
J. Symbolic Computation (1998) 25, 367–382

Generation and Verification of Algorithms for
Symbolic-Numeric Processing

LADISLAV KOCBACH† AND RICHARD LISKA‡

† Department of Physics, University of Bergen, Allégaten 55, N-5007 Bergen, Norway
‡Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

Břehová 7, 115 19 Prague, Czech Republic

Some large scale physical computations require algorithms performing symbolic com-
putations with a particular class of algebraic formulas in a numerical code. Developing
and implementing such algorithms in a numerical programming language is a tedious
and error prone task. The algorithms can be developed in a computer algebra system
and their correctness can be checked by comparison with build-in facilities of the system
so that the system is used as an advanced debugging tool. After that a numerical code
for the algorithms is automatically generated from the same source code. The proposed
methodology is explained in detail on a simple example. Real applications to calculation
of matrix elements of Coulomb interaction and two-centre exchange integrals needed in
atomic collision codes, are described. The method makes the developing and debugging
of such algorithms easier and faster.

c© 1998 Academic Press Limited

1. Introduction

In certain large scale physical numerical calculations in e.g. quantum physics, one
needs to include analytical operations like integration or differentiation of a particular
type of algebraic expressions, e.g. products of polynomials and exponentials. Most often
such operations are performed manually and the resulting expressions are coded in a
language suitable for numerical computations, in some other cases large parts are per-
formed entirely numerically. Recently it has been found advantageous to include some of
the symbolic manipulation inside of the numerical codes, see e.g. Hansen (1990). Such
procedures might yield higher precision, improve the efficiency and, in particular, result
in more general codes.

There exist environments which allow symbolic and numeric algorithms to be used
together in compiled code, e.g. AXIOM-XL, the AXIOM Extension Language (Watt
et al., 1994), in Axiom (Jenks and Sutor, 1992), but using such an environment would
not meet the aims of the applications as it would not produce portable numerical code
and its speed would be less than the speed of a purely numerical code, coded in e.g.,
FORTRAN.

Developing and implementing algorithms for symbolic manipulation in a language such
as FORTRAN is a tedious and error prone task, while the computer algebra systems

0747–7171/98/030367 + 16 $25.00/0 sy970182 c© 1998 Academic Press Limited

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82036303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

368 L. Kocbach and R. Liska

(CASs) are designed for symbolic manipulation and it is quite straightforward to carry
out both purely symbolic and mixed symbolic and numerical evaluations in many of the
available CASs.

To distinguish the algorithms which perform symbolic manipulation in a numerical
programming language from other methods, we propose calling them symbolic-numeric
algorithms. These typically use the fixed length integer and floating point representations,
and thus lose the absolute precision of CASs, but they evaluate large quantities of similar
expressions orders of magnitude faster than CAS and are thus applicable to large scale
calculations. By symbolic algorithms we mean the algorithms dealing with formulas and
using the facilities for formula processing implemented in CASs.

This paper presents a new application of CAS to the development of numerical codes,
which might contain a certain amount of symbolic manipulation. In the method pre-
sented here, the algorithms suitable for implementation in a numerical code are designed
by humans and coded in language of a CAS. The algorithms are tested by comparing
their results on representative input data sets with the results of the symbolic algorithms
included in the CAS. The comparison is made at the algebraic level in the CAS. Strictly
speaking by this comparision we are not attempting to prove the correctness of the al-
gorithms but we are verifying the correctness of their implementation on finite input
data sets. The numerical implementation is then automatically generated from the same
source, provided that the CAS in question contains a facility to convert both mathe-
matical functions and its own control language into a code in programming language
suitable for the numerical applications. The method uses a CAS for advanced debug-
ging of symbolic-numeric algorithms and also allows comparisons of the algorithms in
different floating-point arithmetics. The main advantage of our method is the improve-
ment and speeding up of the development-debugging process. We assert that debugging
symbolic-numeric algorithms can be done much more effectively in a CAS than in a
numeric programming language.

Using such an approach one can have strong confidence that the numerical code is
correct. So here the knowledge from the computer algebra system is used to verify the
correctness of the proposed algorithms. In the work reported here, the computer algebra
system REDUCE (Hearn, 1995) with the standard code generation package GENTRAN
(Gates, 1986) is used to develop codes in FORTRAN.

Generally we deal here with the development of a particular symbolic processing al-
gorithm which is usually used as part of a large numerical code. Typically the algorithm
deals only with a special domain of formulas. Many papers (e.g. Cook, 1990; Dewar
and Richardson, 1990; Kant, 1993; Steinberg and Roache, 1985; Wang, 1986) have dealt
with the code generation of numerical algorithms. Some work has also been reported on
program transformation techniques (e.g. Zippel, 1992) and automatic differentiation of
numerical codes (Rostaing et al. , 1993); however, we are unaware of any work using code
generation of symbolic algorithms.

