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Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in
functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and
rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network
activity of human brains changes within a given sleep stage. Here, we investigated modulation of network
activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by
functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of
individual brain regions and functional interactions between pairs of regions significantly increased in the
default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the
fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks,
the amount of the activity changes throughout REM sleep was negatively correlated with that throughout
SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and

that the pattern of modulation depends on the type of the large-scale brain networks.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Sleep consists of characteristic stages: rapid eye movement (REM)
sleep and non-REM (NREM) sleep (Cirelli and Tononi, 2008;
Diekelmann et al., 2011; Spoormaker et al., 2011; Wang et al., 2011).
REM sleep is characterized by rapid eye movements, muscle paralysis,
and low-voltage irregular electro-encephalography (EEG) that is similar
to those observed during wakefulness. NREM sleep is further divided
into light and deep NREM sleep, and the latter is characterized by
high-voltage synchronized slow EEG (Aserinsky and Kleitman, 1953;
Diekelmann et al., 2011; Wang et al., 2011). In particular, the part of
deep NREM sleep in which EEG is the most synchronized is referred to
as slow-wave sleep (SWS). The different types of sleep are considered
to affect brain activity differently and to play distinct roles in a variety
of cognitive functions (Aserinsky and Kleitman, 1953; Diekelmann
and Born, 2010; Hobson and Pace-Schott, 2002; Tononi and Cirelli,
2003, 2006).
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Prior studies found characteristic modulations of regional brain
activity during different sleep stages. During SWS sleep, a part of the
hippocampal network is reactivated if the network is activated during
preceding wakefulness (Diekelmann and Born, 2010; Diekelmann
et al, 2011; Ji and Wilson, 2007; Nir et al,, 2011; Peigneux et al., 2004;
Wilson and McNaughton, 1994). During REM sleep periods, hippocam-
pal activity in rats is considered to be reduced and normalized
(Grosmark et al., 2012).

These changes in local neural activity within a sleep stage play an es-
sential but not exclusive role in functions of sleep such as memory
maintenance and homeostasis; modulation of functional interactions
among brain regions is also needed (Diekelmann and Born, 2010;
Tononi and Cirelli, 2006). In fact, previous human neuroimaging studies
compared functional connectivity patterns between wakefulness and
sleep periods such as NREM sleep (Andrade et al., 2011; Horovitz
et al.,, 2009; Koike et al., 2011; Sdmann et al., 2011; Spoormaker et al.,
2012), sleep stage 1 (Horovitz et al., 2008; Larson-Prior et al., 2009,
2011; Spoormaker et al., 2012; Uehara et al., 2013; van Dongen et al.,
2011), SWS (Chow et al., 2013; Koike et al., 2011; Spoormaker et al.,
2012), and REM sleep (Chow et al., 2013; Laureys et al., 2001; Maquet
et al,, 2000). Nevertheless, to compare the connectivity across different
types of sleep stages, these neuroimaging studies implicitly assumed
that functional connectivity was stable during a given sleep stage.
Therefore, although some observations have been made for microscopic
changes within sleep periods (Grosmark et al., 2012), modulation of
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large-scale functional interactions within a sleep stage has not been
clarified.

In the present study, we investigated modulation of inter-regional
functional interactions within SWS and REM sleep periods by looking
at the resting-state networks (RSNs). Neuroimaging studies have
indicated that brain regions tightly interact with each other during rest
and constitute several large-scale brain networks, known as the RSNs
(Biswal et al., 1995; Dosenbach et al., 2006; Fair et al., 2009; Greicius
etal,, 2003; Raichle et al., 2001). The RSNs are involved in various cogni-
tive functions. For example, the default-mode network (DMN) consists
of brain regions that are considered to be recruited for maintenance of
long-term memory (Buckner et al., 2008; Greicius et al., 2003; Raichle
et al,, 2001; Uddin et al., 2009). The fronto-parietal network (FPN) con-
sists of regions that are considered to be used in attentional cognitive
tasks (Dosenbach et al., 2006; Fair et al., 2009).

Hinted by these findings on different types of RSNs and the afore-
mentioned observations on changes in local neural activity during
sleep, we hypothesized that, at a macroscopic level, different RSNs may
show different modulation patterns in functional connectivity within
SWS and REM sleep periods. For example, the functional interactions
in the DMN may increase in SWS periods and decrease in REM sleep
because the hippocampal activity, which is tightly related to long-
term memory, shows the same pattern (Diekelmann et al., 2011;
Diekelmann and Born, 2010; Grosmark et al., 2012; Ji and Wilson,
2007; Peigneux et al., 2004; Wilson and McNaughton, 1994). The func-
tional interactions in the FPN may show the opposite pattern of modula-
tion because the local neural activity in the fronto-parietal areas is
reduced during SWS periods (Huber et al., 2004, 2006; Nir et al., 2011).

Technically, functional magnetic resonance imaging (fMRI) allows
us to record activity from the entire human brain. The recorded activity
does not directly reflect neural activity such as neural spikes, but is
highly correlated with local-field potentials of neurons (Logothetis
et al.,, 2001). However, the conventional analysis method based on
Pearson’s correlation coefficient (Biswal et al., 1995; Fair et al., 2009;
Greicius et al.,, 2003; Honey et al., 2009; Uddin et al.,, 2009) has not re-
ported significant changes in functional interactions within SWS and
REM sleep. This limitation of the correlation-based method may result
from its susceptibility to spurious correlation induced by common
neighbors of two brain areas (Adachi et al., 2012).

