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Transdifferentiation of one cell type to another has

garnered significant research efforts in recent years. As

cardiomyocyte loss following myocardial infarction becomes

debilitating for cardiac patients, the option of an autologous

source of cardiomyocytes not derived from multi/pluripotent

stem cell sources is an attractive option. Such direct

programming has been clearly realized with the use of

transcription factors, microRNAs and more recently

small molecule delivery to enhance epigenetic modifications,

all albeit with low efficiencies in vitro. In this review, we aim

to present a brief overview of the current in vitro and

in vivo transdifferentiation strategies in the generation

of cardiomyocytes from somatic sources. The

interdisciplinary fields of tissue, cell, material and

regenerative engineering offer many opportunities to

synergistically achieve directly programmed cardiac tissue in

vitro and enhance transdifferentiation in vivo. This review

aims to present a concise outlook on this topic with these

fields in mind.
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Introduction
Cardiovascular disease is one of the world’s leading

causes of mortality. Myocardial infarction (MI) is the

death of heart tissue due to ischaemia, typically caused

by the blockage of blood flow to an area in the heart.

Resident cardiomyocytes have a very limited capacity to
www.sciencedirect.com 
proliferate in the adult heart, resulting in the lack of heart

regeneration post-MI [1]. To date, the most efficient

therapy for heart failure is whole organ transplantation,

which is limited by donor hearts availability, compro-

mised by immunosuppressant therapy and an invasive

procedure not suitable for all patients.

Cell therapies have been of interest to researchers due to

their variety of cell sources, the ability to scale-up in vitro
and their potential to improve the regeneration of tissue.

This has evolved from research with autologous stem cell

sources — bone marrow-derived stem cells, adipose

tissue-derived stem and progenitor cells, all of which

have reached clinical trials [2]. Recent approaches to

induce a pluripotent state in various adult somatic cells,

termed induced-pluripotent stem cells (iPSCs), has

resulted in exciting work towards clinical therapy and

disease modelling [3��]; however, returning cells to a

pluripotent state raises concerns of teratoma formation

and possible unwarranted differentiation [4]. Prompted

by the advent of iPSCs [3��], the concept of a direct

transition from one determined cell type into another

(transdifferentiation) by overexpressing transcription

factors, microRNAs (miRs) and/or delivering small mole-

cules has emerged [5��,6��,7��]. Almost 30 years ago,

myogenic features in fibroblasts were being driven by

introducing the expression of the muscle-specific tran-

scription factor MyoD [8]. This direct conversion was

achieved by epigenetic suppression  of the fibroblast

phenotype and progressive activation of the target cell

via cDNA transfections. Transdifferentiation has since

been reported for cell types such as pancreatic beta cells

[9], neurons [10], hepatocyte-like cells [11], and haema-

topoietic progenitor cells [12]. Inducing functional car-

diomyocytes (iCMs) directly from fibroblasts was first

reported with murine cells in 2010 [5��]. Since then,

substantial efforts have been applied to increase trans-

differentiation efficiencies [13��]. Gradually, the incor-

poration of additional stimuli such as dynamic cultures,

mechanical, topographical and extracellular matrix

(ECM) cues, along with other lessons learned from stem

cell and iPSC differentiation is slowly impacting the

direct reprogramming protocols with increased efficien-

cies. In this review, we aim to discuss the important

developments in the transdifferentiation of fibroblasts

to iCMs in vitro and in vivo with the goal of highlighting

developments in the field of tissue engineering and

biomaterials design that could realize exciting accom-

plishments in this field.
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Driving transdifferentiation using cardiac
transcription factors
Typically, cardiac fibroblasts maintain the structural and

paracrine sustenance of adjacent cardiomyocytes. How-

ever, activation of these fibroblasts occurs after MI and

subsequently they migrate to the site of injury and

synthesize fibrotic ECM as a compensatory structure

for the compromised myocardium [1]. The abundance

of cardiac fibroblasts in the injured heart intuitively high-

lights them as a target for reprogramming, whereby they

could offer as a source for cardiac regeneration. Cardiac

fibroblasts and cardiomyocytes, in theory, should share

many epigenetic features as they both derive from a

common progenitor cell population [14]. The significance

of the originating cell type and its natural environment

has been reported in myogenic [15] and pancreatic beta

cell reprogramming [9]. In both cases, somatic cells

originating from different germ layers to that of the

envisaged cell type failed to yield successful transdiffer-

entiation.