The paper is organized as follows. Section 2 provides a general description of the
method presented for the development of verified symbolic-numeric algorithms which is
explained in full detail on an elementary example in Section 3. Two particular applica-
tions of the method to practical problems in atomic physics are described in detail in
Sections 4 and 5. The first application deals with the calculation of the matrix elements
of a Coulomb interaction between two bound hydrogenic states and the second deals
with the calculation of three-dimensional two-centre exchange integrals with travelling
orbitals. Both examples are of interest in the impact-parameter treatment of atom–atom

Generation and Verification of Algorithms for Symbolic-Numeric Processing 369

or ion–atom collisions. In these applications the calculations must be repeated for many
collision parameters and fast methods for numerical evaluation are essential. At the same
time, large amounts of symbolic evaluations are needed in order to set up the formulae
used in the numerical work. The test applications of the generated symbolic-numeric
codes are discussed briefly in Section 6.

2. Development of Verified Algorithms

We need to implement a particular symbolic processing algorithm A in a numerical
programming language L. In general this implementation and mainly its debugging could
be quite tedious, while the algorithm A can be usually implemented very simply in a
computer algebra system (CAS) as the CAS already includes many symbolic algorithms
which are typically used as parts of the algorithm A. The algorithm A is dealing with
formulas from the domain D. To enhance the debugging and verify the correctness of
the developed algorithm we can use the approach described in general in this section.
In this general description we use a CAS and the programming language L while in the
applications we have used the CAS REDUCE and the numerical programming language
FORTRAN. For a simple example illustrating this method see Section 3.

2.1. symbolic implementation

The algorithm A is implemented in a CAS. The formulas from D are represented in the
CAS as its standard formulas. The implementation and debugging is usually quite simple.
For debugging and verification the CAS offers much better tools than the language L.
The symbolic implementation is assumed to be error free. We believe that we can assume
this as the symbolic implementaion is really very simple, see Fig. 1 and Equations (4.1)
and (5.4) showing formulas implemented in practical applications.

2.2. data representation

To implement the algorithm A in the language L we have to choose the representation
R of formulas from the domain D in the data structures of the language L. For this
method we further need that the used data structures and the control commands (e.g.
loops and conditions) are also supported by the CAS and that the CAS supports the
code generation of these structures and control commands in the language L. Typically
these structures include only integers, floats and their arrays, e.g. a polynomial in one
variable can be represented by an array of its coefficients. To represent the multivariate
polynomials, that appear in parts of the processed formulas, we use either sparse rep-
resentation, i.e. storing coefficients and degrees, or dense representation, i.e. storing all
coefficients. These representations have been chosen so that the implementation of the
symbolic-numeric algorithms using them might be quite simple.

We should note here that the representation R does not usually need to be absolutely
precise, i.e. including big integers, as the developed symbolic-numeric algorithm will be
finally used in the numerical code which does not require absolute precision. However
we have to be aware of possible rounding effects during the development of a symbolic-
numeric algorithm, e.g. testing whether a number is zero when a rational number is
replaced by a float number.

370 L. Kocbach and R. Liska

2.3. symbolic-numeric implementation

The algorithmA is implemented again in the CAS, however now we use for the formulas
from the domain D the representation R and use only the operations and semantics
supported by the language L. It may appear strange to represent in the CAS formulas by
the representation R, e.g. polynomials by arrays of their coefficients, but this is precisely
what is needed for verification of the symbolic-numeric implementation. The symbolic-
numeric implementation is necessarily much lengthier and complicated than the symbolic
implementation. This is because many subalgorithms of the algorithm A are known to
the CAS, e.g. the addition of two polynomials, and can be directly used in the symbolic
implementation while these subalgorithms have to be coded in the symbolic-numeric
implementation. In other words, the two implementations are using different tools. In
the symbolic implementation, the CAS is used with all the facilities it supports, while
in the symbolic-numeric implementation, though coded in the CAS language, only the
facilities (data structures, semantics, algorithms) supported by the language L can be
used.

2.4. verification

Now we have two implementations of the algorithm A, the symbolic implementation
and the symbolic-numeric implementation, both implemented in the CAS. The sym-
bolic implementation is assumed to be correct so we can verify the symbolic-numeric
implementation by comparing the results of both on a representative set of input data
to algorithm A. If the two implementations produce different results, a bug from the
symbolic-numeric implementation has to be removed. The comparision is done in the
precise arithmetics of the CAS. If needed in critical cases one can check the numerical
quality of symbolic-numeric implementation by comparing in the CAS the results in two
rounded arithmetics of different precisions. At the end of this step we have confidence
that the symbolic-numeric implementation is error free.

It might be argued that the same type of error might somehow propagate into both
the symbolic and the symbolic-numeric representation. Since two entirely different ap-
proaches are used, the chance that an accidental error would lead to a fortutious agree-
ment over a wide range of parameters seems to be very small indeed. On the other hand,
the method cannot provide a rigorous proof of the correctness, only demonstrate the
validity in the tested domain. It does, however, represent a major improvement over the
methods usually used in verification of numerical codes. One further advantage is that if
the algorithms are to be implemented in a new application with certain change of scope,
the testing can be performed once more with stress on the new features. This is shortly
discussed below in Section 6.

Usually the verification is done over input data from a direct product of small integer
sets. However the results also depend on some other parameters, e.g. R and a in Section 3.
If we are checking the symbolic-numeric implementation in the CAS these parameters are,
as parts of formulas, treated symbolically while if we were to debug these algorithms in a
numerical environment we would also need to check the results for many numerical values
of these parameters. This is one of the points which makes the development-debugging
process easier by the presented method.

