, among others,
L-statistics as well as nondegenerate U - and V -statistics (Theorem 2.3). It is well known that
L- and V -statistics can be expressed as T (F̂n) for some functional T : F → V, where F is
a class of distribution functions (DFs) on the real line, V is a vector space (in fact for L- and
V -functionals we have V = R) and F̂n is the empirical DF at stage n of the underlying data. Now,
roughly speaking, if T is Hadamard differentiable at F , then by the Functional Delta Method
(FDM; [15,17,26]) the asymptotic distribution of T (F̂n) can be expressed by the asymptotic
distribution of F̂n . But the FDM was repeatedly criticized for its restricted range of applications
since many tail-dependent statistical functionals T , including popular L- and V -functionals,
are known to be non-Hadamard differentiable at F . However, recently the concept of quasi-
Hadamard differentiability was introduced in [6]. This is a weaker concept of differentiability
than Hadamard differentiability, but it is still strong enough to obtain an FDM; cf. [6, Section 4].
In [6], the latter was called Modified FDM. In particular, it can be shown that general L- and
V -functionals are quasi-Hadamard differentiable and hence that their asymptotic distributions
can be obtained by the Modified FDM; cf. [6,7].

The basic idea of quasi-Hadamard differentiability is to impose a norm only on a suitable
subspace D0 of the space D of all bounded càdlàg functions on R (and not on all of D), and
to differentiate only in directions which lie in (some subset of) D0. It should be stressed that
this is not simply the notion of tangential Hadamard-differentiability where the tangential space
is equipped with the same norm as the space in which F lies. The crucial point is that norms,
which assign to F a finite length, are often not strict enough to obtain “differentiability”. On
the other hand, “differentiability” w.r.t. such good-natured norms is typically not necessary. For
details the reader is referred to the introduction of [6]. Upon having established quasi-Hadamard
differentiability of a given statistical functional T , an application of the Modified FDM typically
requires to prove a weak convergence result for the underlying empirical process w.r.t. a norm
being stricter than the sup-norm ∥·∥∞, for instance w.r.t. a weighted sup-norm ∥·∥λ := ∥(·)φλ∥∞

with φλ(x) := (1 + |x |)λ for some λ > 0. Here λ depends on the statistical functional whose
quasi-Hadamard differentiability one wants to prove. Hence in the context of strongly dependent
data, the crucial point is an NCLT for weighted empirical processes, which will be given in
Theorem 2.1. Corresponding CLTs can be found in [30] for independent data, in [8] for weakly
dependent β-mixing data, in [29] for weakly dependent α- and ρ-mixing data, and in [35] for
weakly dependent causal data.

Let us now turn to the second method (Theorem 2.4), which can be used to obtain an NCLT
for, among others, degenerate U - and V -statistics. To determine the asymptotic distribution of
U -statistics with a degenerate kernel, it was used in [9] that for kernels g : R2

→ R of bounded
variation the corresponding U -statistic can be represented as

(F̂n − F)(x1)(F̂n − F)(x2) dg(x1, x2) (1)
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with F̂n −F the empirical error process; an application of the Continuous Mapping Theorem then
yields the asymptotic distribution (provided the asymptotics of F̂n − F is known). Obviously, for
g of locally bounded variation only, the map Φ : D → R,Φ( f ) :=


f (x1) f (x2) dg(x1, x2)

is not continuous when using the sup-norm ∥ · ∥∞. However, if we use the weighted sup-norm
∥·∥λ (see above) for some λ > 0 and if we require


φ−λ(x)φ−λ(y) dg(x, y) to be well defined,

then we can still apply the Continuous Mapping Theorem, although g might only be of locally
bounded variation. This concept also applies to other functionals that admit a representation
similar to (1).

2. NCLTs based on long-memory sequences

Let

X t :=

∞
s=0

as εt−s, t ∈ N, (2)

where (εi )i∈Z are i.i.d. random variables on some probability space (Ω ,F ,P) with zero mean
and finite variance, and the coefficients as satisfy


∞

s=0 a2
s < ∞ (so that (X t )t∈N is an L2-

process). The sequence (X t )t∈N is stationary, and we denote by F its marginal DF. Many
important time series models, such as the autoregressive moving average (ARMA) and fractional
autoregressive integrated moving average (FARIMA), take this form. If a0 = 1 and a1 =

a2 = · · · = 0, then the X t are i.i.d. If at decays to zero at a sufficiently fast rate, then the
covariances Cov(X0, X t ) are absolutely summable over t ∈ N and thus the process exhibits
short-range dependence (weak dependence). If at decays to zero at a sufficiently slow rate, then
the covariances Cov(X0, X t ) are not absolutely summable over t ∈ N and thus the process
exhibits long-range dependence (strong dependence).

Our starting point for the derivation of a limit theorem for T (F̂n) is a limit theorem for the
empirical DF F̂n :=

1
n

n
i=1 1[X i ,∞). If the X t are i.i.d., then it is commonly known that the

empirical process n1/2(F̂n − F) converges in distribution to an F-Brownian bridge, i.e. to a
centered Gaussian process with covariance function Γ (s, t) = F(s ∧ t)(1 − F(s ∨ t)). If the
X t are subject to a certain mixing condition (weak dependence), then the limit in distribution of
the empirical process n1/2(F̂n − F) is known to be a centered Gaussian process with covariance
function

Γ (s, t) = F(s ∧ t)(1 − F(s ∨ t))+

∞
k=2


Cov


1{X1≤s},1{Xk≤t}


+ Cov


1{X1≤t},1{Xk≤s}


;

see [8,12,29,35]. If the X t exhibit long-range dependence (strong dependence, long-memory),
then the situation changes drastically: Assuming a moving average structure (2) with as =

s−β ℓ(s), s ≥ 1, for β ∈ ( 1
2 , 1) and a slowly varying function ℓ, and some additional regularity

and moment conditions on the distribution of ε0, one has

rn

F̂n(·)− F(·)

 d
−→ cβ f (·)Z (in (D,D, ∥ · ∥∞)) (3)

where Z is a standard normally distributed random variable, f is the Lebesgue density of F, (rn)

is a norming sequence depending on the dependence structure of the X t and increasing slower
than n1/2 (“noncentral rate”), cβ is some constant, and D is the σ -algebra on D generated by the
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usual coordinate projections; see e.g. [9,18,19,31,32]. Notice the asymptotic degeneracy of the
limit process in (3) which shows that the increments of the standardized empirical DF F̂n over
disjoint intervals, or disjoint observation sets, are asymptotically completely correlated.

