
JOURNAL OF FUNCTIONAL ANALYSIS 59, 151-166 (1984) 

On the Connectivity Properties of the Solution Set 
of Parametrized Families of Compact Vector Fields 

I. MASSAB~) AND J. PEJSACHOWICZ 

Dipartimento di Matematica, Universitri della Calabria, 
Arcavacata di Rende, Cosenza, Italy 

Communicated by C. Foias 

Received July 30, 1981; revised October 3, 1981 

INTRODUCTION 

A useful tool in the study of global continua of solutions of nonlinear 
partial differential equations is a connectivity result on the fixed-points set of 
a l-parameter family of maps that goes back to Leray and Schauder [ 171 
and it was proved in its full generality by Browder [B]. In describing it, we 
shall restrict ourselves to the case of parametrized families of compact vector 
fields defined in open subsets of Banach spaces. 

Let X be a Banach space, I be the unit interval [-1, l] c R and U be an - - 
open subset of I x X. Let f: U --) X be a compact map such that 

x z”w, x> for (A, x) E au 

deg(Id -&I, a), U,, 0) # 0 for some I E [-1, 11. 
t*> 

Then 

(i) there exists a connected subset G? of the solution set 
.Y = ((A, x) E U: x -AA, x) = 0) joining Y-l=CYn (-1)xX with 
~;4=~i”n 11) xx. 

Actually, by a topological argument, statement (i) is equivalent to either 
one of the following assertions: 

(ii) .Y-, cannot be separated from .Yl in 9. 

(iii) rf g: 9 --t R is a real valued continuous map such that 
g(9- 1) c R _ and g(Y*) c R + then g(& x) = 0 for some (A, x) E 9. 

The equivalence between (ii) and (iii) is straightforward, whereas the 
equivalence between (i) and (ii) is known as Whyburn’s lemma. 

Let us remark that, starting from the celebrated Rabinowitz result, the 
above statements in the (i) and (ii) form have been used by several people in 
the study of global continua of solutions for nonlinear P.D.E. (cf. [5, 241). 
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Instead, the (iii) form was used in [4, 221 to obtain existence results for 
nonlinear P.D.E. arising as compact perturbations of Fredholm operators 
with one dimensional kernel. 

In this note, under assumption (*), we shall give an improvement of the 
statements (i)-(iii) for n-parameter families of compact vector fields. 
Actually, (ii) and (iii) have a word-by-word reformulation to the n-parameter 
case and they are related with some classical results on fixed points and 
dimension theory (cf. Remarks to Theorem (1.1)). In order to give a 
nontrivial improvement of (i) we shall describe it in terms of tech 
cohomology. Indeed, for a family of compact vector fields with parameters 
in the n-interval Z = [-1, 1 ]” c IR”, under assumption (*), we have that there 
exists a closed connected set g of solutions such that the homomorphism 
induced in cohomology by the projection p: S? -+ Z 

is nontrivial. 
In particular, we obtain that 5!? covers all of Z and @ = G? np-’ (aZ> 

covers all of &‘Z. Moreover, the Lebesgue covering dimension of G? and %? is 
at least n and n - 1, respectively (cf. Theorem 1.1). Notice that the above 
assertion reduces to [ 17,8] result for n = 1. 

In Theorem 1.2 we extend the above result to families of compact vector 
fields parametrized by whole of IR”. In this case, if there are bounds for the 
solutions lying over compact subsets of IR” then (*) implies that there exists 
a closed connected set of solutions of dimension > n, covering all of [R”. 

The paper is organized as follows: In Section 1, Theorems 1.1 and 1.2 are 
stated and some consequences are pointed out. Section 2 is devoted 
completely to the proofs of the above theorems. Propositions 2.2 and 2.3 are 
of independent interest. 

In Section 3, in order to illustrate the significance of Theorem 1.2, we 
shall give two examples arising from semilinear boundary value problems at 
resonance. We would like to add in passing that the conclusions in Theorems 
1.1 and 1.2 applied to the first example answer a question raised in [22]. 

