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Introduction

Aquatic ecosystems have inherent biological and ecological value.
In addition, humans rely on them for profit, recreation, livelihood, and
nutrition (Food and Agriculture Organisation of the United Nations,
2004). Aquatic animals are an important component of these systems
and they suffer frommany infectious diseases, associatedwith a broad
range of pathogens (viral, bacterial, fungal, protozoal, and metazoal)
many of which have the potential to cause disease epidemics. Viral
pathogens affecting northwest European fish stocks include several
distinct strains of Salmonid Alpha Viruses (SAV, responsible for
pancreas disease and sleeping disease), Infectious Pancreatic Necrosis
virus (IPNV), Viral Haemorrhagic Septicaemia virus (VHSV, identified
in at least 48 different marine and freshwater species), and Infectious
Haematopoietic Necrosis virus (IHNV) (LaPatra et al., 2001; Skall et al.,
2005; McLoughlin and Graham, 2007; Rodger and Mitchell, 2007;
Stone et al., 2008; Munro et al., 2010). In England and Wales, some
bacterial diseases affecting in particular salmonids (Salmonidae),
include Bacterial Kidney Disease (BKD, Renibacterium salmoninarum),
Lactococcus garvieae (LG, identified in England in 2000), and Enteric
Redmouth disease (ERM, Yersinia ruckeri) (Tobback et al., 2007;
Chambers et al., 2008; Algöet et al., 2009). An important parasitical
threat is Gyrodactylus salaris (GS, Peeler and Thrush, 2004).

The effects of these pathogens can be devastating to fish stocks. For
example, observedmortality levels of sleepingdisease in France reached
22% in the 1990s, whereas pancreas disease in Ireland in 1989–1994
resulted in up to 48% mortality in 43 separate outbreaks (McLoughlin
and Graham, 2007; Rodger and Mitchell, 2007). VHSV-associated
mortality in rainbow trout (Oncorhynchus mykiss (Walbaum)) can be
up to 100% in fry, and 30–70% in older fish (Skall et al., 2005). Similarly
high proportions have been reported for IHNV, with up to 100%
mortality in salmonid fry (Hattenberger Baudouy et al., 1995).
Detrimental subclinical effectsmay include lethargy and loss of appetite
(Damsgård et al., 1998; Rodger and Mitchell, 2007; Algöet et al., 2009).

Pathogen-induced fish mortality and suppressed growth also have
severe socio-economic consequences (e.g. Lilley and Roberts, 1997;
Food and Agriculture Organisation of the United Nations and Network
of Aquaculture Centres in Asia, 2001). For instance, it was estimated in
1998 that VHSV caused the western European aquaculture industry
circa US$ 60 million per year (Giorgetti, 1998), whereas Iversen et al.
(2005) assessed the direct costs of disease for Norwegian fish farming
around US$ 150 million annually. Clearly, much is to be gained from a
better understanding of how these diseases spread, which sites,
regions, or river catchments are most at risk, which parameters are
most influential, and which mitigation strategies might be most
effective in outbreak control. Here we present our efforts to
statistically quantify these aspects by means of a large-scale
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epidemiological simulation, based on the actual network configura-
tion of 2090 English andWelsh fish farms and fisheries that stock and
rear salmonids.
Fig. 2. The four types of transmission considered: the likelihood of local and fomite
connections (undirected) decreases with geographical distance (circles with radius 25
and 5 km respectively) from a source site (small black circle). Transport and
(downstream) river links are directed contacts of unlimited range.
Materials and methods

Network nodes and connections

The epidemiological significance of simulated contact networks is
well established (e.g., Kiss et al., 2005, 2006a,b; Sharkey et al., 2008).
Unlike mean-field approximations, each network node or site is
considered unique, with specific coordinates (here: U.K. Ordnance
Survey grid), specific connected or unconnected neighbouring nodes,
and specific transmission paths or links whose associated likelihood
differs per type (Kiss et al., 2006b; Sharkey, 2008). This allows for a
more realistic representation of contacts, including spatial heteroge-
neity in the number of links (e.g., scale-free networks), distinction
between directed and undirected links, the effects of long-range
connections (e.g., small-world networks), and emergent properties
due to clustering, community association, or fragmentation of
network parts (Keeling, 1999; Sharkey et al., 2006; Green et al.,
2009; Munro and Gregory, 2009; Jonkers et al., 2010).

The English and Welsh network studied here comprises 2090
distinct sites, comprising 235 fish farm and 1855 fishery sites,
distributed among 155 river catchments of very wide size range
(Fig. 1). Four catchments (Thames, Severn, Trent, and the Yorkshire
Ouse) contain over one hundred sites each; another 46 catchments
have between 10 and 100 sites, 75 more each hold 2–9 sites, and the
remaining 30 contain a single site. These totals demonstrate some of
this network's spatial heterogeneity. Moreover, complexity increases
markedly once the connections between these nodes are taken into
account. For the purpose of our simulations we distinguish four
distinct transmission mechanisms depicted in Fig. 2: directed
Fig. 1. Site density per river catchment in England and Wales in 2004
transport (live fish movement) and directed river transmissions,
and undirected local and fomite transmissions.

The analysed contact structure has a number of remarkable features,
notably, it is not a scale-free network. Histograms of the number of links
per site (see Supplement) show that almost all sites are highly
connected. This is primarily due to the tens of thousands of short-
range, bidirectional connections between nearby sites. Although their
transmission likelihood is lowanddecreases sharplywithdistance, their
sheer number creates a dense mesh of localised links, theoretically
allowing a pathogen to roam from one end of the network to another in
a long sequence of small steps. Superimposed on this foundation is the
transport system, which reliably and quickly distributes live hosts and
pathogens from less than two hundred (fish farm) sources to over two
thousand destinations (98.3% of the network). Fisheries thus function
purely as receivers of transport transmissions, creating a profound
asymmetry. A second series ofmore geographically confined conduits is
provided by the rivers on which many fish farms and fisheries are
(number of sites per thousand hectares of the catchment area).
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Fig. 3. River stream flow speed distribution and loglinear best fit; percentage of
variation explained by the fit: 96.2%. Original sample: 25,088 daily means from 37 U.S.
locations measured by USGS, binned per 0.1 m/s (N=44). The shaded (loglinear) area
is repeatedly sampled to determine riverborne transit times.
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situated. The majority of these transport and river links span great
distances, resulting in a network that can be classified as of the “small-
world” type (Moore and Newman, 2000). Thus the (relatively high-
likelihood) bridging paths between distant local clusters cause the
shortest route between any two sites to require few intermediary steps
on average.

