Enhancement of arachidonic acid liberation by protein kinase C activator is partially dependent on extracellular Na⁺ in rabbit platelets

Satoshi Akiba, Takashi Sato and Tatsuzo Fujii

Department of Biochemistry, Kyoto Pharmaceutical University, Kyoto 607, Japan

Received 22 June 1989

In [³H]arachidonic acid-labeled rabbit platelets, pretreatment with phorbol 12-myristate 13-acetate (20 nM) or dioctanoylglycerol (20 μ M) enhanced [³H]arachidonic acid liberation induced by low concentration of A23187 (150 nM). When extracellular Na⁺ was replaced with N-methyl-D-glucamine, the enhancement is reduced by about 50%. Similar synergistic enhancement of the liberation was obtained by using monensin (2–10 μ M) or NH₄Cl (5–20 mM) in place of protein kinase C activator in combination with A23187. The guanosine 5'-O-[3-thiotriphosphate] (100 μ M)-induced liberation was also enhanced by a rise of extracellular pH (pH 7.0–7.8) in saponin-permeabilized platelets. These results suggest that the enhancement of arachidonic acid liberation by protein kinase C may partially be mediated by intracellular alkalinization in rabbit platelets.

Arachidonic acid liberation; Protein kinase C; Na⁺/H⁺ exchange; Intracellular alkalinization; (Rabbit platelet)

1. INTRODUCTION

Stimulation of platelets with agonist results in arachidonic acid liberation mainly through phospholipase A_2 activation [1,2]. Previous studies demonstrated that protein kinase C synergistically potentiated Ca^{2+} -dependent arachidonic acid liberation [3,4], while this enzyme has been shown to evoke intracellular alkalinization via acceleration of Na⁺/H⁺ exchange [5,6]. Furthermore, it has been reported that inhibition of Na⁺/H⁺ exchange suppresses agonist-induced lysophosphatidylinositol formation [7]. Although the mechanism by which protein kinase C enhances arachidonic acid liberation in platelets remains unelucidated, these observations led us to suppose

Correspondence address: T. Sato, Department of Biochemistry, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607, Japan

Abbreviations: PMA, 4β -phorbol 12-myristate 13-acetate; DOG, dioctanoylglycerol; GTP₇S, guanosine 5'-O-[3-thiotriphosphate]; G-protein, guanine-nucleotide-binding protein

that protein kinase C may facilitate phospholipase A_2 activation via acceleration of Na^+/H^+ exchange. Therefore, we examined here whether the enhancement of arachidonic acid liberation by protein kinase C activator is due to intracellular alkalinization in rabbit platelets. In addition, to confirm the contribution of intracellular alkalinization to activation of phospholipase A_2 associated with guanine-nucleotide-binding protein (G-protein) which was proposed in our recent work [8] and elsewhere [9], we investigated further the synergistic effect of artificial alkalinization of platelet interior on Ca²⁺-ionophore- and GTP analogue-induced arachidonic acid liberation.

2. MATERIALS AND METHODS

2.1. Materials

A23187 was from Calbiochem (USA), PMA from LC Services Co. (USA), monensin from Sigma (USA), guanosine 5'-O-[3-thiotriphosphate] (GTP γ S) from Boehringer Mannheim (FRG) and [³H]arachidonic acid (100 Ci/mmol) from New England Nuclear (USA). Other reagents were from Nakarai Tesque (Japan).

Published by Elsevier Science Publishers B.V. (Biomedical Division) 00145793/89/\$3.50 © 1989 Federation of European Biochemical Societies Platelet-rich plasma from rabbit blood was incubated with [³H]arachidonic acid (2 μ Ci/ml) at 37°C for 1 h and then washed, as described recently [8]. The labeled platelets were suspended at 5 × 10⁸ cells/ml in buffer (137 mM NaCl, 2.7 mM KCl, 3.3 mM NaH₂PO₄, 1 mM MgCl₂, 3.8 mM Hepes, 5.6 mM glucose and 0.35% bovine serum albumin, pH 7.4). In some experiments, NaCl and NaH₂PO₄ were replaced with *N*-methyl-D-glucamine [10] and KH₂PO₄, respectively.