However, for our purposes, as explained in the Introduction, the use of the sup-norm ∥ · ∥∞ in
(3) is insufficient. We need a corresponding result for the weighted sup-norm ∥ · ∥λ := ∥(·)φλ∥∞

based on the weight function φλ(x) := (1 + |x |)λ for some λ > 0. Such a result can be proved
using methods of [34]; see Theorem 2.1. For λ ≥ 0, let Dλ be the space of all càdlàg functions
ψ on R with ∥ψ∥λ < ∞, and Cλ be the subspace of all continuous functions in Dλ. We equip
Dλ with the σ -algebra Dλ := D ∩ Dλ to make it a measurable space, where as before D is the
σ -algebra generated by the usual coordinate projections πx : D → R, ψ → ψ(x). Without loss
of generality we assume a0 = 1.

Theorem 2.1. Let λ ≥ 0, and assume that

(a) as = s−β ℓ(s), s ∈ N, where β ∈ ( 1
2 , 1) and ℓ is slowly varying at infinity,

(b) E[|ε0|
2+2λ

] < ∞,
(c) the DF G of ε0 is twice differentiable and

2
j=1


|G( j)(x)|2φ2λ(x) dx < ∞.

Then we have the following analogue of (3):

rn

F̂n(·)− F(·)

 d
−→ c1,β f (·)Z (in (Dλ,Dλ, ∥ · ∥λ)), (4)

where rn := nβ−1/2 ℓ(n)−1, f is the Lebesgue density of F, Z is a standard normally distributed
random variable, and

c1,β :=

E[ε2
0]


1 −


β −

1
2


(1 − (2β − 1))

∞

0 (x + x2)−βdx

1/2

.

Notice that assumption (c) implies in particular that the DF F of X0 is differentiable with
derivative f ∈ Cλ. The proof of Theorem 2.1 can be found in the Appendix A. In the case λ = 0
(sup-norm), and under stronger moment assumptions on ε0, the convergence in (4) is already
known from [19,34,18]. In [11] one can find a proof of (4) for λ = 0 and a sequence which is
given by a sum of a linear long-memory sequence and a weakly dependent nonlinear Bernoulli
shift. Even earlier and still in the case λ = 0, the convergence in (4) was established in [9] where
X t = G(Yt ) for some mean zero, stationary Gaussian sequence (Yt )with long-memory and some
measurable function G satisfying certain conditions. Finally we note that in [22] the convergence
in (4) for λ = 0 is extended to the infinite variance case, where Z is not necessarily Gaussian but
only symmetric and α-stable.

Remark 2.2. We note that assumption (c) in Theorem 2.1 can be relaxed in that it suffices to
require that there is some m ∈ N such that the DF Gm of Xm,0 :=

m−1
s=0 asεm−s is twice

differentiable and satisfies
2

j=1


|G( j)

m (x)|2φ2λ(x) dx < ∞. The proof still works in this
setting; see also [34]. �

As a consequence of Theorem 2.1 and the Modified FDM given in [6, Theorem 4.1] we will
obtain an NCLT for statistical functionals; cf. Theorem 2.3. Let F be a class of DF on the real
line containing F, (V, ∥ · ∥V) be a normed vector space, V be a σ -algebra on V not larger than
the Borel σ -algebra on V, and T : F → V be a mapping. Theorem 2.3 involves the notion
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of quasi-Hadamard differentiability. For the reader’s convenience we recall the definition from
[6, Definition 2.1]. If (D0, ∥ · ∥D0) is some normed subspace of D and C0 is some subset of D0,
then T is said to be quasi-Hadamard differentiable at F ∈ F tangentially to C0⟨D0⟩ if there is
some continuous mapping DHad

F;C0⟨D0⟩
T : C0 → V such that

lim
n→∞

DHad
F;C0⟨D0⟩

T (v)−
T (F + hnvn)− T (F)

hn


V

= 0 (5)

holds for each triplet (v, (vn), (hn)), with v ∈ C0, (vn) ⊂ D0 satisfying ∥vn − v∥D0 → 0 as
well as F + hnvn ∈ F for every n ∈ N, and (hn) ⊂ (0,∞) satisfying hn → 0. In this case the
mapping DHad

F;C0⟨D0⟩
T is called quasi-Hadamard derivative of T at F tangentially to C0⟨D0⟩.

Theorem 2.3. Let λ ≥ 0, and assume that

(i) F̂n takes values only in F,
(ii) the assumptions of Theorem 2.1 are fulfilled,

(iii) ω → T (W (ω)+ F) is (F ,V)-measurable whenever W is a measurable mapping from some
measurable space (Ω , F) to (Dλ,Dλ) such that W (ω)+ θ ∈ F for all ω ∈ Ω ,

(iv) T is quasi-Hadamard differentiable at F tangentially to Cλ⟨Dλ⟩ (in the sense of
[6, Definition 2.1]) with quasi-Hadamard derivative DHad

F;Cλ⟨Dλ⟩T .

Then

rn

T (F̂n(·))− T (F(·))

 d
−→ DHad

F;Cλ⟨Dλ⟩T (c1,β f (·)Z) (in (V,V, ∥ · ∥V)), (6)

where rn, c1,β , f and Z are as in Theorem 2.1.

Proof. Assumptions (i)–(iv) exactly match the assumptions of the Modified FDM, i.e. of
Theorem 4.1 in [6], in our particular setting. The Modified FDM (which still holds when
replacing

√
n by rn) thus ensures that (6) holds. �

In some situations the quasi-Hadamard derivative vanishes (cf. Example 3.3 and Section 3.3),
so that in these cases the criterion of Theorem 2.3 yields little. However, sometimes one can use
the following Theorem 2.4 instead of Theorem 2.3. An application of Theorem 2.4 can be found
in Section 3.3.

Theorem 2.4. Let λ ≥ 0, and assume that

(i) F̂n takes values only in F,
(ii) the assumptions of Theorem 2.1 are fulfilled,

(iii) for some γ > 0 and some (∥ · ∥λ, ∥ · ∥V)-continuous mapping Ψ : Dλ → V,

rγ (T (F̂n(·))− T (F(·))) = Ψ(rγ (F̂n(·)− F(·))) ∀ n ∈ N, r > 0.

Then

rγn (T (F̂n(·))− T (F(·)))
d

−→ Ψ(c1,β f (·)Z) (in (V,V, ∥ · ∥V)), (7)

where rn, c1,β , f and Z are as in Theorem 2.1.

Proof. Assumption (ii) ensures (4). Assumption (iii), the Continuous Mapping Theorem and (4)
then yield (7). �
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3. Examples

3.1. L-functionals

Let K be the DF of a probability measure on ([0, 1],B([0, 1])), and FK be the class of all DFs
F on the real line for which


|x | d K (F(x)) < ∞. The functional L, defined by

L(F) := LK (F) :=


x d K (F(x)), F ∈ FK , (8)

is called L-functional associated with K ; cf., e.g., [28, p. 265]. The value L(F) can be seen as the
mean of the distorted DF K ◦ F on R. It was shown in [6] that if K is continuous and piecewise
differentiable, the (piecewise) derivative K ′ is bounded above and F ∈ FK takes the value d ∈

(0, 1) at most once if K is not differentiable at d , then for every λ > 1 the functional L : FK → R
is quasi-Hadamard differentiable at F tangentially to Cλ⟨Dλ⟩ with quasi-Hadamard derivative

DHad
F;Cλ⟨Dλ⟩L (v) = −


K ′(F(x)) v(x) dx ∀ v ∈ Cλ.