Generation and Verification of Algorithms for Symbolic-Numeric Processing 371

2.5. code generation

By using a code generation facility of the CAS the required implementation of the algo-
rithm A in the language L is automatically generated from the verified symbolic-numeric
implementation. The final result is the verified source code in language L implementing
the symbolic-numeric algorithm A.

The numerical procedures obtained and tested by the described method might not
be optimal, neither from the point of speed nor accuracy (e.g. avoiding accumulation of
round-off errors), but the code is, in principle, error-free in our sense. It can thus serve
as a base for further optimalization which can be performed by changing the symbolic-
numeric implementation with regard to these aspects. The existence of an error-free
code when developing new versions will be recognized as a great advantage by anybody
who has worked on similar problems. It should also be mentioned that some special
evaluation techniques can be encoded in the symbolic-numeric implementation and thus
be automatically verified by the described method (as, e.g., the Horner scheme evaluation
of polynomials).

3. Simple Example

For better understanding of the development method described in the previous section,
a very simple example, for which the method will be presented in detail, is included here.
The problem considered is to implement in FORTRAN the program which calculates the
integral

I(R,n, a) =
∫ R

0

xne−ax dx, (3.1)

for input parameters R,n, a where n ≥ 0 is integer and R ≥ 0, a ≥ 0 are floating
point numbers. The integral can be numerically integrated, however for any n it can be
evaluated to

I(R,n, a) = e−aR
n∑
i=0

CiR
ji +A (3.2)

which would give a faster and more precise routine. We will develop this routine by
applying our method.

3.1. symbolic implementation

The REDUCE program for calculation of integral (3.1), presented in Figure 1, is really
simple and does not need any comments.

Note that in this example we could proceed by calculating (3.1) for let say n = 0, . . . , 20
with R, a as parameters and then generate the FORTRAN routine including the results in
the form (3.2). However, such approach has disadvantages, e.g. later we need to calculate
I(R, 25, a) and have to make another code generation, and it is impossible to apply such
an approach to more complicated cases where the number of necessary formulas can be
very large (e.g. of the order 104 as in Section 4). So we need to perform the manipulation
with formulas on a numerical level in FORTRAN. The actual evaluation of integral (3.1)
suitable for the numerical work is done in the alternative way described below.

372 L. Kocbach and R. Liska

procedure integ(r,n,a);
% Calculates the definite integral
% int_0^r x^n exp(-a x) d x
% Input: r,n,a - parameters of the integral, n has to be non-negative integer
% Output: value of the procedure - the definite integral
begin

scalar y;
y := int(x^n*e^(- a*x),x);
return (sub(x=r,y) - sub(x=0,y));

end;

Figure 1. Symbolic implementation of (3.1), file integ.alg

3.2. data representation

All formulas needed for calculating (3.1) have the form (3.2) which we need to take
with particular values of parameters n, a keeping R as variable. Such formula will be
represented by two floats a = a, abs = A, an array of integer exponents oexp(i) = ji+1

and an array of floating-point coefficients ocof(i) = Ci+1, where we have made the shift
by 1 in indices so that the FORTRAN arrays will begin from the standard index 1.

3.3. symbolic-numeric implementation

To implement the calculation of integral (3.1) in terms of array representation described
in the previous section without the use of the REDUCE operator for integration int,
we need to derive explicit formula (3.2) for calculation of (3.1). Applying several times
integration per partes we get

I(R,n, a) =
∫ R

0

xne−ax dx = −1
a
Rne−ax − n

a2
Rn−1e−ax − n(n− 1)

a3
Rn−2e−ax −

· · · − n!
an+1

e−ax +
n!
an+1

,

(the last term n!/an+1 comes from the zero limit of the integral) from which we can
deduce the recurrence relations for the degrees ji and coefficients Ci and a formula for
the absolute term A in (3.2):

j0 = n, ji = n− i,

C0 = −1
a
, Ci = Ci−1

n+ 1− i
a

, i = 1, . . . , n, (3.3)

A =
n!
an+1

.

Recurrence relations appear regularly in symbolic-numeric implementations. The
symbolic-numeric implementation based on (3.3) is shown on Figure 2. Note that the
procedure pinteg could be split into two procedures, one implementing (3.3) and the
other (3.2), where the first procedure has to be called only after the change of n or a. For
comments on declarations scalar, operator, literal and declare see Appendix A.