Here, we examine the modulation of functional interactions in
the human RSNs throughout SWS and REM sleep by applying the so-
called pairwise maximum entropy model (MEM) (Roudi et al., 2009;
Schneidman et al.,, 2006; Shlens et al., 2006; Tang et al., 2008;
Watanabe et al., 2013). In contrast to the methods derived by the
Pearson'’s correlation coefficient, the pairwise MEM determines the
functional interaction between two brain regions with the consider-
ation of functional interaction between other pairs of regions. Therefore,
it would not suffer from pseudo-correlations originating from common
neighbors of two brain regions. In fact, the pairwise MEM accurately and
robustly describes activity in the large-scale human brain networks
during rest and captures more anatomical and physiological informa-
tion than conventional methods do (Watanabe et al., 2013). We
exploited these advantages of the pairwise MEM to examine the
“macroscopic network-dependent activity change” hypothesis.

Materials and methods
Data acquisition

We used almost the same data set as that used in our previous study
(Koike et al., 2011). The data set consists of fMRI signals, EEG, and videos
of eye movements, which were simultaneously recorded while 14
healthy subjects (12 males and 2 females; mean age, 25 years) were
sleeping inside an MRI scanner. The data obtained from 12 of the 14
subjects were recorded for our previous study (Koike et al., 2011), and
those obtained from the other two subjects were subsequently added

for the present study. The 12 subjects participated in this experiment
twice (i.e., two nights) with an interval larger than two weeks. The
other two subjects participated once. In total, we obtained approxi-
mately 95 h of the data, which extended over 26 nights (Table S3).
The recording procedure was approved by the ethics committee of the
National Institute of Information and Communications Technology
Japan and was in accordance with the Declaration of Helsinki. All the
subjects provided written informed consent before the recording.

All the subjects had regular sleep-wake cycles according to their
self-report and did not have a history of any neurological, psychiatric,
or endocrine disorder. None of them took any medication. Ingestion of
alcohol and caffeine was not allowed from 24 h before the start of the
recording to the end of the experiment. To obtain a sufficient length of
SWS and REM periods from each subject, the subjects were made accus-
tomed to sleeping in a noisy fMRI scanner as follows: They were asked
to listen to noise that had been recorded in previous fMRI scanning at
least two hours per day in the two days before the experiment. On the
day before the fMRI scanning, the subjects slept in a fMRI scanner in
the presence of the previously recorded noise, whereas their brains
were not scanned. On the day of the fMRI scanning, the subjects were
not allowed to sleep until the scanning began between 3:00 AM and
6:00 AM. The subjects then wore earplugs and soundproof headsets
and slept inside the fMRI scanner. These preparations urged the subjects
to sleep continuously and long in the fMRI scanner.

We recorded fMRI data using a 1.5 T MRI scanner (MAGNETOM
Vision plus, Siemens, Germany). T1-weighted images were acquired
for anatomical reference (3D MPRAGE, 1 mm?). fMRI images were ob-
tained in accordance with gradient echo single-shot EPI sequence (24
slices, 4 x 4 x 5 mm? resolution, TR = 4 s, TE = 55 ms, flip angle =
90°). An fMRI scan took 55 min and was repeated until the subjects be-
came completely awake or expressed discomfort.

We recorded EEG concurrently with the fMRI scanning using an MRI-
compatible amplifier (BrainAmp MR, Brain Products GmbH, Germany)
and a 24-channel electrode cap with Ag/AgCl ring electrodes (Falk
Minow Services, Germany). A reference electrode was located at the
midpoint between Fz and Cz (impedance <3 k(). We filtered the EEG
data at 0.016 — 250 Hz, sampled them at 5000 Hz using Brain Vision Re-
corder (Brain Products GmbH, Germany) and conducted offline correc-
tion of scanning and ballistocardiogram artifacts using Brain Vision
Analyzer software (Brain Products GmbH, Germany). We adopted a
“template drift compensation” method to correct for gradient-induced
artifacts and a “template matching” method to correct for cardioballistic
artifacts, both of which were implemented in Brain Vision Analyzer. As a
standard polysomnography protocol, electromyographic (EMG) and
electrooculographic (EOG) recordings were also conducted.

Definition of sleep periods

Using the EEG, EMG, and EOG data, a trained psychiatrist (TW)
scored sleep stages for each 30-s interval in accordance with the
international criteria (Rechtschaffen and Kales, 1968). On the basis of
the scores, we defined sleep stages 1, 2, 3, 4, and REM sleep. SWS was
defined as the union of sleep stages 3 and 4 (Rechtschaffen and Kales,
1968). We discarded SWS and REM periods shorter than 12 min.

We defined P1/P2/P3 SWS and P1/P2/P3 REM as follows (Fig. 1A):
P1/P2/P3-SWS/REM were derived from the first 36 min of SWS/REM
periods. P1 comprised the first 12 min of each sleep period. P2
comprised the next 12 min. P3 was defined similarly. The combined
lengths of P1, P2, and P3 were not all identical because some SWS and
REM periods lasted less than 36 min. We also defined Pre and Post peri-
od of SWS/REM as 12-min period right before and after a SWS/REM
sleep period, respectively. When a tentative Pre/Post period overlapped
with another time window (i.e., P1/P2/P3 or tentative Pre/Post), we
discarded the tentative Pre/Post period. The total length of P1/P2/P3/
Pre/Post SWS/REM collected over all subjects ranged between
approximately 7 h and 10 h (Table S3).
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Fig. 1. Flow of the data analysis. A. On the basis of EEG, we first determined sleep stages
including SWS periods and REM periods. The preprocessed fMRI signals surrounding
sleep periods were classified into the following six signal groups: P1/P2/P3-SWS and
P1/P2/P3-REM. Each group was defined by a time window of 12 min. For each group,
the fMRI signals recorded at different time points and for different subjects were
combined. Because SWS and REM periods can be shorter than 36 min, the total length
of the fMRI signals depends on the signal group. B. We focused on fMRI signals in the
N brain regions belonging to each RSN (i.e., DMN and FPN). We fitted the pairwise
MEM to the fMRI data at the N regions to infer the basal brain activity, h;, and functional
connectivity, Ji;, for each RSN and each signal group.