The most documented and the first factors to derive iCMs

are the transcription factors Gata4, Mef2c and Tbx5

(GMT). Since their initial reporting [5��], many repro-

gramming cocktails have been tested, most of them

virally delivered and based on the original combination

of GMT but with additional factors (Mesp1, Hand1,

Hand2, Nkx2.5, myocardin (Myocd), Smarcd3 or SRF)

to improve reprogramming efficiencies [16��,17–19] (see

Table 1 for an overview). G, M, and T are the prevailing

regulators at the peak of the cardiac gene regulatory

networks and their expression during normal develop-

ment follows a delicate pattern [20��]. It is reported that

GMT alone is inefficient to produce functional iCMs but

results in a partially reprogrammed phenotype expressing

transcripts such as cardiac TroponinT but not alpha

myosin heavy chain (a-MHC) [21�]. Combining Myocd

with Tbx5 and Mef2c to treat neonatal cardiac fibroblasts

has resulted in a 2.5% yield of a-MHC-expressing cells

14 days post-transduction (GMT alone achieved 2.2%);

however, complete transdifferentiation in the form of

beating cells after four weeks was not obtained [22].

It is also reported that a fine balance of the GMT factors is

required to accomplish more efficient transdifferentiation

[20��,23]. Essentially, a high Mef2c protein level and lower

expression level of Gata4 and Tbx5 transpired to be key in

yielding iCMs in fibroblasts transduced by a polycistronic

vector [20��]. Stoichiometry of the factors has also been

found to have an effect through non-viral mRNA delivery

[23]. Such a sensitive equilibrium may be one reason why

GMT has yielded poor efficiency in other researchers’

investigations. Repression of Snai1 has been implicated

as an enhancer of GMT transdifferentiation as Snai1 is

capable of inducing mesenchymal behaviour and fibrogen-

esis during development and disease. Knocking down

Snai1-expression with siRNA during GMT transduction
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of MEFs significantly increased the reprogramming effi-

ciency compared to GMT alone [24]. In contrast, over-

expressing Snai1 during transdifferentiation inhibited

cardiac gene expression and spontaneous beating. Other

researchers have noted a fivefold improvement of iCM

induction has been achieved via inhibition of TGF-b using

SB431542 with transfection of GMT + Hand2 + Nkx2.5

[25]. TGF-b acts as an activator of Snai1. Therefore both

studies establish that the repression of Snai1 is important to

stop the maintenance of the fibroblast phenotype. Addi-

tionally, a more recent study found that although GMT and

Hand2 transdifferentiated fibroblasts into beating cells

expressing cardiac markers (5%), genes associated with

fibrosis were also upregulated in the first week of culture

[26��]. On the basis of the hypothesis that fibrotic signalling

was hindering transdifferentiation, small molecules to si-

lence TGF-b and Rho associated kinase signalling yielded

an efficiency of 60% functional cardiomyocytes from

mouse embryonic fibroblasts [26��].

microRNA mediated transdifferentiation
The role of miRs and the disruption of their endogenous

levels and cell-specific functions following MI are well

reported [27]. The regulatory role of miRs in the sup-

pression of mRNA translation plays an important role in

cell fate decisions, which can have a knock-on/off effect

on the presence of transcription factors and other stimu-

latory factors. Jayawardena et al. were the first who iden-

tified a cocktail of miRs (miR-1, -133, -208, -499) that

seemed to preferably transdifferentiate fibroblasts into

iCMs [6��]. Within this study; cardiac protein expression,

rhythmic calcium oscillations and beating clusters were

observed in about 1–2% of the cell population [6��].
Notably, the introductory method of the miRs in this

study (non-viral delivery of mature miR mimics) necessi-

tated a single transient transfection.