Generation and Verification of Algorithms for Symbolic-Numeric Processing 373

procedure fact(n);
begin

literal"c Calculates Factorial of n ",cr!*;
declare

<<fact:function;
fact,f:real*8;
n,i:integer>>;

f:= if n=0 then 1
else for i:=1:n product i;

return f
end;

procedure pinteg(r,n,a);
begin

scalar abs,res;
operator ocof,oexp;
literal"c Calculates the definite integral ",cr!*;
literal"c int_0^r x^n exp(-a x) d x ",cr!*;
literal"c Input: r,n,a - parameters of the integral ",cr!*;
literal"c n has to be non-negative integer ",cr!*;
literal"c Output: value of the procedure - the definite integral ",cr!*;
declare

<<pinteg:function;
n,i,oexp(50):integer;
pinteg,ocof(50),r,a:real*8 >>;

literal"c Symbolic calculation of the integral ",cr!*;
oexp(1) := n;
ocof(1) := -1/a;
for i:=2:n+1 do

<<oexp(i) := n + 1 - i;
ocof(i) := ocof(i-1)*(n+2-i)/a >>;

abs := fact(n)/a^(n+1);
literal"c Evaluation of the integral ",cr!*;
res := 0;
for i:=1:n+1 do res := res + ocof(i)*r^oexp(i);
res := e^(-a*r)*res + abs;
return res;

end;

Figure 2. Symbolic-numeric implementation of (3.1) based on (3.3), file integ.pro

3.4. verification

The verification of the symbolic-numeric implementation (see Figure 2) has been per-
formed by comparing its results with symbolic implementation (see Figure 1). The veri-
fication code is presented on Figure 3. Its last line gives the result zero proving that the
symbolic-numeric implementation is correct for n = 0, . . . , 50 from which we assume it
to be correct for all non-negative integer n.

3.5. code generation

Having verified the symbolic-numeric implementation in the file integ.pro we can
generate the FORTRAN code directly from this file. The code generation commands
shown in Figure 4 are really very simple. Note that we generate the code directly from

374 L. Kocbach and R. Liska

in "genproc.red"; % to read and eliminate DECLARE and LITERAL
in "integ.pro"; % definition of pinteg - in terms of array-operators
in "integ.alg"; % definition of integ - algebraic algorithm

% testing of procedures in integ.pro by comparing with symbolic calculation

for n:=0:50 sum abs(integ(r,n,a) - pinteg(r,n,a));

Figure 3. Verification of symbolic-numeric implementation, file integ.tst

in "genproc.red"; % loads gentran, defines switch genproc

on genproc;

gentranout "integ.f";
in "integ.pro";
gentranshut "integ.f";

Figure 4. Code generation of FORTRAN symbolic-numeric implementation, file integ.gen

the file integ.pro. To be able to use exactly the same file without any modifications
which could introduce errors, we have introduced a new switch, genproc, described in
Appendix A. This switch and the associated actions are responsible for code generation
by interfacing the code generation package GENTRAN (Gates, 1986). The generated
FORTRAN code implementing the evaluation of the integral (3.1) is presented in Figure
5. This code is guaranteed (if we have not made an error in the few lines shown in Figure
1) to be error free for N ≤ 50. For evaluating of (3.1) it uses the developed symbolic-
numeric implementation. Limitation on the maximum n given by the array bounds (here
50) can be avoided by increasing the array bounds. Then the algorithm is also assumed
to be error free also for N > 50.

4. Matrix Elements of Coulomb Interaction

The methodology outlined in Section 2 and demonstrated on the simple example in
the previous section has been applied for preparation of numerical FORTRAN code
for calculating the matrix elements of Coulomb interaction of two bound hydrogenic
states. These calculations can be separated into radial and angular parts. For the actual
calculations codes both parts are constructed with the assistance of the CAS REDUCE,
however here we discuss only the radial parts where the described techniques are used.

The radial matrix elements are given by

Mn1n2
l1l2

(l) =
1

Rl+1

∫ R

0

rl+2Rn1l1(r)Rn2l2(r) dr +Rl
∫ ∞
R

1
rl−1

Rn1l1(r)Rn2l2(r) dr, (4.1)

where n1, n2, l1, l2 are quantum numbers, l1 − l2 ≤ l ≤ l1 + l2 is the transferred angular

Generation and Verification of Algorithms for Symbolic-Numeric Processing 375

REAL*8 FUNCTION FACT(N)
REAL*8 F
INTEGER N,I

c Calculates Factorial of n
IF (N.EQ.0.0) THEN

F=1.0
ELSE

F=1
DO 25001 I=1,N

F=F*I
25001 CONTINUE

ENDIF
FACT=F
RETURN
END
REAL*8 FUNCTION PINTEG(R,N,A)
INTEGER N,I,OEXP(50)
REAL*8 OCOF(50),R,A

c Calculates the definite integral
c int_0^r x^n exp(-a x) d x
c Input: r,n,a - parameters of the integral
c n has to be non-negative integer
c Output: value of the procedure - the definite integral
c Symbolic calculation of the integral

OEXP(1)=N
OCOF(1)=-(1.0/A)
DO 25002 I=2,N+1

OEXP(I)=N+(1-I)
OCOF(I)=OCOF(I-1)*((N+(2.0-I))/A)

25002 CONTINUE
ABS=FACT(N)/A**(N+1)

c Evaluation of the integral
RES=0.0
DO 25003 I=1,N+1

RES=RES+OCOF(I)*R**OEXP(I)
25003 CONTINUE

RES=EXP(REAL(-(A*R)))*RES+ABS
PINTEG=RES
RETURN
END

Figure 5. FORTRAN code (file integ.f) generated by GENTRAN from the file integ.pro (Figure 2)
is the resulting implementation of the symbolic-numeric algorithm in FORTRAN.

momentum quantum number and Rnl(r) are radial hydrogenic functions

Rnl(r) =
R̄nl(r)√∫∞

0
R̄2
nl(r)r2 dr

, where R̄nl(r) = Ln+l
2l+1

(
2r
n

)
rle−r/n, (4.2)

where Lkj (r) are generalized Laguere polynomials

Lkj (r) =
dj

drj

(
er

dkrke−r

drk

)
. (4.3)

376 L. Kocbach and R. Liska

4.1. symbolic implementation

The symbolic implementation for calculating the matrix elements (4.1) is done by a few
lines of code implementing formulas (4.1), (4.2) and (4.3) using the operators performing
differentiation and integration.