A short time window enables us to track dynamical changes in the
network activity with a high temporal resolution. However, the fitting
accuracy of the pairwise MEM decreases as the time window is short-
ened. With the time window of 10 min, the fitting accuracy was low.
With the time window of 15 min, the amount of data for P3, i.e., those
between 30 and 45 min since the initiation of SWS or REM sleep, was
insufficient. By taking into account the trade-off, we set the length of
the time window to 12 min.

Preprocessing of fMRI data

In accordance with previous fMRI studies on brain activity during
resting or sleep states (Honey et al., 2009; Kaufmann et al., 2006;
Uddin et al., 2009; Watanabe et al., 2013), we preprocessed the fMRI
data in SPM8 (www.fil.ion.ucl.ac.uk/spm/). For each scanning session
and each subject, the fMRI images underwent realignment, slice-
timing correction, and normalization to the standard template image
(ICBM 152). After temporal band-pass filtering (0.01-0.1 Hz) with in-
house MATLAB scripts, the images underwent spatial smoothing (full-
width half maximum = 8 mm) in SPM8. The images were then com-
bined for each subject and corrected for his/her head motion, whole-
brain signals, ventricular signals, white matter signals, and the run ef-
fect. Using CORSICA (McKeown et al., 1998), we reduced noise related
to respiration and heart beat.

Regarding the correction for the whole-brain signals, we should
note that its necessity is still under debate (Hayasaka, 2013; van
Dijk et al., 2010). In fact, there is no clear consensus about what por-
tion of the whole-brain signals represents physiological noise (Birn
et al., 2006; Chang and Glover, 2009a; Wise et al., 2004) or neural ac-
tivity (Scholvinck et al., 2010). Therefore, it is also unclear whether
or not we should correct the effect of the global signals: a study stat-
ed that regressing out of the whole-brain signals could induce
spurious negative correlations (Murphy et al., 2009), and another
study reported that negative correlations between different RSNs
were only observed when global-signal regression was adopted
(Weissenbacher et al., 2009); on the other hand, others showed

that some of such negative correlations were observed even without
a global-signal regression process, though they also stated that we
should refrain from interpreting the negative correlation coefficients
(Chang and Glover, 2009b; Fox et al., 2009). Considering these de-
bates, alternative methods such as a type of a principle component
analysis (Behzadi et al., 2007) are increasingly adopted (Chai et al.,
2012). In the present study, although we also observed that the
global-signal regression negatively shifted the correlation coeffi-
cients (Fig. S10), we adopted the simple conventional regression
method and corrected the global signal, because we focused on the
changes in the functional interaction and aimed at avoiding overes-
timation of the magnitude of the interactions.

Owing to slow and long-lasting hemodynamic reactions, fMRI
images recorded at adjacent time points are strongly correlated, which
can adversely affect the MEM analysis (Roudi et al., 2009). We reduced
this correlation using a general linear model as follows: if the data for a
given subject consisted of T images, we built T regressors whose onset
was set to the start time of each image acquisition. After convolving
the regressors with a hemodynamic response function implemented
in SPM 8, we estimated regression coefficients, which are thought to
represent brain activity at each time point of data acquisition.

We then extracted fMRI signals that belonged to either of the ten sig-
nal groups of sleep-related periods. The extracted signals were averages
over a sphere of 4-mm in radius whose center was located at the ana-
tomical coordinates of a brain region in the DMN or FPN (Table S1).
Same as a prior study that investigated the organization of the RSNs
(Fair et al., 2009), the locations of the brain regions in each RSN
(i.e., 12 regions for the DMN and 11 regions for the FPN) were deter-
mined by a previous meta-analysis (Dosenbach et al., 2006, Table S1).
For the DMN, an independent component analysis (ICA) of the present
data also identified a group of brain regions (Table S2) that were similar
to the previously reported regions (Dosenbach et al., 2006, Table S1).
Although our hypothesis pertaining to the DMN is partly based on the
previous findings on hippocampal activity (Diekelmann et al., 2011;
Diekelmann and Born, 2010; Grosmark et al., 2012; Ji and Wilson,
2007; Peigneux et al., 2004; Wilson and McNaughton, 1994), we did
not add the hippocampus to the DMN because the hippocampus is
close to the parahippocampal gyrus, a region already included in the
DMN, and the ICA did not detect the hippocampus.

Fitting of the pairwise MEM

We fitted the pairwise MEMs to the preprocessed fMRI data in es-
sentially the same manner as in our previous study (Watanabe et al.,
2013). To normalize the signals in each signal group, we subtracted
the average from the signals and then divided the obtained values by
their standard deviation. The normalization was conducted at each re-
gion. The normalized signals were binarized with a threshold of 0.075,
which maximized the accuracy of fit defined in the following. The accu-
racy of fit was robust with respect to the threshold value ranging from
-0.2 to 0.2 (Fig. S2).