Thus, if also the assumptions of Theorem 2.1 are fulfilled with f ∈ Cλ, Theorem 2.3 (with
V = R) yields

rn


L(F̂n)− L(F)
 d

−→ Z (in (R,B(R))), (9)

where Z is normally distributed with mean zero and variance c2
1,β(


K ′(F(x)) f (x)dx)2, and rn

and c1,β are as in Theorem 2.1.

Example 3.1 (Average Value at Risk). In mathematical finance, L-functionals are also known as
distortion risk measures, and K is often referred to as distortion function. The risk measure LK
is coherent in the sense of [1] if and only if K is convex; cf. [33]. Since for every convex K
the right boundary of the compact support of the probability measure d K is 1, every coherent
distortion risk measure depends on the right tail of the argument. Such risk measures cannot
be treated by the classical FDM, because, roughly speaking, tail-dependent functionals are not
Hadamard differentiable w.r.t. the sup-norm ∥ · ∥∞; for details see the introduction of [6]. On the
other hand, the FDM was modified in [6] in order to obtain also the asymptotic distribution of
plug-in estimators for general distortion risk measures. A very popular example for a coherent
distortion risk measure with K satisfying the assumptions stated subsequent to (8) is the Average
Value at Risk (also called Expected Shortfall) at level α ∈ (0, 1). The latter corresponds to the
distortion function K (x) =

1
1−α

max{0, x − α}. In this case the variance of Z in (9) is given by

c2
1,β

(1 − α)2


∞

F→(α)

f (x) dx

2

,

where F→ denotes the right-continuous inverse of F . �

3.2. V -functionals

Let g : R2
→ R be a measurable function, and Fg be the class of all DFs F on the real line

for which


|g(x1, x2)|d F(x1)d F(x2) < ∞. The functional V , defined by

V(F) := Vg(F) :=


g(x1, x2) d F(x1)d F(x2), F ∈ Fg, (10)
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is called V -functional associated with g. For background see, e.g., [25]. Let BVloc,rc be the space
of all functions ψ : R → R that are right-continuous and locally of bounded variation. For ψ ∈

BVloc,rc, we denote by dψ+ and dψ− the unique positive Radon measures induced by the Jordan
decomposition of ψ , and we set |dψ | := dψ+

+ dψ−. We impose the following assumptions.

Assumption 3.2. For some λ > λ′
≥ 0 the following two assertions hold

(a) For every x2 ∈ R fixed, the function gx2(·) := g( · , x2) lies in BVloc ∩ D−λ′ . Moreover, the
function x2 →


φ−λ(x1)|dgx2 |(x1) is measurable and finite w.r.t. ∥ · ∥−λ′ .

(b) The functions g1,F (·) :=


g( · , x2)d F(x2) and g2,F (·) :=


g(x1, · )d F(x1) lie in BVloc,rc,
and we have


φ−λ(x) |dgi,F |(x) < ∞ for i = 1, 2. Moreover, the functions g1,F (·) :=

|g( · , x2)|d F(x2) and g2,F (·) :=


|g(x1, · )|d F(x1) lie in D−λ′ .

It is shown in [7] that under Assumption 3.2 the functional V is quasi-Hadamard differentiable
at F tangentially to Cλ⟨Dλ⟩ with quasi-Hadamard derivative

DHad
F;Cλ⟨Dλ⟩V (v) = −


v(x)dg1,F (x)−


v(x)dg2,F (x) ∀ v ∈ Cλ. (11)

Thus, if also the assumptions of Theorem 2.1 are fulfilled with f ∈ Cλ, Theorem 2.3 (with
V = R) yields

rn


V(F̂n)− V(F)
 d

−→ Z (in (R,B(R))), (12)

where Z is normally distributed with mean zero and variance c2
1,β(


f (x)dg1,F (x) +

f (x)dg2,F (x))2, and rn and c1,β are as in Theorem 2.1.

Example 3.3. It is easy to show that the variance kernel g(x1, x2) =
1
2 (x1 − x2)

2 and Gini’s
mean difference kernel g(x1, x2) = |x1 − x2| satisfy conditions (a)–(b) in Assumption 3.2 for
λ′

= 2 and λ′
= 1, respectively; cf. [7]. In the former case, however, it is straightforwardly seen

that the asymptotic variance in (12) vanishes, so that the right-hand side in (12) degenerates to
zero. This is consistent with Example 1 in [10]. �

Remark 3.4. Notice that the V -statistic V(F̂n) =
1

n2

n
i=1

n
j=1 g(X i , X j ) slightly differs from

the U -statistic Un :=
1

n(n−1)

n
i=1

n
i≠ j=1 g(X i , X j ). However, our method is suitable also for

U -statistics; see Remark 2.5 in [7] and note that rn grows slower than
√

n. �

Remark 3.5. An NCLT for U - and V -statistics has already been established in [20, Section 5(b)]
using different techniques. However, the assumptions there are more technical and more
restrictive. In particular, the kernel g has to be bounded. �

3.3. Degenerate V -functionals

Among V -functionals (introduced in Section 3.2) the functionals with a so-called degenerate
kernel have attracted special interest; see, e.g., [9,10,13]. A kernel g is degenerate w.r.t. F ∈ Fg
if the functions g1,F and g2,F defined in part (b) of Assumption 3.2 are identically zero. In
this case, we refer to V (defined in (10)) as a degenerate V -functional w.r.t. F . Moreover, in
this case the right-hand side in (11) vanishes and thus the right-hand side in (12) degenerates
to zero. Nevertheless one can establish a nondegenerate NCLT for V(F̂n). In contrast to the
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considerations in Section 3.2, where the derivation of the asymptotic distribution of V(F̂n) relies
on quasi-Hadamard differentiability and Theorem 2.3, we will now exploit the degeneracy of the
kernel g and Theorem 2.4. The crucial points will be that the degeneracy of the kernel g leads to
the representation

V(F̂n) =


g(x1, x2) d(F̂n − F)(x1)d(F̂n − F)(x2) (13)

and that under certain conditions on g and F this equals

V(F̂n) =


(F̂n − F)(x1)(F̂n − F)(x2) dg(x1, x2). (14)

The representation (13) was pointed out in [9, Section 2].
Moreover, in [9] it was also pointed out that, using integration-by-parts, relation (14) holds

true. To apply integration-by-parts, it was assumed in [9] that the kernel g is right-continuous
and has bounded total variation. However, as the assumption that g be of bounded total variation
is too restrictive, the result of [9, Section 2] was extended in [10] to more general kernels. In
[10] it was shown, that the result of [9, Section 2] can be extended to kernels g such that [g]

has finite ∥ · ∥F -norm (for the definition and properties of [g] and ∥ · ∥F , respectively, see [10]).
The extension was based on the fact that kernels g, for which [g] has finite ∥ · ∥F -norm, can be
approximated by kernels g that have bounded total bivariation.