4.2. data representation

The limitation on l and properties of the radial hydrogenic functions Rnl(r) guarantee
that any matrix element (4.1) can be expressed as

Mn1n2
l1l2

(l) =
1

Rl+1

∫ R

0

P1(r)e−ar dr +Rl
∫ ∞
R

P2(r)e−ar dr, (4.4)

where a = 1/n1 + 1/n2 and Pi(r), i = 1, 2 are polynomials in r. The matrix elements
(4.4) result in the formula of the form

Mn1n2
l1l2

(l) = e−aR
n∑
i=0

CiR
ji + CaR

ja (4.5)

which is very similar to (3.2). So for all processing we need to represent polynomials in
one variable which we represent as in Section 3.2 by integer array of exponents ji and
floating point array of coefficients Ci.

4.3. symbolic-numeric implementation

For the symbolic-numeric implementation, calculating the radial hydrogenic functions
Rnl(r), the formula

Rnl(r) =
2l+1

nl+2

√
(n− l − 1)!

(n+ l)!3
e−r/n

n−l−1∑
i=0

(−1)i+1

(
2
n

)i (n+ l)!2

(n− l − i− 1)!(2l + i+ 1)!i!
rl+i

(4.6)
has been derived. The integration of a polynomial multiplied by e−ar which is needed
in (4.4) is transformed into a linear combination of the integrals (3.1) which are eval-
uated by (3.3) (actually a generalization of (3.3) working with polynomials has been
developed). In addition the subalgorithms for polynomial addition, multiplication and
calculation of the absolute term of a polynomial, which are too long to be reproduced
here, have been implemented in the array representation. Finally the algorithm in the
array representation for calculation of the matrix elements (4.1) has been built from all
the foregoing subalgorithms.

4.4. verification and code generation

The symbolic-numeric implementation has been verified by comparison of its results
with the symbolic implementation. The matrix elements (4.1) for the quantum numbers
0 ≤ n1 ≤ 6, 0 ≤ n2 ≤ n1 (formulas are symmetric in n1, n2) 0 ≤ l1 < n1, 0 ≤ l2 <
n2, l1 − l2 ≤ l ≤ l1 + l2 (these restrictions are physical limitations on quantum numbers)
have been calculated identically by both implementations. The typical quantum numbers
used in the applications are small, usually the greatest one is around 4, so our verification

Generation and Verification of Algorithms for Symbolic-Numeric Processing 377

test has covered most of the relevant region of quantum numbers. Only the verification
of the whole algorithm has been done over this range of very small integers while the
verification of all used subalgorithms which were mentioned above has been done by
the same method up to the degree 20. Again as in the case of the simple example in
Section 3.5 the same source file which includes the symbolic-numeric implementation
has been used for the generation of a FORTRAN symbolic-numeric implementation. In
such a way we have constructed the FORTRAN program for the analytical calculation
of matrix elements (4.1). The algorithms used in the code have been verified.

5. Exchange Integrals of Heavy-particle Collisions

The three-dimensional overlap exchange integrals in the impact-parameter treatment
of heavy-particle collisions have the form (McDowell and Coleman, 1970)

I(n1, l1,m1, n2, l2,m2) =
∫
ψ∗n1l1m1

(r1) eia·r1+ib·r2ψn2l2m2 (r2) dr1 (5.1)

where the star denotes complex conjugation and the hydrogenlike wavefunctions ψnlm
with the quantum numbers n, l,m have the form

ψnlm(r) = Rnl(r)Ylm(r), r = |r|, (5.2)

where Rnl are radial hydrogen functions (4.2) and Ylm are spherical harmonics functions.
The position vectors r1,r2 measured from the two centers are related by r2 = r1 − R,
where R is the vector connecting the two centers.

The wavefunctions can be expressed in cartesian coordinates as †

ψnlm(r) = e−αr
∑
j

Cjr
njxlxjylyjzlzj . (5.3)

Substituting this into (5.1) we get the exchange integral (5.1) as a linear combination of
integrals

i(na, lax, lay, laz, nb, lbx, lby, lbz) = (5.4)∫
rna−1
1 xlax1 y

lay
1 zlaz1 rnb−1

2 xlbx2 y
lby
2 zlbz2 eia·r1+ib·r2−αr1−βr2 dr1.