The binarized activity at brain region i and discrete time t, denoted
by 0}, is either on (+ 1) or off (0). The network state at time t is repre-
sented by V! = [0¥, 05, ..., O], where N is the number of the brain
regions in an RSN (i.e.,, N = 12 for the DMN and N = 11 for the FPN).
The empirical activation probability of region i, denoted by (o), is
equal to (1/T) _ T_ ;0% where Tis the number of images in the signal
group of interest. The empirical joint activation probability of regions
i and j, denoted by (007, is given by (1/T) X [ 10i0%

To fit the pairwise MEM to the data, we maximized the entropy of
the distribution of the network state under the restriction that (o}
and (00p (1 <i<j<N) for the inferred model are equal to the empirical

values. Such a distribution is known to have the form P(V,) = e~ EVi)/

Zfil e~E(V2) ‘where P(V,) is the probability of the k th network state V,
and E(V,)) = — X Mo thioi(Ve) — (172) 2 M= 1 2 Mo 1y = dyoi(V)
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o;(V,). 0; (V) indicates the value of o; (i.e,, 1 or 0) under network state
V.. The so-called basal brain activity h; represents the tendency of acti-
vation at region i when it is isolated from the other regions. J;; represents
the functional interaction between regions i and j. For the inferred
model, the expected activation probability, (0;)m, and the expected
pairwise joint activation probability, (0;05)m, are given by (0j),, =

> 2 0iVP(V,) and (0,0}), = X 2,04(V,)0(V,)P(V,), respec-
tively. We determined h; and J; by iteratively adjusting (0}, and
(010))m toward (03) and (0j07), respectively, with a gradient descent al-
gorithm (Schneidman et al., 2006; Shlens et al., 2006; Tang et al., 2008;
Watanabe et al., 2013).

The accuracy of fit quantifies the performance of the pairwise MEM
model relative to that of the independent MEM (Roudi et al., 2009;
Schneidman et al.,, 2006; Shlens et al., 2006; Tang et al., 2008;
Watanabe et al., 2013; Yeh et al.,, 2010). The independent MEM is de-
fined as the MEM whose parameters are inferred under the additional
restriction that all the pairwise interactions are absent (i.e., Jj = 0 for
all i and j). For the two types of MEMs, we quantified the discrepancy
between the model and data by the Kullback-Leibler distance, Dy (k =
1 and 2 for the independent and pairwise MEMs, respectively), which

N
is given by Dy = 371 Pazea (V) 1085 (Pazea (V.- )/P(V./)), Where Paaea (V)
is the empirical probability of network state V,. The accuracy of fit is
defined by rp = (D; — D,)/D;. The rp value, which ranges between 0
and 1, is large if the model accurately fits the data.

Estimation of functional connectivity by other methods

As controls, we calculated the connection strength between pairs of
brain regions using three other methods. The data employed are the
same as those used for estimating the pairwise MEM.

First, we estimated the functional connectivity using the Pearson’s
correlation coefficient. After conducting the same preprocessing and
temporal filtering as in the case of the pairwise MEM, we calculated
Pearson’s correlation coefficients (Biswal et al., 1995; Fair et al., 2009;
Greicius et al., 2004; Honey et al., 2009; Uddin et al., 2009) between
the brain activities at pairs of regions. We applied the Fisher’s transfor-
mation to the correlation coefficients, obtained Z values for each subject,
and averaged the Z values over the subjects. Then, we compared the
absolute Z values among the three time periods (i.e., P1, P2,and P3) sep-
arately for SWS and REM.

Second, we estimated the functional connectivity using the partial
correlation method (Salvador et al., 2005, 2008). The partial correlation
between brain regions i and j, ry, is given by ry = —I;'/\/T; 'T; ",
where T is the covariance matrix for X; = [X;(t), Xx(t), ..., Xn(t)], the
N-dimensional row vector representing the continuous-valued activity
at the N regions at time t. We then averaged the r;; value over the sub-
jects and compared the absolute r;; values among the three time periods
(ie, P1, P2, P3) separately for SWS and REM.

Third, we estimated the functional connectivity using the mutual
information (MI) method (Salvador et al., 2008, 2010). The MI be-
tween brain regions i and j at frequency wy is given by MI; = (-1/2)
In(1 - mCohy(w)), where mCoh;( ) indicates the multiple coherence
between fMRI signals at regions i and j at frequency w,. We then aver-
aged Mljj(wy) across @y (0.01Hz < @ < 0.1 Hz) to obtain the MI between
regions i and j.

Somato-sensory network

To examine the generality of the network-dependent activity
change, we calculated changes in activity of the somato-sensory net-
work (SMN) in the same manner as we did for the DMN and FPN.
Based on previous studies (Dosenbach et al., 2006; Fair et al., 2009),
the regions constituting the SMN were determined (Table S5). The

limited amount of the present data forced us to restrict the number of
the regions to ten.

Statistical analysis

We tested the difference between the h; and |Jj| values before and after
a sleep period using paired t-tests across regions and region pairs, respec-
tively. Concerns regarding multiple comparisons were solved by calibra-
tion of the threshold P value of 0.05 on the basis of Bonferroni
corrections among eight possible conditions: two RSNs (DMN and
FPN) x two types of sleep (SWS and REM) x two types of network ac-
tivity (h;and [J). The uncorrected threshold P value is equal to 0.00625.

The modulation of the network activity throughout sleep periods
was first tested by the Friedman test with P < 0.05, Bonferroni-
corrected among the eight possible conditions described above. We
then conducted post-hoc tests to examine the difference in the network
activity between P1 and the other five periods. To this end, we used the
Wilcoxon signed rank test with P < 0.05, which was Bonferroni-
corrected between the two periods (i.e., P2 and P3).