Transport transmission

Transport by road haulage involves the movement of live,
pathogen-carrying fish (including potentially pathogen-carrying
water or equipment) between two sites (Murray, 2006; Gustafson
et al., 2007). It involves transfer of fingerlings from hatcheries to on-
growing sites, stocking of fisheries, and occasionally the movement of
fish to processing plants (Murray and Peeler, 2005; Munro and
Gregory, 2009). This type of (often long-distance) transmission is
highly dangerous, as the empirical record attests: Skall et al. (2005)
identified transports of infected farmed fish as the primary means of
spread and major cause of VHSV in Europe; Green et al. (2009) noted
the implication of road transports of live rainbow trout in the U.K.-
wide spread of BKD in 2005. Murray et al. (2002) highlighted the role
of live transports (in well boats) in the 1998 outbreak of Infectious
Salmon Anaemia (ISA) in Scotland, and Peeler and Thrush (2004)
identified empty fish transporters returning from infected areas as the
highest risk regarding the introduction of GS from mainland Europe
into Britain.

Under EU directive 2006/88/EC, EU member states are now
required to perform risk-based surveillance of aquatic diseases, and
to record live fishmovements (Green et al., 2009; Munro and Gregory,
2009). Fish farmers therefore have a legal obligation to keep records of
all movements of live fish on and off their sites and to make this
information available to the competent authority for the control of
notifiable fish diseases; for England and Wales this is the Centre for
Environment, Fisheries and Aquaculture Science (Cefas). Movements
to recreational fisheries or open waters for restocking furthermore
require consent from the Environment Agency (EA) under Section 30
of the Salmon and Freshwater Fisheries Act (Anonymous, 1975). Cefas
maintains these records on the Live Fish Movement Database (LFMD).
The LFMD was interrogated to determine all destinations of live fish
movements made in 2004 from each fish farm that was registered on
the database in September 2006 for holding stocks of salmonid fish
(rainbow trout O. mykiss, brown trout Salmo trutta and Atlantic
salmon Salmo salar) and a contact network was constructed on the
basis of this trading activity.

The epidemiological risk of site-to-site transports of live animals
can be explored quantitatively through network analysis, as reported
for a number of other farmed species such as cattle, sheep, and pigs
(e.g., Christley et al., 2005; Webb, 2005; Bigras-Poulin et al., 2007).
Within the U.K., Munro and Gregory (2009) have identified sites that
are vulnerable and have a high-risk of spreading infections in the
network architecture of Scottish farmed salmonid movements in
2004, whereas Thrush and Peeler (2006) developed a stochastic
simulation model to study pathogen spread involving site-to-site
movement. In the present study, we used a total of 4530 recorded
transports along 2750 routes, departing from 194 distinct sites and
servicing almost the entire network (2055 sites). Given a maximum
time span of thirty years per simulated outbreak, seasonal fluctuations
were ignored when computing the likelihood per day of transport
transmission, based on the number of annual transports T per site:

ptrans = T = 365:2524:

Transports from an infected site are considered to cease immediately
upon notification of that site.
River transmission

The second transmission type considered was river transport
(2232 links), comprising several distinct mechanisms. Infected fish
may release pathogens via urine and reproductive fluids, etc. These
pathogens may then be swept along by river flow or wild fish may act
as carriers (Skall et al., 2005; Peeler et al., 2008; Taylor et al., 2010).
Additional factors include pleasure boat traffic, angling equipment,
wind and solar effects, the presence of chemical pollutants, suspended
solids, or interaction between organisms (Toranzo and Hetrick, 1982;
Murray et al., 2005). These effects are difficult to quantify (see
Discussion). Consequently, our simulations disregard most of these,
concentrating on an empirically-founded, stochastic representation of
downstream particle flow only, as pathogen spreading through
infected water or suspended particles is considered more likely in a
downstream direction (McAllister and Bebak, 1997; Sharkey et al.,
2006).

We implemented an algorithm that takes into account the distance
along a river between two sites (generally larger than the Euclidean
distance), the asymmetry of the contact network (using downstream
links), and stochastic sampling of an empirically derived distribution
of river stream flow speeds. The river contact network was compiled
using a customised adaptation of the Intelligent River Network
developed by the Centre for Ecology and Hydrology (CEH) to generate
inter-site distances through the river network for farm and fishery
locations provided by Cefas. Estimation of river flow speeds initially
proved problematic, as publicly available data on river resources
maintained by the U.K. Environment Agency are stored as different
flow parameters such as cumecs (cubic meters of water per second),
which cannot be converted into flow speeds without detailed
knowledge of depth and shape of the local riverbed at each sampling
point.

Instead we trawled the United States Geological Survey's water
resources (at http://waterdata.usgs.gov/usa/nwis, section surface
water, daily data) for some 350 river sites with daily means of stream
flow speeds. Of these, 37 locations provided over one hundred
consecutive sampled days each (capped per site at three years of data,
to avoid bias due to a few anomalously long records), yielding over 25
thousand positive daily means in total. A plot of their binned
frequencies (Fig. 3) reveals a loglinear distribution ranging from
0.05 to 4.4 m/s, with lowest speeds being most prevalent. Sampling
from such a global distribution disregards localised effects of gradient,
depth, and surface area. However, given the gathered flow speeds, a
large part of this variability is assumed to be captured in the broad
observed range, which spans almost an order of magnitude. Other
than the incorporated measured distances between sites along a river
trajectory, we have made no attempt to represent seasonality or

http://waterdata.usgs.gov/usa/nwis
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Table 1
The four transmission types.

Transmission type Range Sources Receivers Halted upon Danger rating

Transport Unlimited 194 2055 Notification 4
River Unlimited 596 631 Culling 2
Local 25 km 2089 2089 Notification 1
Fomite 5 km 1577 1577 Culling 1
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different river types (e.g., meandering, braided, delta, white-, black-,
or clearwater, etc.).

We subsequently determined for each river connection how long a
waterborne particle might take on average from source to destination.
We computed total transit time by repeatedly updating the
cumulative distance travelled, based on a flow speed drawn randomly
from the distribution for each 24 h spent in the water, until the
destination was reached. Thus the simulated flow speeds within the
same river would be different for each connection (being itself a
cumulative composite of sampled daily average velocities). Despite
some English and Welsh river distances exceeding 100 km (average:
17.1 km), most site-to-site river intervals computed with this method
take less than two days (max: 5 days). This suggests that if the
sampled rivers can be deemed comparable to U.K. rivers in their flow
speeds, most fish pathogens should be considered well able to survive
these (and longer) journeys. In this context, McAllister and Bebak's
(1997) report of detecting significant IPNV titre levels almost 20 km
downstream from an infected source site is not unexpected.