Using the method in Shakeshaft (1975) the integrals (5.4) can be transformed into one-
dimensional integrals

i(na, la, nb, lb) = 2π(−i)(la+lb)·1 (5.5)∫ 1

0

[(
− ∂

∂α

)na (
− ∂

∂β

)nb
∇la

a ∇lb
b

eix·R−R
√
y

√
y

]
dw.

where we have used notation

x = bw − a(1− w),
y = α2(1− w) + β2w + (a + b)2w(1− w),
l = (lx, ly, lz),

† Here nj , lxj , lyj , lzj are integer degrees, not quantum numbers.

378 L. Kocbach and R. Liska

∇k
a = ∇(kx,ky,kz)

(ax,ay,az) =
(

∂

∂ax

)kx (∂

∂ay

)ky (∂

∂az

)kz
1 = (1, 1, 1)

The exchange matrix elements are obtained by numerical evaluation of the one-dimensional
integrals (5.5). The symbolic-numeric methodology is applied to the evaluation of the in-
tegrands.

5.1. symbolic implementation

The expression for the integrand in formula (5.5) can be directly implemented sym-
bolically which allows us, having also implemented calculating the wavefunctions (5.2)
in the form (5.3), to calculate the exchange integrals (5.1).

5.2. symbolic-numeric implementation and data representation

Here prior to proposing the data representation which will be used in the symbolic-
numeric implementation we have developed a new method for calculating the derivatives
in (5.5). In Kocbach and Liska (1994) it has been shown that (5.5) can be written in the
closed form

i(na, la, nb, lb) = 2π(−i)(la+lb)·1(−1)na+nb

la∑
ka=(0,0,0)

lb∑
kb=(0,0,0)

(
la
ka

)(
lb
kb

)∫ 1

0

(−iw1R)ka(iwR)kbeix·R (5.6)

bna/2c∑
ma=0

bnb/2c∑
mb=0

bM/2c∑
m=(0,0,0)

Dna
maD

nb
mb
DM

m (2αw1)na−2ma(2w1)ma(2βw)nb−2mb

(2w)mb [2(a + b)ww1]M−2m(2ww1)m·1 e−tR

2N t2N+1

N∑
j=0

ANj t
j dw ,

where the notation

t =
√
y, w1 = 1− w,

M = la + lb − ka − kb, N = na + nb + (M−m) · 1,
vm = (vx, vy, vz)(mx,my,mz) = vmxx vmyy vmzz ,

bMc = (bMxc, bMyc, bMzc),(
k
m

)
=
(

(kx, ky, kz)
(mx,my,mz)

)
=
(
kx
mx

)(
ky
my

)(
kz
mz

)
,

Dk
m = Dkx

mxD
ky
myD

kz
mz ,

n∑
k=j

=
nx,ny,nz∑

k=(jx,jy,jz)

=
nx∑

kx=jx

ny∑
ky=jy

nz∑
kz=jz

is used (bn/2c denotes truncated integer part of n/2, i.e. the greatest integer ≤ n/2) and
where the coefficients Dn

j and Anj are defined by the recurrence relations

D1
0 = 1,

Generation and Verification of Algorithms for Symbolic-Numeric Processing 379

Dn
0 = 1, Dn

j = (n+ 1− 2j)Dn−1
j−1 +Dn−1

j , n ≥ 2, j = 1, . . . , bn/2c, (5.7)

A1
0 = −1, A1

1 = −R,
An0 = An−1

0 (−2n+ 1), Anj = An−1
j (j − 2n+ 1)−RAn−1

j−1 , , n ≥ 2, j = 0, . . . , n.

The closed form formula (5.6) contains a 12-tuple summation, however, in any particular
case most of the sums reduce to a single term. Keeping only the variables w,w1, t which
depend on the integration variable w the exchange integral (5.1) can be, by using (5.6),
written in the closed form as

I(n1, l1,m1, n2, l2,m2) =
∫ 1

0

e−tR
jmax∑
j=0

kmax∑
k=0

lmax∑
l=lmin

Cjklw
jwk1 t

l dw. (5.8)

To represent the wavefunctions (5.3) we use a floating-point array for coefficients Cj ,
four integer arrays for degrees nj , lxj , lyj , lzj and of course a number of terms in the sum
(α is represented by a special way by other physical quantities). The polynomial in w,w1, t
in the resulting formula (5.8) is represented by the three-dimensional floating-point array
storing the coefficients Cjkl and by the degree bounds jmax, kmax, lmin, lmax.

The symbolic-numeric implementation includes subalgorithms for calculating the wave-
functions (5.3) and several stages for calculation of the coefficients Cjkl and degree bounds
from (5.8) based on (5.6), (5.7) and expressing (5.1) after substituting (5.3) as the linear
combination of (5.4).