We would like to point out that although our methods are inspired by the 
Alexander and Yorke paper (31, our results are of a different nature. More 
precisely, in the main theorem of [3], from only local assumptions on the 
map f defined on an open set homeomorphic to iR XX, they show the 
existence of a homologically nontrivial continuum of solutions which does 
not necessarily cover all of IR. On the contrary our assumptions are not of 
local character, but no restrictions on the topological type of the domain off 
are needed. By imposing bounds on the solutions lying over compact subsets 
of [R we obtain a connected set of solutions covering all of the parameter 
space. 
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We would also remark that our conclusions and more general results can 
be obtained either by using the transfer homomorphism of Dold [lo] or by 
techniques developed in [ 181. However the methods in this paper are (in our 
opinion) more elementary. In fact, the only tools needed are some basic 
properties of cohomology products and continuity of tech theory. 

Finally, we shall express our gratitude to Alexander for sending his 
preliminary reports [ 1, 21. 

1. PRELIMINARIES AND STATEMENT OF THE MAIN RESULTS 

Given any pair (X, A) of normal spaces, we shall denote by B”(X, A) its 
nth Tech-cohomology group with integer coefficients based on Alexan- 
der-Spanier cochains. This cohomology theory is useful for our purpose with 
regard to its tautness and its continuity property (for these topics, see 
[ 23, Chap. 61). G’ iven any cohomology class c E Z?“(X, A) and any inclusion 
of pairs i: (Y, B) C. (X, A), the cohomology class i*(r) E E;I”(Y, B) is called 
the restriction of < to (Y, B) and it is denoted by l((y,B). 

We recall that a closed subset C of a topological space X separates two 
subsets A, B of X if x\C is a disjoint union of two open sets U, V containing 
A and B, respectively. We say that A, B are separated in X if the empty set 
separates them. 

Given any n-tuple L = (L, ,..., 1,) E R” we denote by ]L( = maxr<ic,, (li]* 
We consider W” endowed with this norm. The unit ball of R” is denoted 

by Z and its boundary by Z. Given any subset A of Z X X, k stands for the 
part of A lying over the boundary of I, that is k = {(A, x) E A: 1 E Z} (this 
should not be confused with the boundary 3A of A). Finally, we denote by 
A,, the section of A at L E Z, that is, A, = {x E X: (A, x) E A}. 

Let X be a Banach space and let U be an open (in the relative topology) 
bounded subset of Z x X. By a parametrized family of compact vector fields 
we mean a map f : U--t X of the form f (A, x) = x -?(A, x), where J‘ : U -+ X 
is a compact map. 

We assume, once and for all, that f is admissible, that is, f does not have 
zeroes on the boundary aU of U (in Z x X). In this case, the Leray-Schauder 
degree deg(f,, U,, 0) of the map 

is defined and it is independent of 2 E I. 
Let 9 be the solution set of the equation f (A, x) = 0 in 17. Then .Y is a 

compact subset of U, being the set of zeroes of a family of compact vector 
fields. 

Let p:Z X X + Z be the projection map. Then p induces various maps of 
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pairs such as p: (0, 6) --f (2, i), p: (9, 9) --f (I, i) which we still denote with 
the same symbol p. For each 1 ,<i<n, let ,Yt-= {(A,x)~P’:,$=icl}. 
Clearly, 

P= (J (J.Y:-. 
f- i 

Finally, let us consider the class e =p*(Zn) E fi”(U, U), where cn E &?“(I, i) 
in the canonical generator of Ei”(l, i) N Z. 

Now we are able to formulate our main result. 

THEOREM 1.1. Let f : i?-+ X be a family of compact vector fields. 
Assume that f is admissible and that 

dedfA 3 WA, 0) f 0 for some A- E I. (1.1) 

Then the following holds: 
(a) If Ci is any n-tuple of closed subsets of 9 such that Ci separates 

9; from 9): , then fi FS 1 Ci # 0. 
(b) If gi: ,Y + IF?, 1 < i,< n, are continuous functions such that 

gi(tu’;) c R - and gi(9’:) c R ‘, then nF=, g,:‘(O) # 0, i.e., the map 
g = (g, ,...) g,): Y -+ R ” has a zero in Y‘. 