Muraoka et al. investigated the effect of miR-1, -133,-208,

and -499 on mouse embryonic fibroblasts (MEFs) isolated

from a-MHC promoter-driven eGFP transgenic mice in

generating iCMs [24]. This study was not successful in

generating iCMs using this defined cocktail of miRs.

However, combining GMT viral delivery with just

miR-133 (non-viral mature miR mimic) resulted in sig-

nificantly enhanced transdifferentiation efficiencies in

murine and human fibroblasts [24]. When investigating

the cardiomyocyte subtype they observed mostly iCMs of

an atrial phenotype. Interestingly, the study detected

beating events in GMT+ miR-133 transduced MEFs as

early as day 10 post-induction; whereas cells treated with

GMT alone did not exhibit beating cells until four weeks

post-induction.

Another approach in converting fibroblasts to iCMs is the

combination of transiently overexpressing factors gener-

ally recognized for iPSC generation, with culture condi-

tions and factors specific to cardiac differentiation, but
www.sciencedirect.com
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obviating a pluripotent state. Efe et al. retrovirally trans-

duced MEFs with Oct4, Sox2, Klf4 (OSK) and cultured

under defined conditions (LIF-free cardiomyogenic me-

dia) using small molecules and growth factors [28�] and

induced spontaneously contracting patches of cardiac

cells. This study found that small molecule inhibition

of JAK-STAT (Janus kinase-signal transducer and activa-

tor of transcription) during the initial nine day period and

supplementation of BMP4 from day nine gave more

beating cells. However, regardless of the culture time,

the expression of late stage markers (Mlc-2a) suggested

that the generated iCMs were of an atrial subtype. As

early as 11 days after transduction, spontaneous contrac-

tions were observed and many colonies were beating by

day 15. The authors speculated that pluripotency repro-

gramming factors (especially Oct4) initially remove the

cell’s identity but epigenetic mechanisms, and soluble

factors in a staged protocol of differentiation media are

then capable of inducing the desired cell type. More

recently, this group demonstrated combining Oct4 [29]

with a small molecule cocktail consisting of SB431542

(ALK4/5/7 inhibitor), CHIR99021 (GSK3 inhibitor), par-

nate (LSD1/KDM1 inhibitor), and forskolin (adenylyl

cyclase activator) collectively known as SCPF [29], was

sufficient to wipe the fibroblast epigenetic memory, thus

enabling improved cell transdifferentiation with cardio-

myogenic signals (small molecules and growth factors). In

this case, BMP4 was added from day 6 after transduction

to induce a cardiomyocyte phenotype. The group ob-

served contracting clusters from day 20 and generated

99 � 17 beating foci on day 30 after 1 � 104 MEFs were

initially plated. Most of the derived cells indicated a

ventricular subtype with hardly any displaying atrial or

nodal features.

Chemically achieved transdifferentiation
Suppression of the starting cell epigenetic signature is

paramount to overcoming one major molecular roadblock

for successful transdifferentiation; namely the shutdown of

the fibroblast program, before an adoption of the desired

cell fate becomes possible. Cells not only undergo tran-

scriptional changes but also exhibit epigenetic changes in

DNA methylation and histone modifications [30,31], and it

are primarily these changes that convert the epigenetic

pattern of somatic cells to an embryonic stem cell-like state.

Several small molecules that block and inhibit enzymes

involved in epigenetic modifications, including histone

methylation or demethylation, can increase the efficiency

of transdifferentiation and can sometimes functionally

replace ectopic expression of certain transcription factors.