5.3. verification and code generation

The symbolic-numeric implementation, based mainly on (5.6), has been compared
with the symbolic implementation, based mainly on (5.4). For the quantum numbers
0 ≤ n1 ≤ 4, 0 ≤ n2 ≤ n1, 0 ≤ l1 < n1, 0 ≤ l2 ≤ min(n2 − 1, l1),−l1 ≤ m1 ≤ l1,−l2 ≤
m2 ≤ min(l2,m1) (formulas are symmetric in n1, n2, in l1, l2 and in m1,m2, restrictions
on li in terms of ni and on mi in terms of li are physical limitations on quantum numbers)
we have obtained the same resulting formulas (5.8) where for the checking α, β and com-
ponents of a,b,R have remained as parameters. Note that here these variables except R
have to remain as parameters because the symbolic implementation performs derivatives
with respect to them, while in the symbolic-numeric implementation these variables can
already have numerical values from the beginning of the calculation. Verification has also
been done for a number of randomly chosen quantum numbers with n1 > 4 or n2 > 4.
The typical quantum numbers used in applications are small, usually the greatest one
is around 4, so our verification test has covered most of the relevant region of quantum
numbers. Again as in the previous section on matrix elements the whole algorithm is
composed of several subalgorithms all of which have been independently verified up to
degree 20 of polynomials.

To show the complexity of the symbolic processing involved in this problem we present
here few numbers. The calculation of I(3, 2, 1, 3, 1,−1) by the symbolic implementation
took 25 s with the resulting formula which include the sum of 799 terms and occupy 400
lines in a dense, machine readable format. The whole verification described above took
almost 2 hours of CPU time on a recent workstation.

From the same source file which defines the symbolic-numeric implementation we have
generated the FORTRAN source file implementing the symbolic-numeric implementa-
tion. This code has two top level routines, the first one calculates for given quantum

380 L. Kocbach and R. Liska

numbers n1, l1,m1, n2, l2,m2 and vectors a,b,R the value of the coefficients Cjkl and
the degree bounds from (5.8), while the second one only calculates for given w (w1 and
t are functions of w) the numerical value of the integrated function from (5.8) in this
point and is used by the numerical integrator to calculate the integral in (5.8).

6. On the Applications of the Generated Code

Both the codes generated for the described examples have been embedded in a broader
application test program, evaluating sets of the relevant matrix elements. The less com-
plex case, described in Section 4, has been combined with other mathematical objects
(spherical harmonics and Clebsch–Gordan coefficients) in a straightforward manner.

The more complex case in section 5 is discussed in more detail. To keep the complexity
low we described above only the development for overlap exchange integrals (5.1) how-
ever, we have actually developed a more general case which also includes two potential
exchange integrals which differ from (5.1) by including 1/rj , j = 1, 2 in the integral.
The performance of the generated code for all three types of exchange integrals has
been compared with the currently widely used code of J.P. Hansen and collaborators
(Hansen, 1990; Hansen and Dubois, 1992; Nielsen et al. , 1990). Although the numerical
procedures differ at many points, agreement better than six significant digits has been
obtained. The comparison has verified both the correctness of our method and that of
Hansen’s code. The calculational speed was in some cases higher, in other cases lower.
This depends on the vectorization of the calculations (the symbolic evaluations in the
code of Hansen et al. are structured differently). The evaluation of the matrix elements of
section 4 has also been compared with the existing routines used in the codes of Hansen
et al.

The method will presented here will thus be valuable in future revisions and appli-
cations of this type of atomic-collision code. To be more specific, the new applications
might include work with several active electrons, special regions of quantum numbers in
specialized versions of the codes, etc. It should be mentioned that the quantities whose
evaluation is discussed here, are usually precalculated in a matrix typically 30×30×100
for calculations which are typically repeated 50 to 100 times for a given collision. In a
particular study some 20 to 100 model collisions might be investigated. The code which
uses the symbolic-numeric procedures is, in principle, general, so that once debugged, its
compiled version can be used for all such production calculations.

The routines developed by Hansen and collaborators have been tested in several periods
during several years by two to four workers (including in several short periods also one of
the authors, L.K.), and every extension of functionality required a new shorter or longer
debugging period. In contrast to this, the coding work reported here has taken several
weeks, including the development of the techniques. Furthermore, the existing encoding
of the formulae can be used to generate new versions of the code with special features in
the future.

7. Conclusion

We have presented a new methodology for constructing verified symbolic-numeric al-
gorithms manipulating algebraic expressions of a special kind in numerical programming
languages. The algorithms are implemented in a general CAS, here REDUCE, and ver-
ified by comparison with algorithms contained inside the system. The code used for

Generation and Verification of Algorithms for Symbolic-Numeric Processing 381

verification is the same as that used for generating the numerical code performing the
required manipulations so that the generated numerical code is also verified.

The methodology is discussed in full detail for an elementary case and then applied to
the design of an algorithm for calculating the matrix elements of the Coulomb interaction
of two bound hydrogenic states and the exchange integrals in the impact-parameter
treatment of heavy-particle collisions.

Note that the method is not based on proving the correctness of symbolic-numeric
algorithms. In all presented cases the algorithms has to be valid for all natural numbers
(actually over direct product of several ones) so one might think about the possibility
of constructing an automatic prover based on mathematical induction. However for real
applications proving would not be an easy task, see e.g. formulas (5.5) and (5.6) which
should be proven to be equal for all na, la, nb, lb (i.e. over N8) in the application described
in Section 5.

Finally, we mention another aspect of the presented methodology. At present, the
theoretical treatment of collisions with so called Rydberg atoms (e.g. Lundsgaard et al.
(1995)) which have extremely high quantum numbers (n ≈ 30) is of great interest. While
the presented methods cannot be used directly, they will be helpful in developing new
approximate methods to approach these problems.