(c) There exists a connected component %? of ,3 such that the 
restriction of < to (g, @) is nontrivial in ti*(P, @). 

Now we would like to point out some consequences of Theorem 1.1 and 
make some comments. First of all, notice that the homomorphism 
p*: *(I, zj -+ Bn(q 52) in statement (c) is not the only nontrivial one 
induced by the projection, Indeed, from the naturality of the exact sequence 
of a pair it follows that also p*: fin-’ (i) -+ fin-‘(@) is nontrivial. Hence, 

p: (F’, @?) -+ (I, i) is essential (i.e., it cannot be deformed in 
this class of maps to a map into Z). In particular it is onto. (1.2) 
p: @ + i is essential (i.e., it cannot be deformed to a constant 
map). In particular it is onto. (1.3) 

Moreover, since from the homological characterization of Lebesgue 
covering dimension of compact metric spaces [ 16, Theorem VIII.4 ] we have 
that if dim X < n then for any closed subset C of X, B”(X, C) = 0. It follows 
from (c) in Theorem 1.1 that 

dim Q 2 n and dim’@jn- 1. (1.4) 

Let us make some remarks to the statements (a) and (b). Since for n = 1, 
(a) reduces to (ii) of the Introduction it can be regarded as a higher order 
connectivity property of the solution set. Such types of properties and this 
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relation with dimension theory have been considered long ago by several 
topologists (a good reference for this topic is Chap. 5, Vol. II of 
Kuratowski). For example, a theorem due to Eilenberg and Otto [ 121 states 
that: 

dim X < n if for any n-tuple of closed disjoint pairs (Ai, B,), 
i = l,..., n, there exists closed sets Ci, i = l,..., n, such that Ci 
separates Ai from Bi and ny=, Ci = 0. 

Hence, (a) in Theorem 1.1 implies that dim 9 > n. On the other hand, (b) 
can be regarded as an improvement to the solution set over n-intervals of a 
principle for the existence of zeroes of maps g: I” -+ R” that goes back to 
Poincari [20] and it was observed by Miranda [ 191 to be equivalent to 
Brower’s theorem. 

Finally, let us remark that if f is defined in the whole of R” X X then 
Theorem 1.1 can be applied over intervals I that do not intersect the set of 
bifurcation points from infinity (see [IS]). Furthermore, by “patching” it can 
be extended to subsets more general than intervals. 

In Theorem 1.2 we have applied the above results in order to study 
connectivity properties of the solution set of a family of compact vector 
fields parametrized by R”. Namely, let UC R” x X be an open set that is 
locally bounded over R” (each 1 E R” has a neighborhood I/ such that 
{(k,x)E u: AE V) is bounded) and let f: 0-t X be a parameterized family 
of compact vector fields without zeroes on the boundary of U. Since U is 
locally bounded, the solution set ,Y of the equation f(& x) = 0 is locally 
compact and the restriction of p: R” x X--+ R” to ,4” is a proper map. If C is 
a closed subset of Y, we shall denote by $!(C) the nth Tech-cohomology 
group of C with compact supports. The map plc being proper induces a 
cohomology homomorphism p* : &!([R”) --t e(C). Let e E @(lR”) N_ Z be a 
generator of this group. 

THEOREM 1.2. Let U be a locally bounded open subset of F?” x X, 
f : u+ X be a parametrized family of compact vector fields such that 
o 6Z f (au). Assume that 

dedf,, u,, ,O> f 0 for some A E R”. 

Then there exists a connected subset g of ,V such that 

p*(e) E I?:(g) is nontrivial. 

In particular, p IQ is essential as a proper map from @Y into F?“, the projection 
of %? covers all of F?” and the topological dimension of F is at least n. 