Here, we proceed differently, and it seems that by tendency the method presented here
covers more examples; see Remark 3.8. Instead of approximating functions with unbounded
total bivariation we extend the integration-by-parts formula, which was used in [10] to establish
equality of (13) and (14), to right-continuous kernels with unbounded total bivariation. To this
end, recall that a function g : R2

→ R is said to be of locally bounded bivariation if for every
half-open rectangle (a1, b1] × (a2, b2], with a = (a1, a2), b = (b1, b2) ∈ R2,

sup
Π


(x1,x2]×(y1,y2]∈Π

g(x2, y2)− g(x1, y2)− g(x2, y1)+ g(x1, y1)
 < ∞,

where the supremum is taken over all partitions Π of (a1, b1] × (a2, b2] consisting of finitely
many half-open rectangles. We denote by BV2

loc,rc the space of all upper right-continuous

functions g : R2
→ R of locally bounded bivariation. For g ∈ BV2

loc,rc, we set |dg| :=

dg+
+ dg− with dg+ and dg− the unique positive Radon measures induced by the Jordan

decomposition of g into the difference of two bimonotonically increasing functions; cf.
[16, Proposition 1.17]. The following lemma, which allows us to prove an NCLT for V(F̂n)

for a degenerate kernel g, gives sufficient conditions for the validity of the equation
g(x1, x2) dh(x1)dh(x2) =


h(x1)h(x2) dg(x1, x2). (15)

The lemma is based on a general integration-by-parts formula given in the Appendix B.

Lemma 3.6. Assume that, for some 0 ≤ λ′ < λ,

(a) g ∈ BV2
loc,rc, K := supb1,b2∈R |φ−λ′(b1)φ−λ′(b2)g(b1, b2)| is finite, and that the integral

φ−λ(x1)φ−λ(x2) |dg|(x1, x2) is finite,
(b) the function gx2( · ) := g( · , x2) satisfies Assumption 3.2(a), and the same holds for gx1( · ) :=

g(x1, · ),
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(c) h ∈ Dλ ∩ BVloc, and


|g(x1, x2)| |dh|(x1, x2) < ∞ is finite, whereh : R2
→ R is defined

byh(x1, x2) := h(x1)h(x2),
(d) the functionsh and g have no joint discontinuities.

Then (15) holds.

Proof. To prove (15) we show that the conditions of Lemma B.1 given in the Appendix B hold
true for v := g and u := h with k1 = k2 = k3 = 0. Conditions (ii) and (iv) of Lemma B.1 hold
true by assumptions (b) and (d). By condition (c) to verify condition (i) of Lemma B.1, it only
remains to show that the integral


|h(x1)h(x2)| |dg|(x1, x2) is finite. Since h ∈ Dλ, we have

|h(x1)h(x2)| |dg|(x1, x2) ≤ C2


φ−λ(x1)φ−λ(x2) |dg|(x1, x2),

where C := supx1
|φλ(x1)h(x1)|. Let us turn to condition (iii) of Lemma B.1. We first show that

k1 = k2 = 0. We have
 b1

a1

h(x1)h(b2) dgb2(x1)

 ≤


|h(x1)| |dgb2 |(x1)


|h(b2)|φ−λ′(b2) φλ′(b2)

≤ C


φ−λ(x1) |dgb2 |(x1)φ−λ′(b2)


|h(b2)|φλ′(b2),

where C is as above. Hence |
 b1

a1
h(x1)h(b2) dgb2(x1)| → 0 as ai → −∞, bi → ∞, i = 1, 2,

because the mapping b2 →

φ−λ(x1) |dgb2 |(x1) is finite w.r.t. ∥ · ∥−λ′ , ∥h∥λ is finite, and

λ′
∈ [0, λ). Applying the same arguments to the other terms appearing in the definition of k1 and

k2 in condition (iii) of Lemma B.1, we obtain that k1 = k2 = 0. Finally we show that k3 = 0.
Since |h(b1)h(b2) g(b1, b2)| ≤ K |h(b1) h(b2) φλ′(b1)φλ′(b2)| by assumption (a), we obtain that
|h(b1)h(b2) g(b1, b2)| converges to zero as b1, b2 → ∞ since h ∈ Dλ. Similar arguments show
that the three other terms in the definition of k3 converge to zero, too. This finishes the proof. �

Now, we can provide an NCLT for V(F̂n) for a degenerate kernel g. Recall that V(F) = 0
whenever g is degenerate, and notice that the factor on the left-hand side in (16) is r2

n , which
differs from the left-hand side in (12) where the factor is rn . Recall also that Fg is the class of all
DFs F on the real line for which


|g(x1, x2)|d F(x1)d F(x2) < ∞.

Theorem 3.7. Assume that, for some λ > λ′
≥ 0,

(a) The functions g1,F and g2,F defined in Assumption 3.2(b) are identically zero, i.e. the kernel
g is degenerate,

(b) conditions (a)–(b) of Lemma 3.6 hold for g,
(c) F ∈ Fg , and the assumptions of Theorem 2.1 are fulfilled,
(d) The sets D1 := {x ∈ R : ∃ y ∈ R such that g is discontinuous in (x, y)} and D2 := {y ∈ R :

∃ x ∈ R such that g is discontinuous in (x, y)} are d F null sets.

Then

r2
n V(F̂n)

d
−→


c2

1,β


f (x1) f (x2)dg(x1, x2)


Z2 (in (R,B(R))), (16)

where Z2 is χ2
1 -distributed, and rn and c1,β are as in Theorem 2.1.

Proof. We adapt the arguments of [9, Section 2]. Under condition (a) we have the representation
(13) for V(F̂n). By an application of Lemma 3.6 to g and h := F̂n−F , we can conclude from (13)
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that the alternative representation (14) holds P-almost surely. We note that Lemma 3.6 can be
applied because assumptions (a)–(b), (c), and (d) of Lemma 3.6 hold (to be exact, condition (d)
holds only P-almost surely) by conditions (b), (c), and (d). From (14) we immediately obtain
(recall that V(F) = 0 by the degeneracy of g which was imposed by condition (a))

r2 V(F̂n(·)) = r2 (V(F̂n(·))− V(F(·))) = Ψg(r(F̂n(·)− F(·))) P-a.s.

for every n ∈ N and r > 0, where Ψg(v) :=

v(x1) v(x2) dg(x1, x2), v ∈ Dλ, v measurable.