Acknowledgements

We would like to thank J.P. Hansen, A. Dubois and S.E. Nielsen for valuable discus-
sions and interest in this work and to the referees for valuable suggestions concerning
presentation of this work.

This work has been supported in part by the Czech Grant Agency grant 201/94/1209.

Appendix A. New REDUCE Switch genproc

The new REDUCE switch genproc which allows us to use the same REDUCE source
file integ.pro with symbolic-numeric implementation for verification and code genera-
tion has been implemented. The switch redefines the parsing routine for the REDUCE
command procedure. If the switch is off then the procedure command works by the
standard way, i.e. defines the REDUCE procedure, only the literal and declare decla-
rations are removed from within the begin-end block inside the body of the procedure
command. If the switch is on then the procedure is translated by GENTRAN (Gates,
1986) and not defined in REDUCE, i.e. REDUCE performs the same action as if the
procedure command were to be preceded by the gentran command (actually as if the
word procedure were to be replaced by the string gentran procedure) in the input.
Further if the switch is on the scalar, integer, real and operator declarations are
removed from within the begin end block inside the body of the procedure command.

The file genproc.red contains the implementation of the switch genproc. The special
actions of this switch are required by the need to use really the same file integ.pro
for the verification and code generation stages of the method described in this paper
so that no intermediate file editing between this stages is necessary. One stage needs
one type of declarations while the other one needs another declarations. The source
files integ.pro contains both declarations and this switch takes care of removing the
unnecessary declarations in each of the two stages.

382 L. Kocbach and R. Liska

The same approach as described above for the simple example from Section 3 with the
source file integ.pro has been used in the two applications presented in Sections 4 and
5 with appropriate symbolic-numeric source files. All the files are available on request
from ladi@hpatom.fi.uib.no or liska@siduri.fjfi.cvut.cz.

References

——Cook, G. O. J. (1990). ALPAL: a program to generate physics simulation codes from natural descriptions.
Int. J. Mod. Phys. C, 1(1), 1–51.

——Dewar, M. C., Richardson, M. G. (1990). Reconciling symbolic and numeric computation in a practical set-
ting. In A. Miola (ed.), Design and Implementation of Symbolic Computation Systems, DISCO’90,
Lecture Notes in Computer Science, 429, pp. 195–204, Springer: Berlin.

——Gates, B. L. (1986). A numerical code generation facility for REDUCE. In B. W. Char (ed.), SYMSAC
’86, pp. 94–99, Waterloo, ACM.

——Hansen, J. (1990). General subroutines for the calculation of atomic and molecular two-centre integrals.
Comput. Phys. Comm., 58, 217–221.

——Hansen, J., Dubois, A. (1992). Procedures for analytical and numerical calculation of coulombic one- and
two-centre integrals. Comput. Phys. Comm., 67, 456–464.

——Hearn, A. C. (1995). REDUCE user’s manual, version 3.6. Technical Report RAND Publication CP 78
(Rev. 7/95), RAND, Santa Monica.

——Jenks, R., Sutor, R. (1992). AXIOM, the Scientific Computation System . Springer, New York.
——Kant, E. (1993). Synthesis of mathematical-modeling software. IEEE Software, 10(3), 30–41.
——Kocbach, L., Liska, R. (1994). Closed form formula for the exchange integrals in the impact-parameter

treatment of heavy-particle collisions. J. Phys. B: At. Mol. Opt. Phys., 27, L619–L624.
——Lundsgaard, M., Chen, Z., Lin, C., Toshima, N. (1995). Electron capture from circular Rydberg states.

Phys. Rev. A, 51, 1347–1350.
——McDowell, M., Coleman, J. (1970). Introduction to the Theory of Ion–Atom Collisions. North-Holland,

Amsterdam.
——Nielsen, S., Hansen, J., Dubois, A. (1990). Propensity rules for orientation in singly-charged ion-atom

collisions. J. Phys. B: Atom. Molec. Phys., 23, 2595–2612.
——Rostaing, N., Dalmas, S., Galligo, A. (1993). Automatic differentiation in odyssée. Tellus, 45A, 558–568.
——Shakeshaft, R. (1975). A note on the exchange integrals in the impact-parameter treatment of heavy-

particle collisions. J. Phys. B: Atom. Molec. Phys., 8, L134–136.
——Steinberg, S., Roache, P. J. (1985). Symbolic manipulation and computational fluid dynamics. J. Comput.

Phys., 57, 251–284.
——Wang, P. S. (1986). FINGER: A symbolic system for automatic generation of numerical programs in finite

element analysis. J. Symbolic Computations, 2(3), 305–316.
——Watt, S. M., Broadbery, P., Dooley, S., Iglio, P., Morrison, S., Steinbach, J., Sutor, R. (1994). AXIOM

Library Compiler, Users Guide . NAG, Oxford.
——Zippel, R. (1992). Symbolic/numeric techniques in modeling and simulation. In Donald, B., Kapur, D.,

Mundy, J., editors, Symbolic and Numerical Computation in Artificial Intelligence . Academic
Press.

Originally received 1 September 1994
Accepted 12 February 1997