Remark 1.3. According to Theorem 1.1, the topological dimension of g 
at each point is at least n. 
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Remark 1.4. When f is defined on the whole of R” XX, then the above 
result can be applied provided that there are “a priori bounds” for the 
solution set Y over compact subsets of R” (i.e., if K c R” is compact, then 
the set {(A, x) E 9: 1 E K} is bounded). 

Remark 1.5. Let f : 0-X be a parametrized family of compact vector 
fields as in Theorem 1.2 and let g: 9 -+ R” be any continuous function such 
that for each t E [0, l] the map h,(A, x) = tl + (1 - t) g(A, x) has the 
property 

(~,,X,)E~,II,/-,+co,n-t+~ 

implies ]&(A,, x,)] + +co as n -+ +co (1.5) 

(or equivalently h, is a proper map). Then the system 

f@, x) = 0 

g(4 x) = 0 
has at least one solution. 

Note that (1.5) is verified if g: Y + R” is such that 

(& x>, A> > 0 for sufficiently large A. 

Finally, we would like to add in passing that conditions similar to the above 
ones appear frequently in literature on solving equations defined as nonlinear 
perturbations of Fredholm operators (cf. [7, 9, 141). 

2. THEOREM PROOFS 

Proof of Theorem 1.1. First of all, we show the equivalence between (a) 
and (b). Then we prove that, under assumption (l.l), (b) holds. Finally we 
prove (c) in several steps. 

Proof of (a) o (b). Clearly (a) implies (b) since Ci = g;‘(O) separates 
9; from Y: . On the other hand, if Ci separates 9; from 9: then, using 
Urysohn’s lemma, we can construct continuous functions gi: 9 --t R such 
that 

gij9c= F-1, gil9f = +l, and g;I (0) = ci. 

Proof of (b). First of all, we extend the map g = (g, ,..., g,) : 9 -+ R” 
to all of 0. This is possible since R” is an absolute retract. We still denote 
by g such an extension. Now, let V=p-‘(P) n U, i.e., the part of U lying 
over the interior of I. Then V is an open subset of Rn X X, and its boundary 

8Vis contained in BU (relative to I X X) U 0. (2.1) 
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Let G: v+ IRn x X be the compact vector field defined by G(3L, x) = (g@, x), 
f(L, x)). By the assumption in (b) and (2.1), we have that G(;1, x) # 0 for 
(A, x) E ak’, hence deg(G, V, 0) is defined. 

Consider now the homotopy H: V x [O, I] + (R” x X defined by 

We shall prove that H is an admissible homotopy. In fact, H((A, x), t) # 0 
whenever (A, x) E aU (relative to 1 x X) and t E [0, l] since in this case 
S(n, x) # 0. Moreover, if (A, x) E 0 and f(L, x) = 0 then (A, x) belongs to 
some 9”+ or 9’; , but in this case g,(L, x) has the same sign of Izi and hence 
tLi + (1 - t) g,(& x) f 0 for all t E [0, 11. Therefore H(@, x), t) # 0 on 
aVx[O, 11. Hence 

deg(G, K 0) = deg(H, , !P> (by homotopy invariance), 

where HI@, x) = (;l,f(A, x)) = (A, x) - (O,f(L, x)). 
Since &(A, x) = (O,f(& x)) sends 7 into {0} x X c IEn x X by the reducing 

property of degree we get that 

deg(H, , V, 0) = deg(H, 1~~~ V’, 01, 

where 

V’ = vn (0) xx. 

But H, Iv’ =f,. Hence deg(G, V, 0) # 0 by assumption (1.1). This implies 
that for some (A, x) E V we have that g(L, x) = 0 and f(L, x) = 0. The latter 
means that (A, x) E 9. But the extension of g agrees with g on .9’. Hence we 
have the desired result. 