Results
High fitting accuracy of the pairwise MEM to fMRI signals during sleep

To examine the modulation of network activity throughout the dif-
ferent sleep periods, we defined the six signal groups (P1/P2/P3-SWS
and P1/P2/P3-REM; Fig. 1A, see Materials and methods) and gathered
fMRI signals recorded from 14 subjects to obtain approximately 7-10 h
of signals (Table S3). Using the classified fMRI signals, we then separate-
ly fitted the pairwise MEM to each group of fMRI signals, which were re-
corded at the regions belonging to the DMN and FPN (Fig. 1B, Table S1).

For both brain networks and all the six signal groups, the pairwise
MEM realized more than 85% accuracy of fit to the fMRI signals
(Table S4, Fig. S1). The accuracy of fit was robust with respect to the
threshold for binarization, a parameter used in the fitting procedures
(Fig. S2). The fitting procedure provided us with two indicators: h;,
representing the activity at region i when it is hypothetically isolated
from the other regions (Fig. 2A), and J;;, representing the functional
connectivity between regions i and j (Fig. 2B) (Roudi et al., 2009;
Schneidman et al., 2006; Shlens et al., 2006; Watanabe et al., 2013).
The estimated values of h; and J; were robust with respect to the
subjects; the h; and J;; values obtained from seven randomly selected
subjects are almost equal to those obtained from the remaining seven
subjects (r > 0.8 for all the signal groups; Figs. 2C and D). These results
suggest that the pairwise MEM accurately and robustly captures the
network activity during sleep.

Changes in network activity throughout SWS and REM periods in the DMN

We then examined the changes in network activity throughout SWS
and REM periods in terms of h; and J;;. Regarding J;;, we tracked the abso-
lute value, which we call the connection strength between regions i and
J, because positive and negative J;; values are considered to represent
excitatory and inhibitory functional connectivity, respectively (Roudi
et al.,, 2009; Schneidman et al., 2006; Shlens et al., 2006; Watanabe
etal, 2013).

In the DMN, significant changes in both the basal brain activity, h;,
and the connection strength, |J;|, were detected throughout both SWS
and REM periods (SWS/REM: F(5, 22y = 18.2/22.2 for h; and F(3, 130) =
112.8/122.4 for |Jyj|, respectively. P < 0.01, Friedman test, Bonferroni-
corrected). A post-hoc test revealed that the h; and |J| values in P2
and P3 were significantly different from those in P1 (SWS/REM:
z>3.2/3.3 for hjand z > 7.0/7.1 for |J;, respectively. P < 0.01, Wilcoxon
signed rank tests, Bonferroni-corrected, Figs. 3A and B). In contrast,
there was no significant difference between P2 and P3 in both SWS
and REM sleep (P > 0.5).



Furthermore, for both SWS and REM sleep, h; and |Jj;| in P1 were not
different from those calculated from the 12-min data right before P1
(P> 0.6, Fig. S3). h;and || in P3 were not different from those calculated
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Fig. 2. Basal brain activity and functional connectivity estimated by the pairwise MEM. A. Basal brain activity at each region in the two RSNs in P1 and P3 in the two types of sleep period.
The anatomical locations of the brain regions in each RSN were determined based on previous studies (Dosenbach et al., 2006, Table S1). Lt,, left; Rt., right; Ant mPFC, anterior medial
prefrontal cortex; vimPFC, ventro-medial prefrontal cortex; SFG, superior frontal gyrus; ITG, inferior temporal gyrus; PCC, posterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex;
MFG, middle frontal gyrus; Mid CC, middle cingulate cortex; IPL, inferior parietal lobule; IPS, inferior parietal sulcus. B. Functional connectivity for each region pair. The anatomical labels in
panel A were also applied to this panel. Cand D. Comparison of the basal activity, h;, and functional connectivity, Ji;, obtained from 7 of the 14 subjects (subject group 1) and those obtained

Functional connectivity

(subject group 1)

from the remaining 7 subjects (subject group 2). A cross represents the h; value for a brain region. A circle represents the Jj; value for a region pair.

from the 12-min data right after each sleep period (P3 versus right after
each sleep period, P > 0.7 in both SWS and REM sleep, Fig. S3). It should
be noted that either of the time periods right before P1 or those right
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difference compared with the values at P1 (P< 0.01, Bonferroni-corrected). The error bars indicate the standard deviations calculated on the basis of the different brain regions. B. Averaged
connection strength in the six 12-min time windows. The error bars indicate the standard deviations calculated on the basis of the different pairs of brain regions. C. Dynamics of the basal
activity at the individual brain regions. In each panel, the brain regions are sorted according to the magnitude of the basal activity at the P1-SWS or P1-REM period. D. Dynamics of the
connection strength for the individual region pairs. In each panel, the region pairs are sorted according to the magnitude of the connection strength at the P1-SWS or P1-REM period.
E. Comparison of the basal brain activity between P1 and P3. F. Comparison of the connection strength between P1 and P3.

after P3 did not overlap with SWS or REM. To summarize, network
activity (i.e., h; and |J;|) in the DMN sharply increased immediately
after P1 in SWS, whereas it decreased immediately after P1 in REM
sleep. In both cases, the network activity reached a plateau by P3.