Routinely, G9a-mediated H3K9 methylation is necessary

for heterochromatinization and silencing of key pluripo-

tency genes, such as Oct4 and Rex1 during early embryo-

genesis [32]. DNA methyltransferase inhibitor, 5-

azacytidine, or histone deacetylase inhibitors (suberoyla-

nilide hydroxamic acid, trichostatin A and valproic acid)

improved reprogramming efficiency after transduction of
www.sciencedirect.com 
the four iPSC transcription factors in MEFs [33]. A cell’s

epigenetic memory can be essentially erased by treating

established iPSCs with 5-azacytidine and trichostatin A

[33]. The use of small molecule compounds in cell trans-

differentiation, which could be better accepted for clinical

translation, has recently been highlighted with the com-

plete generation of iPSCs and neural progenitor cells via

small molecules [34–36]. More recently, transdifferentiat-

ing MEFs into cardiomyocytes (sometimes beating) using

chemically defined cocktails has been achieved with a

transition via a cardiac progenitor cell stage but not that

of a pluripotent stage [7��]. Yet still, the induction efficien-

cies of iCMs using this, and other methods in vitro remain

disappointingly low.

In vivo efforts
Interestingly, in vivo approaches of direct cardiac repro-

gramming applied after experimental MI in mice obtain

higher efficiencies than in vitro approaches. Considering

that the fibrotic scar is primarily composed of ECM-

producing fibroblasts, this is indeed promising. Qian

et al. [37��] and Song et al. [16��] have both used genetic

lineage tracing to ascertain that in mouse infarcted hearts,

transdifferentiation of non-myocytes into functional

iCMs occurred. Both studies document improved func-

tional recovery and reduced fibrotic scar tissue. Since

then, other improvements to in vivo GMT transdiffer-

entiation have been made with respect to the delivery

vector [38,39] and preconditioning the myocardium with

angiogenic factors [40,41]. miR-based transdifferentiation

in vivo has also been reported by Jayawardena et al.
whereby their initial study determined that 1% of the

iCMs were of a fibroblast origin [6��] and a more recent

study of the therapeutic effect of this treatment found

progressive improvement in cardiac function. These con-

version rates in vivo (1–35%) are encouraging; however, to

generate disease-in-a-dish models and in vitro iCM yields

suitable for transplantation, increased in vitro efficiencies

are required to achieve large-scale cultures.

The influence of ECM signalling
Many strategies have potential regarding transdifferentia-

tion to generate iCMs in vitro from somatic sources and

the direct reprogramming of resident cells in vivo
(Figure 1). The ECM serves as an important component

of all tissues, and its composition and mechanical proper-

ties play significant roles in the self-renewal or differen-

tiation of cells. ECM composition and signalling in stem

cell niches promotes the self-renewal of stem or progeni-

tor cells and this knowledge has been utilized early on in

embryonic stem cell culture for ESC maintenance in vitro
using MEFs secreting ECM [42], ECM-based substrates

such as Matrigel1 [43], specific ECM proteins such as

laminins, collagen type I, or vitronectin [44–46]. ECM

proteins have also been utilized to guide stem cell dif-

ferentiation to somatic cell types, including cardiomyo-

cytes [47–50]. For instance, collagen type IV has been
Current Opinion in Biotechnology 2016, 40:49–55
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Figure 1
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Direct reprogramming of fibroblasts to a functional cardiomyocyte with or without a progenitor cell intermediate has been widely reported with

increasing efficiencies using transcription factors, miRs and small molecules. The evolution of these protocols will benefit greatly by the use of

cardio-stimulatory environments with biomaterials, extracellular matrices and dynamic cultures based on lessons learned in vivo, which could yield

significant efficiencies suitable for implantation. Additionally, using delivery vehicles of transdifferentiation factors that are based on biomaterial