The proof of (c) will be derived in several steps. Roughly speaking, we 
first consider the case of finite dimensional X and we prove that 5 ,( v,,gj # 0 
by showing that its cup-product with some element induced by f is nontrivial. 
Then by an approximation argument, we will be able to establish 5,,.r, a # 0 
in the case that X is any Banach space. The existence of a connected 
component SF of 9 such that <,(P,g”, will follow by a general argument. The 
proofs of the former results, although conceptually very simple, involve some 
technical devices. 

In particular, we partially use singular homology and cohomology theories 
(denoted as usually by Hk(-) and Hk(-)) due to the lack of references in 
textbooks on products in tech theory. On the other hand, we avoid the use 
of Alexander duality which is the basic tool in [3]. 

Once and for all, we shall assume that IRk, k > 0, is oriented over Z by the 
continuous choice of orientation classes 0, E H,(lR’, F?‘\{p}), p E IRk and 
we shall denote by ek E Hk (IRk, lRk\{O}) the dual class of the orientation 
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class 0, at p = 0 (for orientation and products the standard references are in 
[lo, 151). 

Assume now that X= R” and let (V, W) be an open neighborhood pair of 
(,Y’“, kp) in U such that 

wn (0) x IRm =0. (2.2) 

Under this assumption the projection p can be considered as a map of 
pairs p: (V, W) + (R”, R”\{O}). First of all, we shall prove 

Claim 1. p*(e,) is nontrivial in H”( V, W). Let Z = v\Y. The map f 
induces a map of pairs f: (V, Z) --t (Rm, Rm\{O}). To prove our claim, it is 
enough to show that the cup-product 

p*kJ W*kJ + 0 in Hn+m(V, WUZ). 

By the well-known properties of cup-products, we have that 

rl=P*(e,)Uf*(e,)=A*(P*(e,) Xf*(e,))= 1(P xf)oAl* (e,+A (2.3) 

where the right-hand side is the cohomology homomorphism induced by the 
map of pairs given by 

(V, WUZ)~ (VX v, wx vu VXZ) 

px/, (R” x IRm, (W\{O}) x R” u (R” x (Rrn\P/)) 
= p-n+,, w+*\{O}). 

Set V’ = Vnp-‘(f ). Clearly V’ is open not only in IX Rm but also in 
R”+m. Moreover, K = V - WU Z is a compact subset of V’. Thus, we have 
that (V’, V’ -K) c (V, WV Z). We shall show that the restriction of n to 
(V’, V’ - K) is nontrivial in H’+,(V’, V’ -K). This implies the 
nontriviality of n and hence also that of p*(e,). 

For this, let us denote by G the restriction of (p xf) o A to V’. G can be 
viewed as a map of pairs G: (V’, V’ --IQ-+ (iR’+m, R”+” - (0)) since by 
(2.2), G-‘(O) cK. Let 0, E H,+,(V’, V’ -K) be the fundamental class of 
Y’ around K. By [IO, Proposition 5.5, p. 671 we have that G,(O,) = 
deg(G, V’, 0) . Ontm = H,+,(iRn”“, R”+m - {O}). Notice that (2.3) implies 
that g l~YrY~-K) = G*k+, ) in H”+m( V’, V’ - K). By taking the Kroenecker 
pairing with 0, we have that 

(I? ,(“,, Ys--R); 0,) = (G*(e,+,); 0,) = (en+,,,; G*(Od) = deg(Gy v’, 0) 

being (en+,,,, On+,,,) = 1. 
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But we have already proved in (b) that if G and V’ are as above then 
deg(G, V’, 0) # 0. Thus Claim 1 is proved. 

Claim 2. <Icy,& # 0. Being Z x Rm an euclidean neighborhood retract it 
is well known that 

IP(cia, 9) = b H”( v, W), (2.4) 

where (V, w> ranges over all open neighborhood pairs of (9, -4”). This limit 
can be also taken over all open neighborhood pairs (V, w> verifying (2.2) 
since this family is cofinal in the family of all neighborhood pairs. But if 
(V, W) verifies (2.2.) by Claim 1 and the commutativity of the diagram 

H”(I, Ij +S H”(I?“, R” - {0}) 

we have that if gn is a generator of fi”(Z, Z) N H”(I, Z) then p*(t,J # 0 in 
H”(V, J+‘). From this and (2.4) it follows that also r],Y,* =p*(z”) is 
nontrivial in Ei”(P’, 9) and Claim 2 is proven. 