Since the mapping Ψg : Dλ → R is (∥ · ∥λ, | · |)-continuous, Theorem 2.4 yields (16). �

Remark 3.8. Consider the kernel g(x1, x2) = x3
1 x3

2 and a distribution with DF F that is
symmetric about 0. Then the corresponding V -functional is degenerate. Additionally, let us
assume that the tails of F are of order x−(3+ε) for some ε > 0. Then, for every ε > 0 we
can apply Theorem 3.7 provided the assumptions of Theorem 2.1 are fulfilled with f ∈ Cλ. On
the other hand, since g is differentiable, the ∥ · ∥F -norm of [g] equals (cf. [10, Lemma 2.1]) 

F(x1)(1 − F(x1))


F(x2)(1 − F(x2)) x2
1 x2

2 dx1 dx2.

Obviously, this quantity is not finite for every ε > 0 implying that the results of [10] cannot be
applied to all ε > 0. �

Example 3.9. (Goodness-of-fit test) For a given DF F0 and any measurable (weight) function
w : R → R+, the weighted Cramér–von Mises test statistic

T 0
n :=


w(x)


F̂n(x)− F0(x))

2 d F0(x)

was introduced for testing the null hypothesis F = F0; see, e.g., [10, Example 3]. The test
statistic T 0

n can be expressed as V -statistic V(F̂n) with kernel

g(x1, x2) :=


w(x)


1[x1,∞)(x)− F0(x)


1[x2,∞)(x)− F0(x)


d F0(x)

and we have

dg(x1, x2) = dg+(x1, x2) = |dg|(x1, x2) =


w(x) δ(x,x)(dx1, dx2) d F(x);

see also [10, Example 3]. Moreover, under the null hypothesis F = F0 the kernel g is
obviously degenerate w.r.t. F . In this case, choosing w = φ2λ′ (implying that the assumptions
on g in Theorem 3.7 are fulfilled), the double integral on the right-hand side in (16) reads as

f (x)2w(x) d F(x). �
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Appendix A. Proof of Theorem 2.1

First of all we introduce some notation which will be needed for the proof of Theorem 2.1.
Let Ft := σ(εs : s ∈ Z with s ≤ t) for every t ∈ Z. For every u ∈ Z fixed with
u ≤ t − 1, we define truncated processes X ·,u and X ·,u by X t,u :=

t−u−1
s=0 asεt−s, t ∈ N,

and X t,u :=


∞

s=t−u asεt−s = E[X t |Fu], t ∈ N0, respectively.
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In view of the decomposition X t = X t,u+X t,u and the Fu-measurability of X t,u , Theorem 5.4
in [21] yields

E[1[X t ,∞)(x)|Fu] = FX t,u
(x − X t,u) P-a.s. (17)

for all u ≤ t −1, t ∈ N, and x ∈ R, where FX t,u
denotes the DF of X t,u . For notational simplicity,

we set Gm := G(0)
m := FXm,0

and denote by G(1)
m the derivative of Gm .

Now, let us turn to the actual proof of Theorem 2.1. For every n ∈ N, we set σn :=

n1−(β−1/2)ℓ(n) and

Sn,0(x) := n(F̂n(x)− F(x)), x ∈ R

Sn,1(x) := n(F̂n(x)− F(x))+ f (x)
n

i=1

X i , x ∈ R.

Hence,
Sn,0(·)

σn
=

Sn,1(·)

σn
− f (·)

n
i=1

X i

σn
.

As f ∈ Dλ, σ−1
n = n−1 rn and 1

σn

n
i=1 X i

d
−→ cβ Z (cf. [2, Theorem 2]; for the shape of

cβ see [19, Lemma 6.1]), for the statement of Theorem 2.1 to be true it suffices to show that

∥
Sn,1(·)

σn
∥λ converges in probability to zero. In the remainder of this section we will show that this

convergence holds.
We clearly have Sn,1 = Mn + Tn , where

Mn(x) :=

n
i=1


1[X i ,∞)(x)− E[1[X i ,∞)(x)|Fi−1]


, x ∈ R

Tn(x) :=

n
i=1


E[1[X i ,∞)(x)|Fi−1] − F(x)+ f (x)X i


=

n
i=1


FX i,i−1

(x − X i,i−1)− F(x)+ f (x)X i


=

n
i=1


G1(x − X i,i−1)− F(x)+ f (x)X i


, x ∈ R

(recall (17) and note that FX i,i−1
= FX1,0

= G1). By Slutzky’s lemma, it thus suffices to show

that both ∥
Mn
σn

∥λ and ∥
Tn
σn

∥λ converge in probability to zero.

As for ∥
Mn
σn

∥λ, we observe that for every ε > 0

P

σ−1

n ∥Mn∥λ > ε


≤
1

ε2

E

∥M2

n∥2λ


n2−(2β−1)ℓ(n)2
.

Since E[∥M2
n∥2λ] = O(n log2 n) by Lemma 13 in [34], and β ∈ ( 1

2 , 1), we immediately obtain
that ∥

Mn
σn

∥λ converges in probability to zero.

As for ∥
Tn
σn

∥λ, we note that by Lemma 4 in [34]

∥T 2
n ∥2λ ≤ 21+4λ

1
j=0


{T ( j)

n (x)}2φ2λ(x) dx,
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where T ( j)
n denotes the j th derivative of Tn , i.e.

T ( j)
n (x) =

n
i=1


G( j)

1 (x − X i,i−1)− F ( j)(x)+ f ( j)(x)X i


∀x ∈ R.

Thus we have for every ε > 0

P

σ−1

n ∥Tn∥λ > ε


≤
E

∥T 2

n ∥2λ


ε2σ 2
n

≤
21+4λ

ε2σ 2
n

1
j=0


E

{T ( j)

n (x)}2

φ2λ(x) dx

=:
21+4λ

ε2σ 2
n

1
j=0

In( j).

It follows from Lemma A.5 that In( j) = o(σ 2
n ) for j ∈ {0, 1}. That is ∥

Tn
σn

∥λ converges in
probability to zero, which completes the proof of Theorem 2.1.

The proof of Lemma A.5 is based on Lemmas A.1–A.4, for which we need some notation.
For every k ∈ Z, we define the projection operator Pk : L1(Ω ,F ,P) → L1(Ω ,Fk,P) by

Pk(Y ) := E[Y |Fk] − E[Y |Fk−1], Y ∈ L1(Ω ,F ,P).

Notice that Pk(Y ) = 0 for every Y ∈ L1(Ω ,Fk−1,P). For every i ∈ N and x ∈ R, we define
L i (x) := G1(x − X i,i−1)− F(x)+ f (x)X i . Hence, T ( j)

n (x) =
n

i=1 L( j)
i (x) and

L( j)
i (x) = G( j)

1 (x − X i,i−1)− F ( j)(x)+ f ( j)(x)X i

=
∂ j

∂x j E[1[X i ,∞)(x)|Fi−1] − F ( j)(x)+ f ( j)(x)X i

for every i ∈ N, x ∈ R, and j ∈ {0, 1}.