Changes in network activity throughout SWS and REM periods in the FPN

In the FPN, we found the opposite patterns. The two indicators
representing the network activity significantly changed during sleep
periods (SWS/REM F(z‘ 20) = 16.2/18.7 for h,‘ and F(z‘ 108) = 99.3/97.8
for |J;|, respectively, P < 0.01, Friedman tests, Bonferroni-corrected).
Both h; and [J;j| values in P1 were significantly larger and smaller than
those in the succeeding periods (i.e., P2 and P3) for SWS and REM, re-
spectively (SWS/REM: z > 3.1/3.3 for h; and z > 6.5/3.8 for |J;|, respec-
tively, P < 0.01, Wilcoxon signed rank tests, Bonferroni-corrected,
Figs. 3A and B). Last, as observed in the DMN activity, there was neither
significant difference between P1 and the period right before P1 nor be-
tween P3 and the period right after each sleep period (P > 0.7, Fig. S3).

Sleep-induced changes in activity of individual brain regions and
region pairs

The results so far have been derived for the basal brain activity and
connection strength averaged over regions and region pairs, respective-
ly. Therefore, the detected modulation may owe to the modulation in a
small fraction of regions or region pairs that possess large values of h; or
[/iil. This may be the case in particular because h; and |J;| values are
heterogeneously distributed, as suggested by Figs. 2A and B. However,
this possibility is excluded because individual h; and |J;;| values were
modulated consistently throughout the sleep periods (Figs. 3C and D).

More quantitatively, the h; values for all the brain regions in the
DMN were significantly larger in P3 than in P1 in SWS periods (t11) =
31.8,P< 3.8 x 10~ 1", paired t test), whereas the opposite was the case
for all the brain regions in the FPN ((0y = 27.2, P< 1.1 x 10~ '°, paired
t test; Fig. 3E). In both networks, h; showed the opposite patterns
throughout REM periods. In other words, for all the regions, h; was sig-
nificantly larger in P1 than in P3 in REM periods in the DMN (t11) =
12.8, P< 6.0 x 1078, paired t test), and h; was significantly larger in P3
than in P1 in REM periods in the FPN (£(10) = 23.1,P<5.2 x 10~ ', paired
t test; Fig. 3E). The connection strength, |Jj|, changed qualitatively in the
same pattern as h; did for all the pairs of regions. In the DMN, it was sig-
nificantly larger in P3 than in P1 in SWS periods (ts5) = 7.9, P <
3.9 x 10!, paired t test), and it was significantly larger in P1 than in
P3 in SWS periods in the FPN (f(sqy = 6.4, P < 3.7 x 10~ 8 paired ¢ test;
Fig. 3F). In contrast, || was significantly larger in P1 than in P3 in
REM periods in the DMN (t(gs5) = 7.3, P < 5.7 x 10~ '°, paired ¢ test),
and it was significantly larger in P3 than in P1 in REM periods in
the FPN (t(s4) = 6.8, P<9.4 x 10~ 9, paired ¢ test; Fig. 3F).

These results support our hypothesis. In the DMN, SWS periods up-
regulate both the basal activity and connection strength, whereas REM
periods down-regulate these quantities. In the FPN, the two types of
sleep period regulate the macroscopic network activity in the opposite
directions.

Changes in normalized functional connection strength

In all the cases considered above, sleep periods co-modulated the
basal brain activity (h;) and connection strength (|Jj|) in the same direc-
tion. If all the h; and Jj; values are scaled by the same factor, the changes
can simply be interpreted as the change in just one common parameter,
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the so-called temperature. In applications of MEMs to condensed mat-
ters, for example, a mere change in the temperature does not imply a
change in the connectivity within a material. To examine this issue,
we measured the dynamics of the normalized connection strength de-
fined by |J;/hi|. Changes in |J;/h;| can be considered to represent the
part of the changes in the connection strength beyond those explained
by the modulation of the temperature.

We observed significant modulation of |J;;/h;| throughout sleep in
both the DMN and FPN (SWS/REM: DMN, F5, 62, = 200.8/138.6; FPN,
Fo, 218y = 182.6/158.6, respectively. P <0.01, Friedman tests,
Bonferroni-corrected, Fig. 4A). The changes in |J;/h;| were qualitatively
the same as those in |J;] for all the sleep types and RSNs. The values in
P2 and P3 were significantly different from those in P1 (SWS/REM:
DMN, z > 9.8/5.1; FPN, z > 9.0/8.8, respectively. P < 0.01, Wilcoxon
signed rank tests, Bonferroni-corrected; Fig. 4A). The values changed
monotonically mostly in P2 and reached a plateau by P3 (Fig. 4B).
Furthermore, the |J;/h;| values of all the region pairs in P3 were signifi-
cantly different from those in P1 for both RSNs and both sleep periods
(SWS/REM: DMN, t(131) = 11.5/9.8, P< 1.1 x 10~ 2!/4.1 x 10~ '7; FPN,
t(100) = 8.6/8.9, P< 5.4 x 10~ '%/1.6 x 10~ ', respectively. P < 0.01,
paired t tests, Bonferroni-corrected; Fig. 4C). The |J;;/h;| immediately
after each sleep period was also significantly different from that in P1
(P < 0.01, paired t test, Bonferroni-corrected; Fig. S4). Taken together,
the change in the connection strength is not entirely explained by the
change in the single temperature parameter and represents essential
changes in the connectivity in the RSNs.

Finally, the aforementioned modulation of the network activity
could not be explained by the change in the delta power (1-4 Hz) in
the EEG because the EEG spectral power did not significantly change
among P1, P2, and P3 (Fig. S9).