2.3. Measurement of arachidonic acid liberation

 $[{}^{3}H]$ Arachidonic acid-labeled platelets were pretreated with 3-amino-[*m*-(trifluoromethyl)phenyl]-2-pyrazoline (BW755C, 50 μ M) [11] at 37°C for 2 min in the presence of CaCl₂ (1 mM), and further treated with various reagents. After lipid extraction, [${}^{3}H$]arachidonic acid liberated was analyzed by thin-layer chromatography with a developing solvent of petroleum ether/diethyl ether/acetic acid (80:70:1.5, v/v), and the radioactivity was determined by liquid scintillation counting.

2.4. Preparation and treatment of saponin-permeabilized platelets

[³H]Arachidonic acid-labeled platelets $(2.5 \times 10^9 \text{ cells/ml}, \text{pH 7.0})$ were diluted 5-fold with KCl-buffer (160 mM KCl, 2.3 mM MgCl₂ and 12 mM Hepes, pH 7.0), just before use. The platelets were pretreated with BW755C (50 μ M) at 37°C for 2 min and then incubated with saponin (18 μ g/ml) in the presence of GTP γ S (200 μ M) for 2 min. The platelet suspension was adjusted to pH 7.4 or 7.8 with an addition of KCl-buffer (pH 10.0) and further incubated at 37°C for 10 min (final concentration of GTP γ S 100 μ M).

3. RESULTS

As shown in fig.1, pretreatment of $[{}^{3}H]$ arachidonic acid-labeled platelets with PMA (20 nM) or dioctanoylglycerol (DOG, 20 μ M) enhanced markedly A23187 (150 nM)-induced $[{}^{3}H]$ arachidonic acid liberation in the presence of extracellular Na⁺, as shown by other authors [3,4]. When extracellular Na⁺ was gradually replaced with *N*-methyl-D-glucamine, the PMA- and DOGenhanced liberation was reduced with decrease in concentration of extracellular Na⁺. In the labeled platelets suspended in Na⁺-free buffer, the attenuation was about 50%.

When $[{}^{3}H]$ arachidonic acid-labeled platelets were stimulated with A23187 (150 nM) and the Na⁺-ionophore monensin (2–10 μ M) in the presence of extracellular Na⁺, $[{}^{3}H]$ arachidonic acid liberation was increased as a function of monensin concentration (fig.2A). The potentiating effect of monensin was eliminated by exclusion of extracellular Na⁺. Similarly, NH₄Cl (5–20 mM) also enhanced dose-dependently the A23187-induced liberation (fig.2B).

Fig.1. Effect of extracellular Na⁺ on enhancement by PMA or DOG of A23187-induced arachidonic acid liberation in rabbit platelets. [³H]Arachidonic acid-labeled platelets, suspended in a mixture of various proportions of Na⁺ and N-methyl-Dglucamine (NMG), were pretreated with dimethyl sulfoxide (solvent control, ●), PMA (20 nM, ■) or DOG (20 µM, ▲) at 37°C for 1 min, and then stimulated with A23187 (150 nM) for 4 min. Each point represents the mean ± SD of three determinations performed in duplicate.

Fig.2. Effect of monensin and NH₄Cl on A23187-induced arachidonic acid liberation in rabbit platelets. [³H]Arachidonic acid-labeled platelets, suspended in the buffer containing Na⁺ (circle) or N-methyl-D-glucamine (triangle), were stimulated with (closed symbol) or without (open symbol) A23187 (150 nM) at 37°C for 4 min in the presence of various concentrations of monensin (A) or NH₄Cl (B). Each point represents the mean of two separate experiments performed in duplicate.

Fig.3. Effect of extracellular pH on GTP γ S-induced arachidonic acid liberation in saponin-permeabilized rabbit platelets. [³H]Arachidonic acid-labeled platelets were treated with saponin (18 μ g/ml) in the presence (\bullet) or absence (\odot) of GTP γ S (200 μ M) for 2 min. The platelet suspension was adjusted to pH 7.0, 7.4 and 7.8, and further incubated at 37°C for 10 min. Each point represents the mean \pm SD of three determinations performed in duplicate.

Incubation of [³H]arachidonic acid-labeled, saponin (18 μ g/ml)-permeabilized platelets with GTP γ S (100 μ M) caused an increase in [³H]arachidonic acid liberation at pH 7.0 (fig.3). The GTP γ S-induced liberation is increased further by a rise in extracellular pH (pH 7.4, 7.8).