Lemma A.1. For every n ∈ N, x ∈ R, and j ∈ {0, 1},

T ( j)
n (x) =

n
k=−∞

Pk(T
( j)

n (x)) P-a.s.

Proof. Of course, it suffices to show L( j)
i (x) =

n
k=−∞

Pk(L
( j)
i (x)) for every i = 1, . . . , n.

Since L( j)
i (x) is Fi -measurable, we obtain

n
k=−∞

Pk(L
( j)
i (x))

= lim
l→−∞

n
k=l+1


E[L( j)

i |Fk] − E[L( j)
i |Fk−1]


= L( j)

i (x)− lim
l→−∞


∂ j

∂x j E[1[X i ,∞)(x)|Fl ] − F ( j)(x)+ f ( j)(x)E[X i |Fl ]


.

Since X i is in L2(Ω ,F ,P) and therefore P-almost surely finite, we obtain that E[X i |Fl ] =
∞

s=i−l asεi−s converges P-almost surely to zero as l → −∞. For the statement of Lemma A.1
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to be true, it thus suffices to show that ∂ j

∂x j E[1[X i ,∞)(x)|Fl ] converges P-almost surely to F ( j)(x)
as l → −∞. By (17),

∂ j

∂x j E[1[X i ,∞)(x)|Fl ] = F ( j)
X i,l
(x − X i,l) = F ( j)

X i,l
(x − E[X i |Fl ]). (18)

Since liml→−∞ X i,l = X i and f = F (1) is continuous, we have liml→−∞ F ( j)
X i,l
(y) = F ( j)(y)

uniformly in y on compact sets. As seen above, we further have liml→−∞ E[X i |Fl ] = 0
P-almost surely. Thus, the expression in (18) converges indeed P-almost surely to F ( j)(x) as
l → −∞. �

Lemma A.2. For every i ∈ N, j ∈ {0, 1}, x ∈ R, and every k ∈ Z with k < i ,

Pi (L
( j)
i (x)) = f ( j)(x)εi ,

Pk(L
( j)
i (x)) = G( j)

i−k(x − X i−k,0)− G( j)
i−k+1(x − X i−k,−1)+ f ( j)(x)ai−kεk,

where G( j)
m was defined to be the j th derivative of the DF of Xm,0 :=

m−1
s=0 asεm−s .

Proof. Using (17) along with i > k, we obtain

Pk(L
( j)
i (x)) = Pk


∂ j

∂x j E[1[X i ,∞)(x)|Fi−1] − F ( j)(x)+ f ( j)(x)X i



=
∂ j

∂x j E[1[X i ,∞)(x)|Fk] − F ( j)(x)+ f ( j)(x)E[X i |Fk]

−
∂ j

∂x j E[1[X i ,∞)(x)|Fk−1] + F ( j)(x)− f ( j)(x)E[X i |Fk−1]

=
∂ j

∂x j FX i,k
(x − X i,k)+ f ( j)(x)

∞
s=i−k

asεi−s

−
∂ j

∂x j FX i,k−1
(x − X i,k−1)− f ( j)(x)

∞
s=i−k+1

asεi−s

= G( j)
i−k(x − X i,k)− G( j)

i−k+1(x − X i,k−1)+ f ( j)(x)ai−kεk

= G( j)
i−k(x − X i−k,0)− G( j)

i−k+1(x − X i−k,−1)+ f ( j)(x)ai−kεk .

This proves the second identity. The first identity can be proved analogously, noting that we
assumed a0 = 1. �

Lemma A.3. For every n ∈ N and j ∈ {0, 1}, we have In( j) ≤
n

k=−∞

n
i=1∨k λi−k, j

2,
where, for m ∈ N,

λ0, j :=


{ f ( j)(x)}2φ2λ(x) dx

1/2

E[ε2
0]

1/2,

λm, j :=


E


G( j)

m (x − Xm,0)− G( j)
m+1(x − Xm,−1)+ f ( j)(x)amε0

2
φ2λ(x) dx

1/2

with G( j)
m the j th derivative of the DF of Xm,0 :=

m−1
s=0 asεm−s .
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Proof. By Lemma A.1, we have T ( j)
n (x) =

n
k=−∞

Pk(T
( j)

n (x)). Further, it is easily seen

that E[Pk(T
( j)

n (x))Pl(T
( j)

n (x))] = 0 for every k, l ≤ n with k ≠ l. Finally, notice that
Pk(L

( j)
i (x)) = 0 for all i < k since L( j)

i (x) is Fi -measurable. Then,

In( j) =


E

{T ( j)

n (x)}2

φ2λ(x) dx

=


E


n

k=−∞

Pk(T
( j)

n (x))

2
φ2λ(x) dx

=

n
k=−∞

E


{Pk(T

( j)
n (x))}2φ2λ(x) dx



=

n
k=−∞

E

  n
i=1∨k

Pk(L
( j)
i (x))

2

φ2λ(x) dx



=

n
k=−∞

E

  n
i=1∨k

Pk(L
( j)
i (x))
λi−k, j


λi−k, j

2

φ2λ(x) dx



≤

n
k=−∞

E

  n
i=1∨k

{Pk(L
( j)
i (x))}2

λi−k, j


n

i=1∨k

λi−k, j


φ2λ(x) dx



=

n
k=−∞


n

i=1∨k


E[{Pk(L

( j)
i (x))}2

]φ2λ(x) dx

λi−k, j


n

i=1∨k

λi−k, j



=

n
k=−∞


n

i=1∨k

λi−k, j

2

,

where the “≤” follows from Hölder’s inequality and f ( j)(·)amεi−m
d
= f ( j)(·)amε0. The last

equality is immediate from Lemma A.2. �

Lemma A.4. For j ∈ {0, 1}, we have λm, j = o(am), where λm, j is as in Lemma A.3.

Proof. Let ε′0 ∼ G be independent of (εs)s∈Z, probably defined on an extension of the original

probability space. Since G( j)
m+1(x − Xm,−1) = E[G( j)

m (x − Xm,−1 − amε
′

0)|F0],E[ε′0|F0] =

E[ε′0] = 0 and both Xm,0 and ε0 are F0-measurable, we have

G( j)
m (x − Xm,0)− G( j)

m+1(x − Xm,−1)+ f ( j)(x)amε0

= E

G( j)

m (x − Xm,0)− G( j)
m (x − Xm,−1 − amε

′

0)+ f ( j)(x)am(ε0 − ε′0)|F0


. (19)

By the Mean Value Theorem there is some ξm between x − Xm,−1 − amε
′

0 and x − Xm,−1

such that G( j)
m (x − Xm,−1 − amε

′

0) = G( j)
m (x − Xm,−1)− G( j+1)

m (ξm)amε
′

0. So, introducing the

telescoping sum G( j+1)
m (x − Xm,−1)amε0 − G( j+1)

m (x − Xm,−1)amε0 on the right-hand side in
(19) and noting that both Xm,0 and Xm,−1 are F0-measurable and that ε′0 is independent of F0,
we obtain from (19)
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G( j)
m (x − Xm,0)− G( j)

m+1(x − Xm,−1)+ f ( j)(x)amε0

= G( j)
m (x − Xm,0)− G( j)

m (x − Xm,−1)+ G( j+1)
m (x − Xm,−1)amε0

+ f ( j)(x)amε0 − G( j+1)
m (x − Xm,−1)amε0

+ E

G( j+1)

m (ξm)amε
′

0 − f ( j)(x)amε
′

0|F0


.