The outbreak simulator applied the described repeated stochastic
sampling to compute θ, the total time (in days and parts thereof) the
pathogen spent in transit. We furthermore assume that the likelihood
of transmission decays exponentially over time by dilution and
entrapment in substrate or vegetation. Note that this dilution effect is
independent of pathogen viability. Given an average daily transmis-
sion rate α, we define river transmission likelihood here as:

priver = α exp −θλR½ �:

The final scalar λR in this equation is set to unity, which represents a
waterbornepathogendecay rate of 1/e≈0.37per day, implyinga3-log10
reduction in virus titre (T99.9) after 7 days. Laboratory studies report a
wide range of such inactivation rates, depending on pathogen, water
temperature, salinity, and the presence of additional substances. Given
freshwater at 20 °C, Toranzo and Hetrick (1982) and Barja et al. (1983)
estimate a 9-day inactivation rate of IPNV versus 14 days for IHN,
whereas Murray et al. (2005) adopt an hourly decay rate of 10% for ISA
(i.e., inactivation after 3 days), and Kocan et al. (2001) estimate
inactivation of VHSV in 15 °C filtered seawater after 60 h at most.
Sensitivity of results to changes in the adopted transmissibility
parameters is discussed later. We stress that this generalised approach
disregards pathogen-specific dilution effects and inactivation rates.

Local and fomite transmission

The final two transmission types are considered to be undirected,
and assumeanunderlyingdiffusionprocess, justifying aGaussiankernel
for the decay of risk with distance. They are merely incorporated to add
some extra realism. As their effects are deemed to be small, we have
chosen parameters that result in low initial likelihoods that, moreover,
decrease sharply with distance from the source.

Local transmission involves the movements between sites of staff
and other people (e.g. carrying contamination on their clothing,
personal items, or private vehicles), as well as local transfer of shared
machinery and equipment (nets, containers) (Rodger and Mitchell,
2007; Brennan et al., 2008). The likelihood per day plocal is considered
to decrease exponentially with radial area around the source site.
Given the Euclidean distance D between two sites in meters, average
daily transmission rate β and local scalar λL, it is defined:

plocal = β exp − D2
� �

λL

h i
:

Given the relatively high site density, this type accounts for the large
majority of links. However, the transmission likelihood is close to zero
for all but the shortest links, and site notification upon detection
blocks further spread along this route (Anonymous, 2007). Notifica-
tion implies a temporary cessation of live fish transports to and from
the site, as well as general awareness of an infectious agent on the
premises, which should reduce subsequent local spread by increasing
general biosecurity measures.

Fomite transmission, the last type of link in our network,
represents the uncontrollable part of local transmission, with a daily
transmission rate γ and local scalar λF, yielding:

pfomite = γ exp − D2
� �

λF

h i
:

Its daily transmission rate is assumed a factor ten less likely than in
local transmission due to the haphazard nature of the particle carriers,
mainly mammalian predators and scavengers (e.g., otters and foxes)
and piscivorous birds (e.g., herons, cormorants, mallards, and sea
gulls; McAllister and Owens, 1992; Willumsen, 1989). Another
potential threat in this category is posed by eels (Anguilla anguilla),
which can migrate short distances over land and may carry several
fish pathogens, for example VHS and BKD (Chambers et al., 2008; Skall
et al., 2005). Fomite transmissions are especially relevant because
they cease only when the entire fish stock is culled and the site
disinfected. The lower daily likelihood is thus partly offset by a larger
window of opportunity, depending on the culling delay.

Model parameterisation

Table 1 lists various properties of the four considered transmission
types. To assess the risk of epidemics upon this multi-layered contact
structure, our quantified probabilities for each individual connection
incorporated empirical contact data and various working assumptions.
Both have their limitations. Firstly, regarding empirical data, transports
may have been underreported; transmission risk may be under-
estimated or overlooked (e.g., intra-company transmissions, Sharkey
et al., 2008), and circumstances may have changed after the period
covered by our data. To maximise the scope of this investigation, we
therefore introduced an “outbreak severity” parameter, a global factor
withwhichall transmissionprobabilitiesweremultiplied (range: 1–10).
Increasing this multiplier raises the likelihood of large outbreaks
uniformly; it represents increased contact rates, increased infection
risks, or a combination of both. For the purposes of risk assessment and
the statistical exploration of rare extreme events, pushing the network's
epidemic potential by up to an order of magnitude beyond our initial
estimates creates a safety margin which we expect the real network
never to exceed.

Secondly, regardingworking assumptions, daily transmission rates
for river, local, and fomite connections are deemed to be small, but
their actual values are relatively unknown. In order to ensure
reasonable values, we ran a series of tests exploring a range for each
parameter, eventually settling on estimates of α=0.005, β=0.05,
γ=0.005, and for the spatial scalars λL=10−6, and λF=10−6 (recall
that geographical distances are expressed in meters). We subse-
quently performed extensive sensitivity analyses (see Supplement)
by independently varying T, α,β, γ, and the three λ scalars by up to an
order of magnitude larger and smaller than their initial estimates.
These tests showed that the two undirected transmission types, local
and fomite, affected the outbreak size the least, whereas changes in
river and especially transport likelihoods had much larger effects.
Thus simulation results are most affected by the two probabilities that
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are empirically best-constrained. In addition, these two types stem
from the fewest source sites (see Table 1), suggesting that targeted
biosecurity should be highly effective in this network (see
Supplement).
Contact structure analysis

Thenetwork's contact structure comprises all sites andall potentially
infectious links between them. This static structure can be subdivided
into clusters of interconnected sites, in which a pathogen introduced at
any cluster member can reach any other, either directly or indirectly.
Thus a cluster's size imposes an upper bound on the largest outbreak
initiated inside it. The more links a network acquires, the higher the
likelihood that initially isolated componentsmerge into larger ones. This
eventually leads to the formation of the so-called giant component (GC),
which incorporates the majority of sites. A GC extended with its sinks
(sites that the cluster links into, but not vice versa) is called a giant
strongly connected component (GSCC), and constitutes a worst-case
scenario of epidemic size for a single infected premises in the absence of
control measures (Kao et al., 2006; Dent et al., 2008).

One way to test the robustness of the GSCC is by cumulative
removal of links from the contact structure, leading at some point to a
fragmentation of the GSCC into smaller clusters that themselves
fragment further into isolated sites when even more connections are
removed. This procedure not only provides insight into the likelihood
of large outbreaks; it may also identify the most dangerous sites from
which a pathogen would be able to reach a large part of the network,
while most other starting points would leave it trapped in a small
subpart of the system. Given the quantified likelihood estimates for
transmission contacts on the studied network, we initially chose to
explore GSCC fragmentation by systematically removing those links
with the lowest transmission rate. Thus we gradually stripped the
contact structure of its less likely transmissions, until only the
highest-probability contacts remained.