4. DISCUSSION

Although some previous reports showed that protein kinase С activator potentiates Ca^{2+} -dependent arachidonic acid liberation [3,4], the mechanism was not elucidated. Here, we demonstrated that potentiation of A23187-induced arachidonic acid liberation by PMA or DOG is partially reduced by exclusion of extracellular Na⁺. Since it has been shown that protein kinase C activator failed to raise intracellular pH in Na⁺-free medium [5,6], our results suggest that arachidonic acid liberation enhanced by protein kinase C may be due to intracellular alkalinization via the kinaseaccelerated Na⁺/H⁺ exchange. This suggestion is supported by the present observation that monensin (Na⁺-ionophore) and NH₄Cl, which evoke intracellular alkalinization [12,13], enhanced A23187-induced arachidonic acid liberation. In the

present experiment, stimulation with a combination of A23187 and a protein kinase C activator did not generate diacylglycerol which is known to be a source of free arachidonic acid liberated under an action of diacylglycerol-lipase (not shown). Therefore, these results indicate that the enhanced liberation of arachidonic acid must arise from Ca^{2+} -dependent phospholipase A₂ activation which is potentiated by protein kinase C-evoked intracellular alkalinization. In fact, a recent report has shown that Ca^{2+} sensitivity of phospholipase A₂ in particulate membrane preparation is increased by a rise of pH within physiological range [14].

The exclusion of extracellular Na⁺, however, did not completely inhibit the PMA- and DOGenhanced arachidonic acid liberation. Furthermore, our recent study provides a possibility that protein kinase C may affect G-protein coupled to phospholipase A₂ to facilitate arachidonic acid liberation [8]. In the present study, we also showed that $GTP_{\gamma}S$ -induced arachidonic acid liberation was enhanced by a rise of extracellular pH in saponin-permeabilized platelets. Accordingly, it is thought that protein kinase C concurrently stimulates Na⁺/H⁺ exchange and G-protein, and intracellular the resulting alkalinization synergistically activates phospholipase A2 with the potentiated G-protein. Thus, the present results suggest that protein kinase C-accelerated Na⁺/H⁺ exchange may modulate, at least partially, phospholipase A_2 activation in rabbit platelets.

REFERENCES

- Mahadevappa, V.G. and Holub, B.J. (1986) Biochem. Biophys. Res. Commun. 134, 1327-1333.
- [2] Broekman, M.J. (1986) J. Lipid Res. 27, 884-891.
- [3] Halenda, S.P., Zavoico, G.B. and Feinstein, M.B. (1985)
 J. Biol. Chem. 260, 12484–12491.
- [4] Halenda, S.P. and Rehm, A.G. (1987) Biochem. J. 248, 471-475.
- [5] Siffert, W., Siffert, G. and Scheid, P. (1987) Biochem. J. 241, 301-303.
- [6] Siffert, W. and Akkerman, J.W.N. (1988) J. Biol. Chem. 263, 4223-4227.
- [7] Sweatt, J.D., Connolly, T.M., Cragoe, E.J. and Limbird, L.E. (1986) J. Biol. Chem. 261, 8667–8673.
- [8] Akiba, S., Sato, T. and Fujii, T. (1989) Thromb. Res. 53, 503-512.
- [9] Nakashima, S., Tohmatsu, T., Hattori, H., Suganuma, A. and Nozawa, Y. (1987) J. Biochem. (Tokyo) 101, 1055-1058.

- [10] Connolly, T.M. and Limbird, L.E. (1983) J. Biol. Chem. 258, 3907-3912.
- [11] Higgs, G.A., Flower, R.J. and Vane, J.R. (1979) Biochem. Pharmacol. 28, 1959-1961.
- [12] Siffert, W., Siffert, G., Scheid, P., Riemens, T., Gorter, G. and Akkerman, J.W.N. (1987) FEBS Lett. 212, 123-126.
- [13] Ghigo, D., Treves, S., Turrini, F., Pannocchia, A., Pescarmona, G. and Bosia, A. (1988) Biochim. Biophys. Acta 940, 141–148.
- [14] Baron, B.M. and Limbird, L.E. (1988) Biochim. Biophys. Acta 971, 103-111.