Hence, 
G( j)

m (x − Xm,0)− G( j)
m+1(x − Xm,−1)+ f ( j)(x)amε0

2
φ2λ(x) dx

≤ 4
 

G( j)
m (x − Xm,0)− G( j)

m (x − Xm,−1)+ G( j+1)
m (x − Xm,−1)amε0

2
φ2λ(x) dx

+

 
f ( j)(x)amε0 − G( j+1)

m (x − Xm,−1)amε0

2
φ2λ(x) dx

+


E

G( j+1)

m (ξm)amε
′

0 − f ( j)(x)amε
′

0|F0

2
φ2λ(x) dx


=: 4 (Im, j + IIm, j + IIIm, j ).

Noting λ2
m, j ≤ 4(E[Im, j ] + E[IIm, j ] + E[IIIm, j ]), it remains to show that E[Im, j ] =

o(a2
m),E[IIm, j ] = o(a2

m) and E[IIIm, j ] = o(a2
m). We will proceed in three steps.

Step I. On the one hand, we have by Lemma 7 (29) in [34]

Im, j =

 
G( j)

m (x − Xm,−1 + amε0)

− G( j)
m (x − Xm,−1)+ G( j+1)

m (x − Xm,−1)amε0

2
φ2λ(x)dx

≤ C1 (amε0)
4 φ2λ(amε0)φ2λ(Xm,−1)


G( j+1)

m (x)2φ2λ(x) dx

= C2 a4
m


ε4

0 φ2λ(amε0)φ2λ(Xm,−1)


(20)

for some constants C1,C2 > 0. On the other hand, using Lemma 7 (28) in [34] twice, we obtain

Im, j ≤ 4
 

G( j)
m (x − Xm,−1 + amε0)− G( j)

m (x − Xm,−1)
2
φ2λ(x) dx

+ 4
 

G( j+1)
m (x − Xm,−1)− G( j+1)

m (x)
2
(amε0)

2φ2λ(x) dx

+ 4


G( j+1)
m (x)2(amε0)

2φ2λ(x) dx

≤ 4C3(amε0)
2 φ2λ(amε0) φ2λ(Xm,−1)


G( j+1)

m (x)2φ2λ(x) dx

+ 4C3 (amε0)
2 (Xm,−1)

2 φ2λ(Xm,−1) φ2λ(0)


G( j+2)
m (x)2φ2λ(x) dx

+ 4 (amε0)
2


G( j+1)
m (x)2φ2λ(x) dx

≤ C4 a2
m


φ2+2λ(Xm,−1)


ε2

0φ2λ(amε0)+ ε2
0


(21)
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for some constants C3,C4 > 0. From (20)–(21) we deduce

E[Im, j ]

≤ C5a2
mE

min


a2

m ε
4
0 φ2λ(amε0) φ2λ(Xm,−1), φ2+2λ(Xm,−1)


ε2

0φ2λ(amε0)+ ε2
0


≤ C5 a2

m E[φ2+2λ(Xm,−1)] E

min


a2

mε
4
0φ2λ(amε0), ε

2
0φ2λ(amε0)+ ε2

0


for some constant C5 > 0, where we used the independence of Xm,−1 and ε0. Now, the latter
expectation in the last line converges to zero by the dominated convergence theorem (a majorant
is given by ε2

0φ2λ(amε0) + ε2
0 ≤ 22λ(ε2

0 + maxs∈N0 |as |ε
2+2λ
0 ) + ε2

0 due to assumption (b), and
a2

mε
4
0φ2λ(amε0) converges P-almost surely to zero as m → ∞). To show that the first expectation

in the last line is bounded above uniformly in m ∈ N, we first note that

|Xm,−1| =

 ∞
s=m+1

s−βℓ(s)εm−s

 ≤ L
∞

s=m+1

|s−βεm−s | ≤ L
∞

s=1

|s−βε−s |

with L := maxs∈N0 |ℓ(s)|, and so

E[φ2+2λ(Xm,−1)] ≤ 21+2λ


1 + L2+2λ E


∞

s=1

|s−βε−s |

2+2λ
.

Now the latter is bounded above uniformly in m ∈ N, because by the Rosenthal inequality and
assumptions (a)–(b)

E


∞

s=1

|s−βε−s |

2+2λ
≤ max


∞

s=1

E[|s−β ε−s |
2+2λ

];


∞

s=1

E[|s−β ε−s |
2
]

(2+2λ)/2

≤ max


E[|ε0|

2+2λ
]

∞
s=1

s−β(2+2λ)
;


E[ε2

0]

∞
s=1

s−2β

1+λ
< ∞.

Thus, E[Im, j ] = o(a2
m).

Step II. Notice that f ( j)(x) = E[G( j+1)
m (x − Xm,0)] due to Lemma 7 (27) in [34]. Setting

σ 2
:= E[ε2

0], using the independence of ε0 and Xm,−1 as well as Jensen’s inequality, we obtain

E[IIm, j ] ≤ 2 E

 
f ( j)(x)amε0 − G( j+1)

m (x)amε0

2
φ2λ(x) dx



+ 2E

 
G( j+1)

m (x)amε0 − G( j+1)
m (x − Xm,−1)amε0

2
φ2λ(x) dx



= a2
m2E[ε2

0]

 
E[G( j+1)

m (x − Xm,0)] − G( j+1)
m (x)

2
φ2λ(x) dx

+ a2
m2E[ε2

0] E

 
G( j+1)

m (x)− G( j+1)
m (x − Xm,−1)

2
φ2λ(x) dx



≤ a2
mσ

22


E

 
G( j+1)

m (x − Xm,0)− G( j+1)
m (x)

2
φ2λ(x) dx


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+ E

 
G( j+1)

m (x)− G( j+1)
m (x − Xm,−1)

2
φ2λ(x) dx


=: a2

mσ
22(Rm, j (1)+ Rm, j (2)).