Now let X be any Banach space. We prove 

Claim 3. ~,cy,~ is nontrivial in I?(Y, 9). Let (V, W) be an open 
neighborhood pair of (9, 9) in U such that 

WfT{O} xX=0. (2.5) 

Set V, = (u: dist(u, ,i”) < 6) then it can be easily proved that given an open 
neighborhood pair (V, W) of (9, p), there exists 6 > 0 such that 
(Vs, ?Jc (V, W). Using (18, Lemma 2.3.1, there exists J“ : I!+ X with 
finite dimensional range X’ such that the map ?I: o- X defined by 
f’(A, x) =x -p(A, x ) , verifies the following two properties: 

(9 deg (f;, U,, 0) = de&C,, U,, 0); 
(ii) Y’ = {(A, x): f’(A) x) = 0} c V, c Vand 9’ = {(A,x)EP’: 

]A]=l}c&i,cW. 
By the reduction property of the degree, the restriction off’ to 6 n X’ has 
the same degree asf’. Namely 

deg(f’l~oonu,, U, n X’, 0) = deg(f;, U,, 0) # 0. 
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Since 9’ = Y’ n (IR” x X’) and 9’ = 9’ f7 (W” x X’), Claim 2 applies to 
the restriction off’ to 0 n R” x X’ and hence 

Furthermore, from the commutativity of the diagram 

we have that l ,(V,wJ f 0 in Bn(V, IV) for any pair of open neighborhoods 
(K W) of (F, 9) verifying (2.3). The tautness property of Tech 
cohomology for normal spaces tells us that 

where (U, I’) ranges over all open neighborhoods of (Y, 9) verifying (2.5). 
Hence Claim 3 is established. 

Claim 4. Existence of a component %Y of cia such that 

5 IW,@,#O in I-F@, @. 

This follows from Claim 3 and Propositions 2.2-2.3 (i). 
Let (X,X) be a pair of normal spaces. For any closed subset C of X, let 

C = C 1’7 X. Given any nontrivial cohomology class r E Hn(X, X), let jr be 
the family of all closed subsets C of X such that &-~ # 0 in *(C, 6). 

DEFINITION 2.1. A closed subset C of X is said to be <-irreducible if C is 
a minimal element in the family s’ partially ordered by the inclusion 
(cf. [61). 

PROPOSITION 2.2. Let (X,J!) be a pair of compact spaces, and 
4 E &(X, 2) be nontrivial. Then a <-irreducible set exists. 

ProoJ: If {C,} is a chain in jr then, by the continuity property of tech 
cohomology, 0, C, is a lower bound of the chain. Hence the existence of a 
l-irreducible set follows from Zorn’s lemma. 

PROPOSITION 2.3. Under the same assumptions as in 2.1, if C is a r- 
irreducible set then 
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(i) C is connected 
(ii) C\C is connected. 

ProoJ (i) Let U, V be a separation of C. By [ 13, Theorem 3.12, p. 331, 
we have that I?(C, 6) E fi(U, ??) X I?“(V, v). By this isomorphism < ,cc,a 
is sent into (r,,U, in, rlcV, ti). Therefore, if rlcU, rj) # 0 by the minimality of C, 
being U-closed also in X, we have that V must be empty. 

(ii) Let U, V be a separation of C\C. Since the closures, with respect 
to C, of U and V are contained in U U C and VU 6, we have that 
U’ = U U C and V’ = VU C are closed subsets of C. Further, U’ U V’ = C 
and U’ n V’ = 6. By [ 13, Theorem 5.4, p. 2661 (C, U’, V’) is a proper triad. 
Hence, by [ 13, Theorem 14.2(c), p. 371, we have that 

fP(C, 6) 2: iP(U,, 6) x H”(V’, 6,). 