Relationship between activity changes during SWS and REM sleep

The results obtained so far suggest that the changes in the macro-
scopic network activity during SWS are opposite to those that occur

during REM sleep for each RSN. Therefore, the changes during REM
periods are expected to be negatively correlated with those during
SWS periods. We plotted the amounts of the changes (i.e., the
difference between P1 and P3) in the basal brain activity (h;), the
connection strength (|/;]), and the normalized connection strength
(Uij/hil), through SWS periods against those through REM periods
(Fig.5). At the level of each brain region and region pair, the changes
through SWS periods and those through REM periods were nega-
tively correlated in both the DMN and FPN (DMN/FPN: correlation
coefficients: r = 0.72/0.82 for h;, r = 0.91/0.94 for |J;j|, and r =
0.63/0.85 for |J;j/hi|, respectively. P < 0.05, Bonferroni-corrected
against types of RSN). The correlation was also significant when the
amount of the activity change was redefined as the difference between
pre and post SWS/REM periods, instead of that between P1 and P3
(Fig. S5).

Comparison with other methods of functional connectivity

We attempted to reproduce the present results using other methods
for estimating connectivity between pairs of brain regions. To the same
data set, we applied three methods: the functional connectivity on the
basis of Pearson’s correlation coefficient (Biswal et al., 1995; Fair et al.,
2009; Greicius et al., 2004; Honey et al., 2009; Uddin et al., 2009), con-
nection strength calculated from the partial correlation (Salvador
et al.,, 2005, 2008), and that calculated from the mutual information
(Salvador et al., 2008, 2010).

We observed moderately significant differences in the connection
strength between P1 and P3 (z > 2.2, P < 0.05, Wilcoxon signed rank
test, Fig. S6B) when the partial correlation method was applied. Al-
though the results did not survive Bonferroni correction for multiple
comparison, the pattern of modulation detected by the partial correla-
tion method was consistent with that detected by the pairwise MEM.
We did not observe significant differences when the other two methods
were applied.

A Basal brain activity B Connection strength C Normalized connection strength
DMN FPN = DMN FPN DMN FPN

= r=-0.72 r=-082 i s r=-0.63 r=-0.85
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Fig. 5. Negatively correlated modulations of the network activity in SWS and REM periods. In each panel, the difference in the network activity between P3-REM and P1-REM is plotted
against the difference between P3-SWS and P1-SWS. A. Results for the basal brain activity for each RSN. A cross represents the activity change at an individual brain region. The changes
throughout SWS periods are negatively correlated with those throughout REM periods, as indicated by the negative values of Pearson’s correlation coefficient r. Panels B and C show similar
relationships in the connection strength and normalized connection strength, respectively. A cross represents the activity changes for a specific pair of regions.
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Somato-sensory network — another RSN

To further support the “macroscopic network-dependent activity
change” hypothesis, we examined modulation of activity of another
RSN, somato-sensory network (SMN) (Fair et al., 2009). The network
is considered to be relevant to early stages of perception processing
(Dosenbach et al., 2006; Fair et al., 2009). Because the amount of the
present data is limited, the number of the regions of interests was
restricted to ten (Table S5). The network activity in the SMN altered in
a manner similar to that for the FPN. In the SWS period, the basal
brain activity, connection strength, and normalized connection strength
at all the regions and region pairs significantly decreased (P<0.05 in the
Friedman test; Figs. 6A, B, and C). In particular, the values at P2 and
P3 were significantly smaller than those at P1 (P < 0.05 in the paired
t-test, Bonferroni corrected; Figs. 6A, B, and C). The opposite patterns
were observed for REM sleep.

Furthermore, as observed in the DMN and FPN, the changes in the
network activity throughout SWS periods were negatively correlated
with those throughout REM periods at the level of each region and
region pair (r < 0.70, P < 0.05; Figs. 6D, E, and F). The results on the
SMN are consistent with the notion that the pattern of activity changes
throughout sleep is determined by the type of RSN.

Discussion

In the present study, we showed that the network activity,
quantified by the basal brain activity (i.e., h;) and connection strength
(i.e., Jil), in the DMN increases during SWS periods and decreases
during REM periods, whereas the network activity in the FPN and
SMN changes in the opposite pattern. Moreover, in all RSN, the activity
changes during SWS periods were negatively correlated with those
during REM periods. Our neuroimaging results present macroscopic
evidence for network-dependent activity changes during sleep.

Previous human fMRI studies on brain activity during sleep mainly
focused on the comparison across different sleep stages. For example,
the DMN tends to be decoupled as the sleep stage gets deeper
(Andrade et al,, 2011; Horovitz et al,, 2009; Simann et al., 2011), and
the FPN shows a similar tendency (Spoormaker et al., 2012). The
present results are not directly comparable with these findings be-
cause we have examined changes within rather than across sleep

stages. The present findings are consistent with an intra-cerebral EEG
study that reported a decrease in the synaptic strength during SWS
in the lateral frontal areas, some of which belong to the FPN (Nir
et al, 2011).

Methodological limitations

A limitation of the present study is that we did not distinguish the
SWS and REM periods observed early in the entire sleep from those ob-
served late in the sleep. It is well known that SWS is dominant in early
sleep, whereas REM sleep in late sleep (Diekelmann and Born, 2010).
In addition, previous EEG studies showed that the spectral power of
slow-wave activity is different between early and late sleep (Finelli
et al., 2000; Tinguely et al., 2006). Therefore, network activity during
SWS and REM periods in early sleep may be different from those in
late sleep. We could not assess the influence of this potentially con-
founding factor because of the limited amount of the data. If we divide
the present data into the data recorded in early sleep and those in late
sleep, we do not obtain sufficiently high accuracy of fit of the pairwise
MEM. Due to the same technical reason, we could not directly estimate
changes in the network activity throughout the entire sleep using the
pairwise MEM. Therefore, we compared the modulation in the partial
correlation in the early and late nights. We found that the modulation
during SWS was somewhat stronger in the early night than in the late
night, whereas the modulation during REM sleep was larger in the late
than early right (Fig. S8). Although these results did not survive statisti-
cal tests, they are consistent with the previous findings (Finelli et al.,
2000; Tinguely et al.,, 2006; Diekelmann and Born, 2010).