and extracellular matrices, which are favourable towards cardiomyogenesis could further improve direct reprogramming in vivo.
shown to increase the differentiation of mouse embryonic

stem cells into cardiac progenitor cells (CPCs) while

fibronectin can enhance CPC differentiation to cardio-

myocytes [51]. Additionally, to reprogram somatic cells at

least partially to multipotent cells, the use of embryonic

stem cell extracts [52] or animal oocyte extracts [53,54]

has been described. Zhang et al. induced multipotency in

fibroblasts by extracellular delivery of the ECM compo-

nent fibromodulin [55]. Interestingly, the multipotent

cells differentiated into derivatives of all three germ

layers including cardiomyocytes, skeletal myocytes, neu-

rons, pancreatic lineage cells, osteoblasts, and adipocytes

in vitro while omitting the risk of teratoma formation in
vivo [55]. More delivery approaches become available

when considering ECM-enhanced iCM generation as

the ECM can also serve as a depot for growth factors,

transcription factors and nucleic acid vectors (viruses and

plasmid constructs) for gene therapy [56]. However, one
Current Opinion in Biotechnology 2016, 40:49–55 
such factor alone is not enough and therefore payloads

that can achieve sustained and programmed release of

many molecules at the same, or at staged time intervals

are paramount to the correct transdifferentiation of cells

in vivo [57,58].

Incorporation of biomechanical cues
Research focused on the interplay between physical and

developmental cues has demonstrated that mechanical

forces generated by cells or tissues are crucial for the

control of embryological development, morphogenesis

and tissue patterning [59]. The importance of the me-

chanical properties of a cell’s or tissue’s microenviron-

ment has been recognized by many in the field of tissue

engineering [51,60]. This has resulted in the design of

elaborate systems to mimic a native environment with

defined mechanical cues of surface rigidity, stretch and

strain. Some of these cues exist already in vivo, which
www.sciencedirect.com
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could be a strong justification as to why transdifferentia-

tion is more successful in vivo. Ruan et al. have recently

shown that cyclic mechanical stress in 3D in vitro cultures

of ESC and hiPSC-derived CPCs favoured cardiac dif-

ferentiation and promoted cardiomyocyte structural and

functional maturation [61�]. It is difficult to recapitulate

small molecule interventions in vivo, which suggests

other epigenetic occurrences present in the myocardium.

Again, such influences in vivo could be ECM signalling.

Recently it was shown that topography plays an instru-

mental role in the epigenetic state of the cell whereby the

study of Morez et al. cultured adult heart-derived progen-

itor cells on microgrooves (10 mm wide, 3 mm deep) to

enhance histone acetylation and cardiomyocyte differen-

tiation [62�]. The growing range of functional biomater-

ials that can release drugs, proteins, growth factors and

ECM components, or that display an improved mechani-

cal functionality, is currently the focus of tissue engineer-

ing and regenerative medicine [63�]. A temporally and

spatially controlled release of bioactive molecules from

such functional biomaterials can be achieved through the

combination of different mechanisms, like diffusion-

based release, biomaterial-degradation, or cell-triggered

release [64].

Conclusion
The generation of functional cardiac tissue in vitro by

transdifferentiating somatic cell sources can only be truly

realized and up-scaled by combining lessons learned from

cardiomyocyte derivation from iPSCs or stem cells,

whereby ECM biophysical cues and dynamic cultures

have yielded more mature iCMs with higher efficiencies.

This would enable the generation of patient-specific drug

testing systems and personalized engineering of cardiac

tissue in vitro.
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(University Hospital Tübingen) for creating Figure 1. This work was
financially supported by the European Union (AMCARE, 604531, FP7-
NMP-2013-SME-7 to KS-L.; Marie Curie IEF, 331430 to MGM);
Fraunhofer-Gesellschaft Internal programs (FFE to SLL), the Ministry of
Science, Research and the Arts of Baden-Württemberg (33-729.55-3/214),
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