Fig. 4 shows how fragmentation of the network proceeds. At first,
almost the entire contact structure is part of the GSCC (red solid line),
even when up to half of all connections are severed. At about 60% of
structure removed, small clusters start to form, each comprising less
than 10% of the network in size (orange dashed line). At over 80% of
structure removed, a significant proportion of sites is becoming
completely isolated (green dotted line). Above 90% fragmentation the
GSCC eventually vanishes, causing a brief spike in small clusters
before they themselves also disappear in favour of isolated sites. We
repeated this test with randomly selected link removal, yielding the
Fig. 4. Fragmentation of the network from a giant, strongly connected component
(GSCC, giant component plus sink sites), through an intermediate stage of small
clusters, down to single sites, as a lower bound on transmission likelihoods is gradually
raised. Lines denote the number of sites that have access to over 90% of the network
(red, solid), to less than 10% of it (orange, dashed), or that remain completely isolated
(green, dotted).
same profile but shifted about 20% rightward, as more of the dense
fabric of (low-likelihood) local connections remained active for longer
(see Supplement for degree distribution histograms).

These progressions show the extreme robustness of the GSCC,
highlighting this network's potential to generate large outbreaks. Of
particular interest in thefirst test (removing the lowest likelihoodsfirst)
are the 409 sites (including 157 of the 235 fish farms) that maintain
access to the GSCC up to the point where the latter collapses. With the
largemajority of thesebeing situated indense coastal areas, they tend to
have exceptionally many links, including (relatively high-likelihood)
transport and river connections, which likely explains their improved
access to the GSCC. Increased biosecurity on the outward connections of
these highly dangerous spreading sites may be able to prevent a
network-wide epidemic from these sources. However, the studied
contact structure remains a single, static connectivity snapshot. In order
to fully explore the outbreak potential of this network, as well as the
efficacy of various control policies, we studied spreading dynamics in
large-scale, stochastic, time-dependent epidemiological simulations.

Simulation properties

Delay parameters

The simulator is an automatic event timeline editor driven by
stochastics and pre-specified parameters. The timeline functions both
as a record of past events, instruction queue for current events, and
storage of future events thatmay occur unless control measures cause
their removal prior to execution. The sequence of a site's possible
states is: susceptible–infected–infectious–detected (notified)–culled–
restocked (=susceptible again). A site cannot be re-infected between
the stages of infected to restocked. However, in the course of a single
outbreak, a site may become re-infected after becoming susceptible
again upon restocking; it may thus partake in spreading dynamics
more than once. Furthermore, a site infected with any of the
aforementioned notifiable fish diseases is unable to recover naturally
without intervention, both in reality and in our simulations.

After the initial infection, inbuilt delays expressed in days (Fig. 5)
separate each next step in the sequence. Latency is the duration
between becoming infected and becoming infectious to others. The
subsequent detection delay ends when authorities are notified that a
site is infected and some control measures are implemented. The
culling delay is the subsequent period until extermination and
removal of hosts, and site disinfection has been carried out, whereas
the restocking delay is the imposed ban (fallowing period) before
new susceptibles are re-introduced on site. We note that this
sequence of states is more detailed than in traditional SEIR models
(susceptible–latent/exposed–infectious–removed/recovered) where de-
tection induces instantaneous countermeasures.

Together, all possible combinations of the four delay parameters
yield one set of 2304 separate cases. At runtime, the simulator
generates true delays by treating the tabulated values as means to
which a truncated Gaussian deviate of ±2 standard deviations is
added to mimic natural variability (Ogut and Bishop, 2007), with one
standard deviation equal to 10% of the total value. For example, if the
culling delay is 10 days, actual simulated durations between notifi-
cation and disinfection will be normally distributed between 8 and
12 days (with a mean of 10 days); for the maximum culling delay of
50 days, actual simulated durations would vary from 40 to 60 days.

Timeouts were imposed to limit computational resources spent on
essentially endemic outbreaks: the simulated duration was thereto
capped at thirty years. Thus any outbreak stopped by timeout was
classified as an endemic outbreak, regardless of its size. Existing
literature on outbreak duration tends to focus on individual sites, with
some estimates ranging from 70 to 141 days on average, and maxima
from 168 to 288 days (McLoughlin and Graham, 2007; Rodger and
Mitchell, 2007). In combinationwith the three other delay parameters

image of Fig.�4


Fig. 5. The modelled sequence of five site states (circles) is interspersed with four delay parameters (rectangles), each one of which can adopt a specific range of values. The variable
period between susceptible and infected state (leftward arrow) depends on stochastics and spreading dynamics. Transport and local transmissions from the source site are halted
upon detection and notification (fat arrow), but river and fomite transmission continue until the stock has been culled and the site is disinfected (bottom arrow). Shading indicates
pathogen presence.
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(two of which being of similar magnitude), large simulated outbreaks
may easily last more than a decade, prompting consideration of a
sufficiently large window of opportunity.

Basic operation

The simulator required a spatial description of sites and a list of all
unidirectional links between source-destination pairs, together with
the associated type of transmission. For local and fomite links, the
Euclidean distance was stored; for river contacts, the distance along
the river, and for live fish movements the number of transport
contacts per year. At startup, these data were converted into
transmission likelihoods for each connection. Simulation then
commenced and desired statistics were stored per outbreak and per
site. One standard run consisted of 10,000 seedings (not all of which
necessarily led to larger outbreaks); one standard set of all 2304 delay
parameter combinations thus totals 23 million seedings.

The simulator initiated each outbreak by infecting a randomly
selected site in the otherwise pathogen-free network. The epidemic
then progressed as a sequence of chronological events recording time,
type of event, and site(s) involved. Event types include infection by
any of the four transmission mechanisms (determined randomly
according to their respective likelihood), movement from a latent
state to an infectious state, notification, culling, and restocking.
Additional response events could for example include the imposition
or lifting of a national transport ban. Subsequent events were
processed until the epidemic had run its course (no more infections
or outstanding cullings) or until timeout (set at thirty years). Larger
delay parametersmay extend an outbreak's duration, but the effect on
its size is mixed; longer detection and culling delays extend the
window of spreading opportunity, but longer latency may give
biosecurity measures more scope, whereas longer restocking delays
will limit available susceptible sites within the outbreak's ambit.

Baseline parameters

In order to assess the relative improvement due to various
contingency measures, a baseline reference was required. A series of
simulations was thereto run of 100,000 seedings each without any
control measure in place, and with each outbreak allowed to continue
for the maximum duration of thirty years. In the absence of
interventions (see Reactive and proactive control strategies), only
two parameters remain that affect the results: outbreak severity and
latency delay.