But i? = C and p = 6. The same argument, as in (i), shows that either U 
or V must be the empty set. 

Proof of Theorem 1.2. For kEN, let I,={IElR”: lAj&k},jk=aIk, 
Yk = Y npml(I,), and pk = Y np-‘(i,). For each k E N, the restriction 
offto Unp-‘(I,) verifies the assumptions of Theorem 1.1 and so, if ek is a 
generator of g”(I,, i,) then 

p*(ek) # 0 in g”(Yk, pk) (by Claim 3). (2.6) 

Set D, = {,I E R” 1 ],I/ > k} and Y; = .Y np-‘(D,). We have the following 
commutative diagram 

fP(Y, 9;) = I-in(Yk, Pk) 

I P’ 
I 

P’ 

H”(lR”, Dk) = I;in(lk,ik) 

where the horizontal arrows are isomorphisms being excisions. From this 
and (2.6) it follows that p *: I?“@“, Dk) --t I?(.Y, Yk) is nontrivial for each 
k. On the other hand 9; and D, are cofinal in the family of all cobounded 
subsets of 9 and I?“, respectively. Hence by [23, Theorem 15, p. 3221 we 
have that I&P’) = l& Ei”(Y’, 9:) and @(R”) = Q H”(R”, Dk). This 
shows that p*: Ij,“(R”) + E(Y) is nontrivial and therefore p*(e) # 0 in 
flpq. 

Let Y+ denote the Alexander compactification of Y. The map 
p:9-+ R”, being a proper map, induces a map pl: 5“’ --+ S” (= the 
euclidean n-dimensional sphere). Consider now the following commutative 
diagram 
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where 13 denotes the natural isomorphism (cf. [23, Theorem 11, p. 3211. Set 
r=pF 0 0(e). Then r # 0 in fi”(9’+, co). From Proposition 2.2 we derive 
that there exists a &irreducible subset 59, of 9 +. Moreover by Proposition 
2.2(ii), GY = g\{ co} . 1s a connected subset of .Y. Finally, the commutativity 
of the following diagram 

gives P*(e) # 0 in Z+!(u7). 

3. Two EXAMPLES 

(1) Consider the following nonlinear boundary value problem 
(cf. [21 I). Let 0 be a bounded domain in RN with smooth boundary XI. Let 
9 be a linear uniformly elliptic partial differential operator with real valued 
coefficients which are smooth on fi. Let {$} be a normal family of m 
smooth boundary operators of order <2m - 1, which cover 9 on XJ. Let L 
be the operator ip acting on real functions satisfying ~8~~4 = 0 on afin, 
1 < i < m. Then L can be considered as a closed operator on L*(fl). 
Moreover, L is a Fredholm operator, i.e., the range of L, R(L), is closed in 
L’(a) and R(L)’ and the kernel of L, N(L), are finite dimensional. Assume 
that index of L > 0. 

Let g: fi X R + R’ be a uniformly bounded continuous function such that 
the limits 

g*(x) = ,!?a g(x, u> exist for every x E a. 

Let T be a linear map from R(L)’ into N(L). Define 

MT(Z) = j 
Tz>O 
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Finally, assume that (9,s) has the “unique continuation property,” that 
is if u E N(L) vanishes on a set of positive measure, then v = 0. 

We are interested in studying the nonlinear functional equation 

Lu = G(u), (3.1) 

where G is the Nemytskii operator generated by g. 

LEMMA 3.1. Assume that 

MT(Z) > 0 for all z E R(L)\(O). (3.2) 

If V denotes the L,-orthogonal complement of TR(L)’ in N(L) then there 
exists a connected subset S? of the solution set of (3.1) such that the 
projection of SF on V covers all of V and the topological dimension of GY is at 
least n = dim V. 