Using Lemma 7 (28) in [34], the Rosenthal inequality and the dominated convergence theorem,
one can now easily show that Rm, j (1) = o(1) and Rm, j (2) = o(1). That is, E[IIm, j ] = o(a2

m).
Step III. Using the conditional Hölder inequality as well as the independence of ε′0 and F0,

E[IIIm, j ]

= a2
mE


E


G( j+1)
m (ξm)− f ( j)(x)


ε′0|F0

2
φ2λ(x) dx



≤ a2
mE

 
E

(ε′0)

2
|F0

1/2E


G( j+1)
m (ξm)− f ( j)(x)

2
|F0

1/22
φ2λ(x) dx



= a2
mσ

2E


E


G( j+1)
m (ξm)− f ( j)(x)

2
|F0


φ2λ(x) dx



≤ a2
mσ

22


E

 
G( j+1)

m (ξm)− G( j+1)
m (x)

2
φ2λ(x) dx



+ E

 
G( j+1)

m (x)− f ( j)(x)
2
φ2λ(x) dx


=: a2

mσ
22(Rm, j (3)+ Rm, j (4)).

Proceeding as for the first summand in Step II, we obtain Rm, j (4) = o(1). Moreover, we have
ξm = x − Xm,−1 + rm with |rm | ≤ |amε

′

0|, and ε′0 and Xm,−1 are independent. Thus, using
Lemma 7 (28) in [34],

Rm, j (3)

= E

 
G( j+1)

m (x − Xm,−1 + rm)− G( j+1)
m (x)

2
φ2λ(x) dx



≤ E


C4 (Xm,−1 − rm)

2 φ2λ(Xm,−1 − rm)


G( j+1)

m (x)2φ2λ(x) dx



≤ C4 22λ+1 E


X2

m,−1 + r2
m


φ2λ(Xm,−1)+ φ2λ(rm)

 
G( j+1)

m (x)2φ2λ(x) dx



≤ C6 E


X2

m,−1 + (amε0)
2φ2λ(Xm,−1)+ φ2λ(amε0)

 
G( j+1)

m (x)2φ2λ(x) dx


for some constants C4,C6 > 0. Using again the Rosenthal inequality and the dominated
convergence theorem, we obtain Rm, j (3) = o(1). That is, we also have E[IIIm, j ] = o(a2

m). �

Lemma A.5. For j ∈ {0, 1}, we have In( j) = o(σ 2
n ).

Proof. By Lemma A.4, we have λi, j = o(ai ), and by Karamata’s theorem (cf. [14, p. 281])
we have

n
i=1 ai ∼ n1−βℓ(n)/(1 − β) ∼ nan/(1 − β). Also note that σn ∼ n3/2−βℓ(n)/c1,β .
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So, since β ∈ ( 1
2 , 1), elementary calculations yield

n
k=−∞


n

i=1

λi−k, j

2

≤ 2n


2n

i=1

λi, j

2

+

−n
k=−∞

{o(na−k)}
2

= o(σ 2
n ).

This proves the claim. �

Appendix B. Integration theoretical auxiliaries

Let BV2
loc,rc be defined as in Section 3.3. Recall that for u ∈ BV2

loc,rc, we set |du| :=

du+
+ du− with du+ and du− the unique positive Radon measures induced by the Jordan

decomposition of u into the difference of two bimonotonically increasing functions; cf.
[16, Proposition 1.17].

Lemma B.1. Let u, v ∈ BV2
loc,rc and assume that:

(i) The integrals


|v(x1, x2)| |du|(x1, x2) and


|u(x1, x2)| |dv|(x1, x2) are finite.
(ii) The functions vx1( · ) := v(x1, · ) and vx2( · ) := v( · , x2) are of locally bounded variation

for every fixed x1, x2 ∈ R.
(iii) The following limits exist

k1 := lim
a1,a2→−∞,b1,b2→∞

 b1

a1

u(x1, b2) dvb2(x1)−

 b1

a1

u(x1, a2) dva2(x1),

k2 := lim
a1,a2→−∞, b1,b2→∞

 b2

a2

u(b1, x2) dvb1(x2)−

 b2

a2

u(a1, x2) dva1(x2),

k3 := lim
a1,a2→−∞, b1,b2→∞


u(b1, b2)v(b1, b2)

− u(a1, b2)v(a1, b2)− u(b1, a2)v(b1, a2)+ u(a1, a2)v(a1, a2)

.

(iv) The functions u and v have no joint discontinuity.

Then 
v(x1, x2)du(x1, x2) =


u(x1, x2)dv(x1, x2)− k1 − k2 + k3. (22)

Remark B.2. It should be mentioned that vx1 ∈ BVloc,rc (which is imposed on v through
condition (ii)) is not implied by v ∈ BV2

loc,rc. To see this, let h : R → R be any (right-continuous)
function being of unbounded variation on every finite interval I ⊂ R. Then define v : R2

→ R
by v(x1, x2) := h(x2), and observe that for every half-open rectangle (a1, b1] × (a2, b2],

sup
Π


(x1,y1]×(x2,y2]∈Π

v(y1, y2)− v(x2, y1)− v(x1, y2)+ v(x1, x2)
 = 0,

where the supremum is taken over all partitions Π of (a1, b1] × (a2, b2] consisting of finitely
many half-open rectangles. Therefore v ∈ BV2

loc,rc. On the other hand, vx1 ∉ BVloc,rc. �
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Proof of Lemma B.1. Under condition (ii) and (iv), and since u, v ∈ BV2
loc,rc, we have (see [10])

for every half-open rectangle (a1, b1] × (a2, b2] b1

a1

 b2

a2

v(x1, x2) du(x1, x2) =

 b1

a1

 b2

a2

u(x1, x2) dv(x1, x2)

−

 b1

a1

u(x1, b2) dvb2(x1)+

 b1

a1

u(x1, a2) dva2(x1)

−

 b2

a2

u(b1, x2) dvb1(x2)+

 b2

a2

u(a1, x2) dva1(x2)

+ u(b1, b2)v(b1, b2)− u(a1, b2)v(a1, b2)

− u(b1, a2)v(b1, a2)+ u(a1, a2)v(a1, a2). (23)

By assumption the integral

v(x1, x2) du(x1, x2) exists, and we have that b1

a1

 b2

a2

v(x1, x2) du(x1, x2) =


v(x1, x2)1{a1<x1≤b1,a2<x2≤b2} du+(x1, x2)

−


v(x1, x2)1{a1<x1≤b1,a2<x2≤b2} du−(x1, x2) (24)

converges to

v(x1, x2) du(x1, x2) as a1, a2 → −∞, b1, b2 → ∞, since by

Lebesgue’s dominated convergence theorem the two integrals on the right-hand side of (24)
converge to


v(x1, x2) du+(x1, x2) and


v(x1, x2) du−(x1, x2), respectively. The integral b1

a1

 b2
a2

u(x1, x2) dv(x1, x2) can be treated in the same way. The result follows now by using
condition (iii) for the remaining terms on the right-hand side of (23). �
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