Outbreak severity affects the likelihood of hosts becoming
infected, the severity of clinical expression, increased transports and
other contacts, and less conscientious human behaviour. Here it
is incorporated as a global transmission likelihood postfactor (range:
1–10). Initial tests mostly displayed limited outbreaks, so the severity
parameter was introduced to push network dynamics gradually
towards worse-case scenarios, allowing the performance of specific
control measures to be assessed within a range of conditions from
innocuous to severe (computational resources permitting). However,
we are well aware that reducing such a gamut of aspects to a single
multiplier is a simplification (see Discussion).

Estimates of latency delay, the asymptomatic or carrier stage, are
documented for a range of fish pathogens. In some species a disease
may not express at all (e.g., VHSV in herring, Clupea harengus, and
sprat, Sprattus sprattus) or only at a low, chronic level (Skall et al.,
2005; Taylor et al., 2010). In other cases, the latent stage creates an
effective reservoir of future problems, resulting in delayed expression
or dormancy (Algöet et al., 2009; Smail, 1999). In addition, persistent
carrier status may be conferred upon hosts that develop immunity
after challenge (Munro et al., 2010); animals will then continue to
shed pathogen into their environment while remaining outwardly
healthy. In other examples, McLoughlin and Graham (2007) reported
subclinical SAV in marine-reared Atlantic salmon, while Tobback et al.
(2007) estimated that 25% of asymptomatic trout infected with ERM
by immersion actually carried the pathogen in various organs.

Other workers have explored latency at the level of individual
hosts (e.g., Ogut and Bishop 2007 for Chinook salmon (Oncorhynchus
tshawytscha)); however, this study interprets latency at the site
population level. In the simulations, a latency delay range was
explored from five to two hundred days (Fig. 5). As in the case of the
severity postfactor, the aimwas not to mimic any particular pathogen,
but to explore the epidemiological properties of the English and
Welsh network given a range of delay conditions and the type of
control measures implemented.

image of Fig.�5
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Reactive and proactive control strategies

Three control policies were tested for a variety of relevant
parameter settings, namely reactive, proactive, and hybrid controls.
Reactive controls assumed that the pathogen clearly and reliably
expresses in the hosts after latency, and following some additional
delay these clinical signs will be observed, after which further
measures are taken. Due to the large timescales of the various delays,
the available laboratory processing capacity of detectionswas deemed
inherently capable of keeping up with the number of sites where the
pathogen expresses. Thus disease expression drives the response, and
the time to detection is directly related to the time of infection.

Contrastingly, proactive controls assumed that the pathogenmostly
spreads silently, requiring a programme of dangerous contact tracing
after thefirst detection (the only infection that is detected reactively). In
this case, a list was drawn up of all sites directly connected to the
infected site, and each was assigned a score based on the danger rating
of that connection's transmission type (last column in Table 1; this
constitutes a simplification in that individual transmission likelihoods
are not accounted for). A large number of regularly-spaced detection
slots were then added to the events timeline, based on a new control
parameter that defined the number of slots per year (reflecting limited
laboratory processing capacity). Only when the simulator encountered
the next such slot in the timeline was a particular site selected for
analysis, based on the highest danger score in the queue at that time. If
this sitewas also infected, then all its destination siteswere added to the
queue, with those already present having their cumulative score
incremented with the appropriate danger rating. Thus the queuing
order could change with each newly detected infection. After a site was
processed, it was removed from the queue regardless of the outcome,
but it could rejoin it again if one of its connected neighbours was later
discovered to be infected.

Given a proactive detection approach, the original detection delay
of the first-identified infected site determined the amount of head
start the pathogen obtained prior to the engagement of the proactive
campaign. In addition, the danger ratings per transmission type of the
evaluated connections could affect the outcome, as did the laboratory
processing capacity, here defined as the number of reliable assess-
ments of site infection status that can be made within one year.

Aside from field observations of gross pathology, most analyses
have to be performed by specialists under controlled conditions in a
dedicated facility. Traditional reliable detection involves culturing the
suspected pathogen on a suitable medium or cell line, whichmay take
weeks to months (e.g., 1–3 weeks for IPNV, up to 10 weeks for BKD;
Chambers et al., 2008; Munro et al., 2010). For other pathogens (e.g.
GS), identification is based on examination of morphological features.
Histopathology may also provide a provisional diagnosis and can be
relatively rapid (less than 48 h) but is dependent on the skill of the
pathologist. More recent swift methods include immunodiagnostics
(serological tests for antigens in a host) and molecular genetics
(notably polymerase chain reaction) to detect and identify part of a
pathogen's nucleic acid sequence.

Laboratory capacity in the simulations ranged from ten to five
hundred conclusive site tests per year (likely shared among multiple
facilities, although no formal agreements to that effect are currently in
place). Thepurposewasnot tomatch currentprocessingcapacitywithin
England and Wales, but to explore the response of the entire system
when this parameter is varied by over an order of magnitude. We note
that the related constraints of limited field staff and pathogen-specific
resource requirements were not taken into account.

Hybrid control strategy

The third, hybrid strategy combines reactive and proactive controls.
It can represent either of two disease scenarios: an intermediate type of
pathogen that expresses clinical symptoms sometimes, but too
infrequently to enable complete reliance on a reactive control policy,
or alternatively, a pathogen that does express reliably in hosts (like in
the reactive case), with contact tracing providing an additional
mitigation effort. Since this strategy is labour-intensive and imposes
large demands on laboratory capacity, yet may produce a significant
number of negative test results for uninfected sites, its efficacy in these
situations was considered of interest for policy makers deciding on the
type of resources to allocate.

Unlike the proactive case, where contact tracing is the only way to
track a silently spreading pathogen, the hybrid strategy represents a
choice of different emphases, on either the reactive or the proactive
part of the strategy. The detection queue was thereto filled on the
basis of both the (reactive) detection delay and (proactive) dangerous
contact tracing. We explored different ratios between reactive and
proactive detection analyses, in particular to determine to what
extent additional dangerous contact tracing could prevent an
outbreak from escaping the initial seeding area. This differs from the
more realistic strategy that would always process all reactive
detections preferentially. Tested ratios are: [1/1], [2/1], [5/2], [5/1],
[10/1], and their inverse, yielding nine cases.

Detection slots were regularly distributed along the timeline as in
the proactive case, but whenever the simulator processed such a slot,
it first incremented a step counter in a cyclical array that determined
whether to order the queue chronologically (providing the time of
pathogen expression had already been reached for the top site; if not,
a proactive detection was performed), or ranked by cumulative
danger rating, as in the purely proactive case. Given a specified
number of reactive and proactive detections per cycle, their slots were
distributed as evenly as possible. If a site first entered the queue as a
destination of a reactively detected source, it received an initial
danger rating of unity (lowest on the scale); its rating could
subsequently increase due to the proactive policy. Thus both
accumulated danger ranking and detected clinical expression could
determine the time of laboratory processing.