ProoJ Via the Ljapunov-Schmidt method, Eq. (3.1) is equivalent to the 
system 

w=KQG(v+Tz+w) 

o=(I-Q)G(v+Tz+w) for v+Tz+wEV@TR(L)~@N(L)~, 

where Q is the projection onto R(L) and K is the compact inverse of the 
restriction of L to N(L)‘. Consider the map 

f: VxZxN(L)‘+ZxN(L)’ 

defined by 

&I, z, w) = (z - (I - Q) G(v t Tz t w), KQG(v t Tz + w)). 

Then f is compact. Set f (v, z, w,) = (z, w) -f(v, z, w). 
Now, by the uniform boundedness of G and (3.2) (cf. [21]), where the 

existence of a solution for such a problem was treated) it follows that there 
exists k > 0 and 

(f (v, z, w), (z, w)) > k II (z, w)l12, (3.3.) 

where v ranges on bounded intervals and ]] (z, w)]] is sufficiently large. Then 
(3.3) implies “a priori bounds” on the solution set {(z, U, w): f (z, v, w) = o}. 
Hence, cf. Remark 1.3, there exists an open subset U of V x Z X W, locally 
bounded over V such that f does not have zeroes on aU. Fix. the parameter 
v = 0, by Krasnosel’kii’s theorem, we have that f, has degree 1. Hence 
Theorem 1.2 applies and we have obtained the desired results. 
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(2) Consider now the following nonlinear eigenvalue problem 
studied by Berestyckii and Brezis in [5] (we follow the terminology and 
notations used in [5]) in a bounded domain B with smooth boundary r, find 
f4 E H’(Q) satisfying 

mu = /lg(x, u(x)) in D 

u, ris constant - I U&I, 
r av (3.4) 

where F is a second order uniformly elliptic operator in divergence form, 
B/&J is the outward conormal derivative on r associated with 9, I is a given 
positive constant, and g: b x R + (0, +a~) is a nonzero continuous function 
verifying (1.4)-(1.6) in [5]. Define il* by 

Z/l * = z l& J g(x, z) dz so that O,<A* < + co. 
R 

In [5], the existence of a “sufficiently large” connected component of 
solutions (A, U) of (3.4) in (A*, +co) X H’(Q) was established. We shall 
briefly indicate how, via Theorem 1.2, a global conclusion can be given. 

LEMMA 3.2. Under the previous assumptions, there exists a connected 
set S?Y of solutions (A, U) of B.V.P. (2.2) in (A*, +oo) x H’(O) such that the 
projection of %? on (A*, +a~) covers all of (A *, +a~). 

The proof of Lemma 3.2 is a consequence of Theorem 1.2 via a 
reparametrization of (A*, +a~), the a priori estimates of [5, Lemma 3.41 and 
the computation of the topological degree in [5, Lemma 4.21. Indeed, by a 
reparametrization of (A*, i-co) and following [5], we have that B.V.P. (3.4) 
is equivalent to the functional equation 

in E= (uEH’(D):u,, is constant}, with ~1 E R. L: L*(Q) -+ H’(f2) is the 
solution (bounded, linear) operator of the problem 

"Y%tu=f in Q 

R: E --$ E is the compact operator 

Wx) = L(g(x, 4x>>> 
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and W, E E is the unique solution of the problem 

Letf: IR X E + E defined byf@, U) = u - (A* + e@) Ru + Lu + w,. Thenf is 
a one-parameter family of compact vector fields. Moreover, by the a priori 
estimates given in [5, Lemma 3.4 and Remark 21 we have that for each 
compact subset A of iR there exists a C > 0 (depending on A) such that 
f (u, U) = 0 and ,U E A implies I] u (IE < C. Hence f is defined on the closure of 
an open subset U of 1R x E, locally bounded over IR and f (,u, u) # 0 on au. 
Then, the Leray-Schauder degree deg(f,, U,, o) is defined. Finally, from 
[5, Lemma 4.2]one has deg(f,, U,, 0) = -1. Now Lemma 3.2 follows from 
Theorem 1.2. 
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