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Abstract 

A facile template-free thermal reaction was applied to prepare one dimensional (1-D) alumina nanostructures. Through utilizing 
the anisotropic modules existing in layered structures, the 1-D alumina nanostructures could be controlled to form nanotubes or 
nanorods with various configuration. The characters were then carefully studied and discussed based on the observation of TEM, 
XRD and photoluminescence. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of Chinese Society of Particuology, Institute of Process Engineering, Chinese 
Academy of Sciences (CAS). 
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1. Introduction 

  Since the discovery of carbon nanotubes by Iijima [1], wherein the graphene sheets roll and fold onto themselves to 

form hollow structures, a large number of inorganic nanotubes have been synthesized [2]. In the family of metal 

oxides, several strategies were employed to fabricate 1-D nanostructures [3, 4]. For examples, VOx nanotubes were 
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prepared by means of hydrothermal treatment and primary amines [5, 6]; ZnO and TiO2 nanorods were prepared via 

wet chemistry [7] and  electrophoretic deposition process, repectively [8]; Fe2O3, SiO2, TiO2, ZrO2 nanotubes were 

prepared through the method of sol-gel technique [9, 11], electrochemical method [12] or AAO template [13,14]; 

and Ajayan [15]. Rao reported the synthesis of SiO2, Al2O3, MoO3 and RuO2 nanotubes through using partially 

oxidized carbon nanotubes as templates. Various alumina nanostructures such as nanofibers [16], nanotubes [17], 

nanobelts [18] and hollow nanosphere [19] prepared via template methods were also reported. On summary of the 

reported works, the template is of great importance for forming tubular structures, but always results in annoying 

post-treatments. Many nanotubes lost their tubular structures after extracting the template, such as the case of VOx 

nanotubes through calcination over 523K [10]. It is in great need of some simple and template-free strategies to 

fabricate metal oxide nanotubes.  

Inspired by the formation of carbon nanotubes, a large number of layered inorganic materials have been 

fabricated to form 1-D nanostructures [20]. It is known that the motivity of rolling and folding results from its 

reducing surface tension of strained surface layer once it is freed from the layer beneath [21]  and the response of 

anisotropic modules existing in layers to outer circumstance, which drives the layered inorganic materials to form 

various nano-structures. For instance, the carbon sheets could be controlled to roll along certain direction to form 

armchair, zigzag or chiral nanotubes [22]. In previous works, we reported a separated two-phase interface hydrolysis 

method to prepare metal oxide nanoparticles. During the reaction, the organic solution offered confined space to 

restrict the growth of ultra fine particles [23]. On the other side, the reaction interestingly introduces a disparate 

circumstance mixed by water and oil when the temperature is over their boiling points. We expected that the layered 

materials could respond to hetero-circumstance and form some novel structures. In this contribution, we report the 

formation and properties of 1-D alumina nanostructures, including nanotubes/nanorods of boehmite (AlO(OH)) and 

gamma alumina (γ-Al2O3) via this facile template-free two-phase interface reaction. Reveled by high-resolution 

transmission electron microscope (HRTEM), the constitution of as-prepared boehmite nanotubes/nanorods was 

observed, which exhibits the analogical formation procedure as carbon nanotubes. Besides, the as-prepared 1-D 

alumina nanostructures showed well photoluminescence. This method provides a promising template-free synthetic 

strategy for preparing 1-D nanostructures through layered materials’ rolling and folding.  

    

2. Experimental 

2.1. Synthesis 

 

The essence of this facile synthetic procedure is the combination of oil/water at quasi-gas state, which offers a 

hetero-cirmcumstance for the interface hydrolysis. The preparation process of 1-D alumina nanostructures can be 

described as follows: 20g of water and the organic solution containing 20g of aluminum butoxide in 20g of toluene 

were put separately in different teflon-lined chambers within one steel-lined autoclave. Under thermal reaction (over 
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toluene’s b.p. 110oC), the water and organic phases diffused and encountered at an interface area. And the 

hydrolysis reaction occurred immediately within the oil/water hetero-circumstance. Then, the layered boehmite grew 

and rolled to form 1-D nanostructures due to the response of anisotropic modules existing in boehmite layers to 

hetero-cirmcumstance. The γ-Al2O3 nanorods were then obtained through calcination under 600 oC. 

 

2.2. Characterization 

 

The samples were characterized using X-ray diffraction(XRD) and transmission electron microscopy(TEM) in 

combination with electron diffraction. Powder XRD patterns were obtained with a Bruker D8 X-ray diffractometer 

equipped with monochromated Cu Kα radiation, in the range 0° < 2θ < 40°. TEM was performed using a FEI Tecnai 

20 S-TWIN electron microscope, operating at accelerating voltage of 200KV equipped with a LaB6 electron gun. 

Images were recorded using a Gatan 794 CCD camera. The specimen was prepared by depositing the powder onto a 

holey carbon film, supported on a standard 200 mesh 3mm TEM Cu grid, before transferring it into the 

microscope specimen chamber. The properties of photoluminescence (PL) were studied by a SHIMADZU UV-3600 

UV-VIS-NIR Spectrophotometer. 

3. Results and discussions 

 

 
Fig.1. HRTEM images of (a) as-prepared boehmite nanotube and (b) nanorod 

 

Fig.1. shows the typical HRTEM images of boehmite nanotubes/nanorods with distinct lattices on their surfaces. 