Additional control measures

The effects of two special control measures were explored. The
simplest of these is the national transport ban (e.g., the Scottish
contingency plan for GS includes scope for such a measure). The day
after a pathogen is detected at the first site, all transports are disabled
on the entire network for thirty days. Moreover, whenever a new site
is found to be infected while this prohibition is in force, the ban expiry
clock is reset to zero. Only when the ban duration is completed
without any new detections of infected sites are transports allowed
again, until the next detected infection imposes a new national ban.
This measure was tested on proactive and reactive control policies.
Less drastic interventions (e.g., transport restrictions at the catchment
level, or within some given radius around a notified site) we leave for
future work; here the aim was to provide an indication of maximum
achievable benefit.

The second additional strategy is a public campaign by authorities
to warn site owners of a new outbreak (McLaws et al., 2007). Such
increased awareness of a particular pathogen's presence in the
community was deemed to reduce all subsequent detection delays
by half, relative to the initial one. The awareness campaign was tested
on the reactive policy only, as silently spreading pathogens render
increased vigilance useless. This policy differs from the spreading
awareness of human disease as explored by Funk et al. (2009), who
reduced susceptibility of infection as a function of available, high-
quality information which itself spread through the network. In fish
diseases, however, infection susceptibility of the animal hosts was
deemed to remain unaffected by the mere awareness among human
operators of potential pathogen presence. Instead, the likelihood of
earlier detection of advertised clinical signs seemed a more realistic
effect to explore in this context.



Table 2
Tested control strategies.

Strategy Cases Severity Lab capacity
per year

Other parameters

Reactive 24 1, 2, 3, 4, 5, 10 Unlimited National Transport Ban
Awareness Campaign

Proactive 72 1, 2, 3, 4, 5, 10 10, 20, 50,
100, 200, 500

National Transport Ban

Hybrid 54 5 10, 20, 50,
100, 200, 500

Proactive/reactive ratio
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Combining all relevant parameter choices for each control policy
and additional measures yielded 150 separate cases (Table 2). Each
case was explored with a full set of delay parameters, requiring about
3.5 billion seedings in total. Within each policy, the experimental
design is fully balanced. However, computational limitations forced
some differences in the parameters explored between the three main
strategies. For example, in the hybrid policy, six choices of laboratory
capacity and nine possible combinations of proactively and reactively
selected sites to analyse yielded 54 permutations, which would
increase six-fold if the full spectrum of severity had been considered;
instead we chose a fixed factor of 5 here.
Results

Outbreak size under different control policies

The baseline cases (exploring severity and latency delay only)
represent a benchmark of worst-case scenarios. All outbreaks were
unrealistically allowed to continue for the maximum duration of thirty
years without any intervention. Thus once infected, a site remained so
until timeout. Givenmedium-high severity (factor 5) and averagedover
all six latencies, the average outbreak size is 132.6 sites, whereas the
maximum exceeds three quarters of the network infected. However,
one could argue more optimistically that given lowest severity, up to
three quarters of the network is still pathogen-free after thirty years.
Fig. 6. Baseline results (average outbreak size on left, maximum outbreak size on right, and
affected by the latter (36 permutations per plot; 100,000 seedings per run, each allowed to
Severity is by far the most important parameter here; only the largest
latency delays have some effect in reducing outbreak sizes by slowing
down spreading (Fig. 6).

By contrast, all control policies produce much smaller outbreaks.
Comparing average outbreak sizes under the same medium-high
severity condition as before and averaged over all delay parameter
permutations and lab capacities, the reactive strategy yields 5.9 sites,
and the proactive 10.9, whereas the hybrid (with equal division of
reactive and proactive detections) performs best with 4.9 sites. The
hybrid policy also limits the average duration of outbreaks (508 days,
against 732 and 860 for reactive and proactive controls respectively)
and the average number of endemic outbreaks (42.7 per 10,000,
against 131.4 for the reactive and 146.1 for the proactive strategy).
However, limited laboratory capacity causes proactive and hybrid
controls to perform substantially worse in the case of the largest
outbreaks, with maximum outbreak sizes of 1114 and 739 respec-
tively (when averaged over all six tested laboratory capacity settings),
against a mere 195 for the reactive policy.

The reactive policy allowed two additional control methods to be
evaluated: a national Transport Ban (TB, 30 days plus extensions), and
a public awareness campaign (AC, reducing detection delays after the
first case by half). Averaging response variables over one entire set
(2304 times 10,000 seedings, severity factor 5), AC and TB are
similarly effective in reducing average outbreak size from 5.9 to 2.6
and 2.7 sites respectively. The maximum outbreak size is reduced
from 195 sites to 85 (AC) and 74 (TB), and the number of endemic
outbreaks from 131 sites to 54 (AC) and 100 (TB). The outbreak
duration is unchanged by the TB (736 days against 732 originally), but
reduced by the AC (645). Thus the TB performs best at the high end of
the outbreak spectrum, whereas the AC does better overall.

These two measures can also be applied together, yielding outbreak
sizes of 1.9 (average) and 46 (max.), while the number of endemic
outbreaks drops to 41; outbreak duration remains as for AC alone
(634 days). Given a proactive strategy (all six laboratory capacity
choices combined; sample size: 6 times 2304 times 10,000 seedings),
the TB again reduces outbreak size by more than half, the average from
10.9 to 4.6 sites, the maximum from 1114 to 468. Lastly, the average
number of endemic outbreaks shrinks from 146 to 118 while the
log–log scale) for different choices of latency delay and outbreak severity are mainly
spread for 30 years without intervention).

image of Fig.�6
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average outbreak duration remains unchanged. We stress that these
values should be interpreted merely as relative measures of system
response, not as absolute predictions of real outbreaks.
Transmission types, site types, and geographic risk

Concerning transmission paths, the proportional representation of
the four types is highly uneven (see Supplement). Assessing all
severity cases together, between 50 and 60% of transmissions in the
reactive case were local, with fomites accounting for another 10%, and
river and transport being responsible for 10–20% and 20% respective-
ly. These percentages are sharp peaks in unimodal distributions with
thin tails. In the proactive case, the peaks for fomite and river
transmissions are somewhat broader, but local and transport were
bimodal with peaks at 20 and 50%. Separate unimodal distributions
are recovered when results are split by severity, which shows that for
maximum severity the proportion of transport transmissions rises
dramatically (to ca. 65% of the total), mostly at the cost of local
transmission. This transition is possibly due to the much larger typical
outbreak sizes for higher severities, which allow more of the few,
dispersed transport source sites (fish farms) to come into play. A
temporal explanation (longer-lasting outbreaks allowing more trans-
ports to accumulate over time) is less likely, as severity was found to
have little effect on outbreak duration.