Another limitation of the present study is the interpretation of
the present findings. The results cannot be directly translated to micro-
scopic neural mechanisms. Like other fMRI studies, our results are based
on indirect recording of brain activity. It is necessary to directly confirm
the present findings in future studies using, for instance, electro-
corticography. The pairwise MEM is generally accurate at describing mi-
croscopic neural activity (Ganmor et al,, 2011; Ohiorhenuan et al., 2010;
Schneidman et al., 2006; Shlens et al., 2006; Stephens et al,, 2011; Tang
et al., 2008). Furthermore, the method can simultaneously quantify
both local neural activity and connection strength. In contrast, except
few studies (Grosmark et al., 2012), previous microscopic studies inves-
tigated either local neural activity (Chauvette et al., 2012; Dang-Vu
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Fig. 6. Dynamics of the network activity in the SMN. A. Averaged basal brain activity. ** indicates a significant difference compared with the values at P1 (P < 0.01, Bonferroni-corrected).
Error bar: s.d. B. Averaged connection strength. C. Average of the normalized connection strength. D. Modulations of the basal brain activity. A cross represents the activity change at an
individual brain region. E. Modulations of the connection strength. A cross represents the activity changes for a pair of regions. F. Modulations of the normalized connection strength.
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et al., 2008; Grosmark et al., 2012) or connection strength (Boly et al.,
2012; Bushey et al., 2011; Gilestro et al., 2009; Grosmark et al., 2012;
Horovitz et al., 2009; Nir et al.,, 2011). The pairwise MEM may be useful
for revealing network-dependent activity changes during sleep on a
microscopic scale.

Explanatory power of the pairwise MEM

Although previous neuroimaging studies employing the conven-
tional method reported differences in functional connectivity between
wakefulness and sleep states such as NREM sleep (Andrade et al.,
2011; Horovitz et al., 2009; Koike et al., 2011; Sdmann et al., 2011;
Spoormaker et al., 2012), sleep stage 1 (Horovitz et al., 2008;
Larson-Prior et al., 2009, 2011; Spoormaker et al., 2012; Uehara et al.,
2013; van Dongen et al., 2011), SWS (Chow et al., 2013; Koike et al.,
2011; Spoormaker et al., 2012), and REM sleep (Chow et al., 2013;
Laureys et al., 2001; Maquet et al., 2000), they did not focus on differ-
ences in the functional connectivity within each sleep period.

In contrast, we probed the within-stage difference using the
pairwise MEM to detect significant modulation in the network activity.
Although there is no agreed consensus regarding the modulation in
brain network activity within sleep periods, the present results provide
some evidence toward understanding of this issue, and the results seem
to owe much to the performance of the pairwise MEM. Unlike the
correlation-based method, the pairwise MEM does not suffer from
spurious correlations induced by common neighbors of two brain
regions. The method based on the partial correlation (Salvador et al.,
2005, 2008) was also able to detect similar patterns of modulation in
the connection strength (Fig. S6B) probably for the same reason.

In some cases, all the basal brain activity values (i.e., h;) and connec-
tion strength values (i.e., |J;|) simultaneously decreased toward zero
during sleep. This decline does not indicate the loss of the explanatory
power of the pairwise MEM throughout sleep. First, the accuracy of fit
of the pairwise MEM to the data was high, irrespective of the sleep
period (Table S4). This indicates by definition that the pairwise MEM,
which takes into account up to the second-order interaction between
brain regions, is much more accurate than the independent MEM,
which neglects interactions between regions. Second, the Kullback-
Leibler distance, an information-theoretic measure that quantifies the
proximity between the model and the data, was roughly the same in
all the periods including those in which h; and |J;| are small (Fig. S7).
This result further supports that the pairwise MEM was consistently
accurate throughout the experiment, whereas the recorded data were
apparently nonstationary. Higher-order MEMs, which incorporate, for
example, triplet interactions, are therefore unnecessary for describing
the current data.

Anti-correlation between the DMN and FPN

Previous studies found anti-correlation between the DMN and FPN
during sleep. One neuroimaging study showed that the anti-
correlation tends to disappear as the sleep stage proceeds (Sdmann
et al., 2011). Another fMRI study showed the reduction in the anti-
correlation during REM particularly between the posterior cingulate
cortex in the DMN and the lateral parietal region in the FPN (Chow
et al., 2013). However, in other fMRI studies, the anti-correlation be-
tween the core regions in the DMN and FPN was preserved during
light sleep including sleep stages 1 and 2 and NREM sleep (Horovitz
et al,, 2008, 2009; Larson-Prior et al.,, 2009, 2011).

The present results support the anticorrelation during sleep. How-
ever, we must be careful in comparing the present results with the pre-
vious ones mentioned above because, different from the previous
investigations, we did not directly estimate the functional connectivity
between the two RSNs. To directly examine the functional connectivity
by using the MEM requires a large network including the DMN and FPN

as subsets, which calls for a far larger data set than that used in the
present study.
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