It can be seen that the open ended nanotube in Fig.1.(a) has about 30nm in length and 10nm in diameter. The 

parallel lattices on nanotube are parallel to axial direction with the θ of 0o. The nanorod in Fig.1.(b) has much more 

aspect ratio with over 30nm in length and about 5nm in diameter. The parallel lattices on nanorod have the 

transformable angle of θ to axial direction. Meanwhile, the parallel lattices in Fig.1.(a) have 0.625nm in width and 
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the diagonal lattices in Fig.1.(b) have 0.454nm in width. The formation mechanism of 1-D nano-structure with 

distinct lattices on their surfaces was revealed by further TEM observation.  

Low resolution TEM image of the products after four hours’ reaction (Fig.2.(a)) shows the state of co-existence of 

layered and tubular structures. The cycles of diffraction certify their structure of boehmite. Interestingly, the 

formation of hollow structures, through rolling and folding sheets onto themselves, could be verified by the direct 

observation of a rolled nanotube with disfigurements on one end. One nanotube -  in Fig.2.(b) indicates the 

different rolling layers. It can be seen that such nanotube has two inner layers appearing on the position of 

disfigurement. And based on the view of the disfigurement direction, the fold could be deduced to roll anticlockwise. 

Fig.2.(c) shows the simulated structure of boehmite viewed from x direction and rolling method of layers. The 

distances of opposite and adjacent Al atoms on two chains could be calculated as 0.626nm and 0.445nm, which 

might be the reason affecting the observation from the images in Fig.1. Then, a speculation could be deduced as 

follows: during the two phase interface hydrolysis reaction, the layered boehmite first formed; and due to the 

oil/water hetero-circumstance, the sheets have chance to roll and fold onto themselves. As the formation process of 

carbon nanotubes, a schematic diagram is illustrated in Fig.2.(c), aiming the formation mode of boehmite 1-D 

nanostructure. One simulated layered structure of boehmite could be recognized based on the view along x-axis. The 

boehmite sheet, which is vertical to x-axis in yz-plane, is composed of Al-O-H chains by mimicking the observation 

shown in Fig.1.(a). The chains are parallel to z-axis and vertical to y-axis.  

 

 
 

Fig.2. TEM image of (a) as-prepared nano-boehmite   (b) one nanotube  

 (c) Schematic diagram of the possible formation mechanism for boehmite 1-D nanostructure. 
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Depending on two folded manners, the 1-D  nano-structure transforming from boehmite sheets could be classified 

as follows: while the sheet rolls along y-axis, the lattices on nanotube are parallel to axial direction with the angle of 

0o (this type nanotube could be named as parallel type, p-type); while the sheet rolls along axis between y and z, the 

lattices on nanotube have the transformable angle of θ to axial direction (this type nanotube could be named as helix 

type, h-type). The difference of formation for nanotube and nanorod could be deduced resulting from the 

opportunity of rolling or folding of sheets: the sheet folds to nanorod when the rolling occurs at the start of sheet’s 

formation, but folds to nanotube when rolling happens at the end of sheet’s formation. The nano γ-Al2O3 was 

obtained by heating as-prepared nano-boehmite to 600oC for 3-6 hours. As shown in Fig.3., the nano γ-Al2O3 

exhibits interestingly porous and tubular morphology.  The pores might result from the hetero-adsorption of oil and 

water on the surfaces. After calcination, the hetero-damage on the positions adsorbed with oil or water results in the 

formation of pores.  

 

 
Fig.3. TEM images of as-prepared nano γ-Al2O3. 

 

The crystallinity of products is further investigated by powder X-ray diffraction measurement (Fig.4.). The 

characteristic peaks of orthoclastic AlO(OH) and γ-Al2O3 can all be indexed, It could be well indexed to JACDS 

83-1506 and 80-1385 as indicated. 
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Fig.4. XRD patterns of as prepared nano AlO(OH) (upper) and γ-Al2O3 (below) 

 

As adsorbents and catalyst components, AlO(OH) and γ-Al2O3 are widely applied in many industrial fields, such 

as cracking and hydrocracking of petroleum [24], the purification of gas oil fractions [25], and the steam reforming 

of hydrocarbon feedstocks to produce hydrogen [26]. But, the properties of photoluminescence (PL) were rarely 

observed or studied. Herein, the boehmite and γ-Al2O3 1-D nano-structures exhibit some interesting PL characters 

which are also carefully investigated. The curves of UV-Vis absorption spectra are shown in Fig.5. The obvious 

absorption peaks corresponding to 242, 291 and 344nm of nano-boehmite and 225 and 280nm of γ-Al2O3 in 

ultraviolet region can be observed. It was reported that Al2O3 micro-powders had no PL emission, but Al2O3 

nanobelts with several micrometers long, 0.1-1μm wide and 10-50nm thick had PL emission [18]. The reason roots 

from F+ (oxygen vacancies with one electron) centers [27] in alumina nanobelts, which causes ultraviolet or violet 

PL bands [28]. It could be speculated that the nano-boehmite and γ-Al2O3 have the same motivity of absorption (242 

and 225nm), i.e. the oxygen vacancies; and particular absorptions locating at 291 and 344nm of nano-boehmite and 

at 280nm of γ-Al2O3 probably result from more complicated folded 1-D structures. 
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Fig. 5. Curves of UV-Vis absorption of as-prepared boehmite nanotubes and γ-Al2O3 nanorods. 

 

In summary, a facile one-step synthesis method is described to prepare alumina 1-D nanostructues via a template-

free solvothermal reaction. Due to the anisotropic circumstance within one system, as well as the advantages of the 

interface reaction, the sheets are drived further to roll and fold onto themselves to form nanotubes/nanorods. The 

advantages of template-free synthesis would be summarized as simple and low cost, high production yield and 

recyclable reaction. It is shown that this method is promoting to prepare 1-D nanostructues based on the layered 

materials, e.g. layered metals, metal sulfides, metal selenides, etc. 
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