In terms of site types, the 235 fish farms and 1855 fisheries should
be considered as two different entities, both in network architecture
and recorded transmissions. All transport connections originated at
fish farms, and these sites also tend to reside in areas with a higher site
density, increasing their local and fomite infection routes. Moreover,
nonparametric Kruskal–Wallis tests showed that outward transport
and inward transport and river transmissions represent most of the
significant differences between the two site types. From a biosecurity
perspective, fish farms can thus be seen as high-risk sources, both to
other fish farms (via transport and river contacts) and to fisheries (via
transport), whereas fishery sites are primarily at risk as receivers of
pathogens.

For specific parameter choices, stored transmission totals per site
yielded geographic risk maps per catchment (see Supplement). Fig. 7
Fig. 7. Geographic risk distribution per catchment, for the proactive policy. Left: outward tran
per catchment, log-transformed, in equal-width bins (number of catchments in brackets).
shows an example for the proactive policywithmedium-high severity
(factor 5) and medium delays. Most notable is the clear distinction
between the map of sources (left panel, more concentrated) and that
of receivers (right panel). Furthermore, although absolute transmis-
sions are lower in the other two policies, the same highest-risk
catchments are identifiable in all, which do not necessarily coincide
with high site density (Fig. 1).
Significance of specific parameters

We investigatedwhich parameters affect which response variables
most, and at which level, using statistical ANalysis Of VAriance
(ANOVA). To exploit its full potential, we adopted a balanced design,
i.e., within each control policy the number of simulations was equal
for each combination of parameter levels (full results in Supplement).
We then divided seven response variables into two “meta-response”
groups, and ranked ANOVA-derived parameter contributions to a
response by size. The first such group expresses the severity of
outbreaks; it contains average and maximum outbreak size and the
number of endemic outbreaks. Given reactive controls, this meta-
response is most affected by the detection delay, followed by severity
and (at distance) the AC; remaining parameters had little effect. In the
proactive case, detection and severity share top ranking, followed by
the laboratory capacity, culling delay, and TB; restocking and latency
delay close the ranks. If applying a hybrid policy, laboratory capacity is
the most important parameter, followed by the detection delay.
Culling and latency then providemodest, roughly equal contributions,
and the applied reactive/proactive ratio is last. The restocking delay
again appears to have little effect.

The second meta-response contains the average outbreak dura-
tion, the length of the processing queue, and the number of negative
test results. The reactive policy yields the simplest profile: detection
delay is most important, now followed by latency; all other
parameters have little effect. The proactive strategy ranks laboratory
capacity first, followed by culling, detection, and severity; remaining
parameters contribute little. Lastly, in the hybrid case, the culling
delay rates highest, followed by equal contributions from detection
and laboratory capacity. The rota ratio and latency close the ranks.
smissions. Right: inward transmissions. Colour scale: site transmission totals, averaged
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The importance of rapid response in terms of brief detection and
culling delays that is apparent from these results is itself unsurprising
and in agreement with earlier studies (e.g., Haydon et al., 1997; Fraser
et al., 2004), but also differs from these in several respects. Firstly,
information is gained when these two delays are distinguished from
one another, rather than taken together in a single “infectious” state,
as in SIR and SEIRmodels. This is underlined by the culling delay being
more important (Howard and Donnelly, 2000) than detection delay in
the hybrid policy, but relatively unimportant in the reactive policy.
Secondly, neither delay is necessarily always the most important
factor; in specific circumstances, laboratory capacity can be more
decisive. Thirdly, balanced ANOVA yields the statistically significant
estimates of importance of each considered parameter in each studied
scenario (see Supplement), quantifying their contribution to a
number of response variables with respect to all others considered,
yielding more solid grounds for their assessment.

Finally, the largest outbreaks appear to occur mostly due to the
interplay of several factors and circumstances. In terms of contact
structure, a crucial difference with many other epidemiological
networks and models is the absence of a large majority of sites with
few connections. In the most serious outbreaks, the observed dense
mesh of links (especially in coastal regions) causes contact tracing to
be simply overwhelmed with too many potentially threatened sites
that turn out to test negative, wasting the large majority of laboratory
capacity. This also implies that some infected sites are processed too
late (after having already transmitted the pathogen to many
neighbours near and far) or are missed entirely when the most active
infection front temporarily moves elsewhere (causing a shift in
queuing priorities). The latter situation enabled repeated “flare-ups”
of new infection pressure from seeding areas that otherwise displayed
prolonged reduced transmission activity.

A second set of factors concerns transport and river connections,
which are directed, frequently long-distance (creating the small-
world effect), and have a relatively high transmission likelihood.
Transport sources (fish farms) in particular are few, but reside in the
densest areas and service virtually the entire network. In combination
with the more clustered river links, the fish farms appear to function
as a spreading amplification system. They provide not just quick
access to distant parts of the network, but their dense interlinking
provides numerous opportunities for feedback, that is, once a
pathogen infects a fish farm, chances rise markedly that multiple
connected fish farms will reinforce its spreading by repeated mutual
infection within their sub-network, as well as ensuring distribution
among each one's community of dependent fishery sites, which may
in turn act as long-term background reservoir. Together, these factors
conspire to pose enduring challenges for effective control in these
worst-case scenarios.

Discussion

The main purpose of this effort was to explore epidemiological
network responses in multi-dimensional parameter space, to identify
the most influential factors and countermeasures to reduce the
severity of disease outbreaks. In this context, an important feature of
the studied network is the directed nature of river and transport
connections, which has clear implications for targeted biosecurity
measures. In addition, the highly skewed ratio of transport sources
versus receivers (Table 1) implies that the former may be targeted
more economically than the latter.

The balanced design of the simulation experiment ensured the
internal consistency of results within each of the three main control
policies tested. However, the previous section should not be interpreted
as a scoreboard of competing strategies, since each represents a specific
situation. The reactive policy applies to pathogens that clinically express
themselves quickly and reliably, and also assumes that surveillance is
adequate and laboratory capacity is ample; the proactive policy instead
presupposes silent spreading with limited testing resources; the hybrid
policy resides somewhere in between. None is a priori best.

Likewise, the two additional measures operate along different
lines. The public awareness campaign (AC) targets the entire
network; the associated efficacy assumption of subsequent reduction
of all detection delays by half is probably too optimistic, and certainly
a simplification (McLaws et al., 2007; Funk et al., 2009; Fraser et al.,
2004). The national transport ban (TB) affects almost the entire
network in terms of receivers, but targets only a small fraction of
sources. However, prolonged movement controls would be extremely
damaging to the industry. Furthermore, ANOVA has shown AC to be a
more influential instrument than TB when the entire spectrum of
outbreak sizes is considered, whereas TB appears most effective in
reducing the largest outbreaks. Given that the latter are rare, a public
awareness campaign may therefore be a more acceptable alternative.

Caveats

In assessing the ANOVA results, it is important to distinguish those
factors that can be controlled, those that cannot, and those that are
principally unknown. Outbreak severity largely escapes human
control (aside from aiming to reduce stress levels in fish populations)
and can be assayed only retrospectively, or in vitro per species, which
lacks some relevant in vivo conditions. Numerous real factors may be
involved, such as different strains of the pathogen, environmental
conditions (e.g., water temperature, pH, salinity, and pollutants),
variable susceptibility of different fish species, and the genetic,
immune, and physiological condition of individual hosts (Feist et al.,
2002; McLoughlin and Graham, 2007; Tobback et al., 2007; Chambers
et al., 2008; Peeler et al., 2008; Algöet et al., 2009). Their effects and
interactions are only partially understood and poorly quantified.

Latency delay is likewise beyond control and poorly understood,
but unlike severity, its effects appear limited in our simulations,
possibly even beneficial from a control standpoint in acting as an extra
delay on the spreading dynamics, allowing more time for biosecurity
measures such as contact tracing (Kiss et al., 2005, 2006a).

Another area of concern involves the various interactions between
wild and cultured fish. Introducing wild fish as potential carriers adds
several complications: they may become infected through direct
exposure to pathogens released by farmed populations or through
predation on infected stocked or escaped fish. For example, wild
species in the vicinity of infected sites can show up to an order of
magnitude higher prevalence of that infection than elsewhere (e.g.
IPNV, Wallace et al., 2008; sea lice, Krkošek et al., 2007). Wild fish can
also move independently in search of food, mates, and shelter,
increasing the risk of exposure and subsequent spread of disease.
Furthermore, diadromous fish periodically migrate upstream and
have the potential to introduce infections from the marine environ-
ment to freshwater populations (Skall et al., 2005; Stone et al., 2008).
Wild freshwater species may also act as a permanent reservoir of
disease, maintained partly through vertical transmission (parent to
offspring). For example, grayling (Thymallus thymallus) is highly
susceptible to LG and BKD infections, and the latter was found to be
associated with BKD-infected rainbow trout farms within the same
river catchment (Chambers et al., 2008; Algöet et al., 2009).

Cultured populations may themselves also act as pathogen
reservoirs. For example, the prevalence of BKD is generally higher in
cultured fish than in the wild (Nowak and LaPatra, 2006; Chambers et
al., 2008); Gregory et al., 2007 reported IPNV having been isolated
from a variety of European marine reservoirs (wild fish, mussels,
prawns, crabs, and sediments) in the vicinity of fish farms; Krkošek et
al. (2007, 2009) identified prolonged exposure of juvenile wild
salmon to sea lice as associated with nearby commercial salmon
farms; and McLoughlin and Graham (2007) considered pancreas
disease (SAV) to be endemic in most salmon marine sites in Ireland,
and in other countries on sites with a history of infection. In addition,
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transmission mechanisms here include direct contact through
freshwater cages and fish escaping due to a failure in containment
(e.g., during a flood). We leave these various issues for future work.

Concluding remarks and guidelines

Despite the listed caveats, our generalised, simplified simulations
did yield some robust conclusions. Regardless of which policy is
pursued, the analyses demonstrated that detection delay is the most
influential control parameter overall for the studied outbreak
dynamics. This importance likely also feeds into the success of the
public awareness campaign (which expedites detection). Clearly,
government agencies and the industry alike have valuable roles to
play here, in constant surveillance, sampling programmes, record
keeping, and collaboration. The main problem is that the duration in
question is difficult to quantify in the absence of observed timing of
the initial introduction of the pathogen on site. Only in the case of live
fish transports, and possibly local spread, may a direct causal
connection be established in hindsight; the other two transmission
types involve numerous factors too ephemeral to detect, let alone
quantify. What we can do, however, is to approach them statistically.
The river flow stream analysis is a case in point, revealing rapid
transits.

Of the remaining delay parameters, the restocking delay appears
to be least important. The culling delay, by contrast, is an influential
control, as is the available laboratory capacity, which becomes
increasingly significant in larger and longer-lasting epidemics. Finally,
if pursuing a hybrid strategy, each reactive detection should be
processed as soon as possible; only spare laboratory capacity should
be spent on dangerous contact tracing.

We close this discussion with a few quantitative guidelines derived
from the simulations. We stress that these conclusions are based upon
our synthetic, simplified representations of reality that incorporate
numerous assumptions that may not fully match the actual, ever-
changing situation. Moreover, these models do not aim to mimic a
specific pathogen with particular infection characteristics; pathogen-
specific simulations, in combination with information from other
sources, would be required to produce disease-specific recommenda-
tions. However, by exploring parameter space in many orthogonal
directions, using the most recent available empirical description of the
real network, obtaining large samples, and tuningmultiple scenarios to
achieve the entire gamut from harmless to devastating outbreaks, we
hope thatwe have captured the essence of this network that transcends
studies of individual cases and pathogens.

The presented guidelines are derived from so-called main effects
plots. A main effect occurs when a response variable's mean changes
significantly across the levels of a considered parameter (see Supple-
ment). Within a progression of discrete parameter levels, one can
thereby identify the bound beyond which the response would on
average exceed its overall mean. Thus the criterion in all cases is to
restrict responses to better-than-average as computed over all observa-
tions. Whether these limits are practically acceptable is debatable; we
also note that actual individual epidemics may still exceed them. The
various estimates can be distilled into the following general guidelines:

• keep the detection delay below 200 days (below 100 days in the
proactive case, where it refers to detection of the first case only);

• keep laboratory capacity above 100 conclusive site tests per year;
• keep the culling delay below 20 days (below 10 days in the hybrid
case);

• keep the restocking delay above 200 days.

Lastly, we reiterate some of the findings stated elsewhere in the
text:

• the detection delay is the most important parameter within human
control, followed by laboratory capacity and culling delay;
• no English or Welsh river transit time or associated river distance
between two sites is beyond a fish pathogen's potential survival
range;

• fish farms and fisheries are different entities, requiring distinct
biosecurity measures;

• outward and inward transmission risk should be assessed
separately.

Supplementary data to this article can be found online at doi:
10.1016/j.epidem.2010.08.001.
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