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(V, g, C) is called a k-cycle group divisible design with index A, denoted by (k, 1)-CGDD.
A (k, A)-cycle frame is a (k, 1)-CGDD (V, 4, €) in which € can be partitioned into holey
2-factors, each holey 2-factor being a partition of V \ G; for some G; € §. Stinson et al. have
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g}érgogrf;;p divisible design resplved the existence of (3, }L)—cycte frames of type g“. In this paper, we show that there
Cycle frame exists a (k, A)-cycle frame of type g* for k € {4, 5, 6} if and only if g(u — 1) = 0 (mod k),

Almost resolvable cycle system Ag =0(mod 2),u > 3whenk € {4, 6}, u > 4whenk =5, and (k, A, g, u) # (6, 1,6, 3).
A k-cycle system of order n whose cycle set can be partitioned into (n — 1)/2 almost
parallel classes and a half-parallel class is called an almost resolvable k-cycle system,
denoted by k-ARCS(n). Lindner et al. have considered the general existence problem of
k-ARCS(n) from the commutative quasigroup for k = 0 (mod 2). In this paper, we give
a recursive construction by using cycle frames which can also be applied to construct
k-ARCS(n)s when k = 1 (mod 2). We also update the known results and prove that for
k € {3,4,5,6,7,8,9, 10, 14} there exists a k-ARCS(2kt + 1) for each positive integer t
with three known exceptions and four additional possible exceptions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we use G or k-cycle for a cycle of length k and K, for the complete graph on n vertices. For a graph
G, we use AG to represent the multi-graph obtained from G by replacing each edge of G with X copies of it.

A graph H is called a complete m-partite graph if its vertex set V can be partitioned into m subsets Gi, Go, ..., Gy
such that every pair of vertices, not both from the same partition, is an edge of H. Each subset G; (i = 1,2,...,m) is
called its independent set. A complete m-partite graph is denoted by Ky,(ny, n,, ..., n,), where n; is the cardinality |G;| of
G(@i=1,2,...,m).

Let J be a set of positive integers. Suppose H is a complete m-partite graph K, (n1, ny, ..., ny) with vertex set V and m
independent sets G1, Gy, ..., Gy of ny, ny, ..., ny, vertices respectively. Let § = {Gq, Gy, ..., Gy} (called the group set).
If the edges of LH can be partitioned into a set of cycles € with cycle lengths from J, then (V, g, C) is called a cycle group
divisible design with index X, denoted by (J, A)-CGDD.

When ] = {k}, we write (J, A)-CGDD as (k, 1)-CGDD. The type of the CGDD (V, 4, €) is the multiset of sizes |G| of the
G € 4. We use the “exponential” notation for its description: type 123 ... denotes i occurrences of groups of size 1, j
occurrences of groups of size 2, and so on.

A factor of a graph G is a subgraph F for which V(F) = V(G). An r-factor of G is a factor that is regular of degree r. Clearly,
a 2-factor is disjoint union of cycles. A (J, A)-CGDD (V, 4, C) is resolvable (denoted by RCGDD) if the collection € of cycles
can be partitioned into 2-factors.
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Theorem 1.1 ([2,3,13-15,17,18]). For k > 3 and u > 2, there exists a (k, 1)-RCGDD of type g" if and only if g(u — 1) =
0 (mod 2), gu = 0 (mod k), k =0 (mod 2) if u =2, and (g, u, k) € {(2, 3,3), (6, 3,3), (2,6, 3), (6, 2,6)}.

Definition 1.1. A (J, A)-cycle frame of type g,'g,? - --g* is a (J, »)-CGDD of type g;'g,? ---g“(V, 4, €) in which the
collection € of cycles can be partitioned into holey 2-factors, each holey 2-factor being a 2-regular graph on the vertex
set V' \ G; for some G; € §.

Actually, a (J, A)-cycle frame is a (J, A)-CGDD whose cycle set can be partitioned into holey 2-factors, each of which

omits one group in the group set. It is not difficult to show that if there exists a (k, A)-cycle frame of type g;' 1 gé'z --- g, then

gi(1 <i < s) must be even and for each group G; € § there are exactly @ holey 2-factors with G; as their holes and hence
there are % Zf;l giu; holey 2-factors in total. Thus, we have the following theorem when s = 1.

Theorem 1.2. If there exists a (k, 1)-cycle frame of type g, then (1) Ag = 0 (mod 2), (2) g(u — 1) = 0 (mod k), ) u > 3
when k = 0 (mod 2) and (4) u > 4 when k = 1 (mod 2).

Cycle frames have been proved to be useful for the construction of resolvable cycle systems [6,10,14,15]. Below are some
known results on (k, A)-cycle frames.

Theorem 1.3 ([7,20]). There exists a (3, 1)-cycle frame of type h* if and only if u > 4, h = 0 (mod 2) and h(u — 1) =
0 (mod 3).

Theorem 1.4 ([5,12]). There is a (m, 2)-cycle frame of type 1" if and only if n = 1 (mod m).

In this paper, we shall mainly consider (k, 1)-cycle frames of type g" with k = 4, 5, 6. We shall prove the following main
result.

Theorem 1.5. There exists a (k, A)-cycle frame of type g" for k € {4,5,6} if and only if g(u — 1) = 0 (mod k), \g =
0 (mod 2),u > 3whenk € {4,6},u > 4whenk =5, and (k, 1, g, u) # (6, 1, 6, 3).

Cycle frames can also be applied to construct almost resolvable cycle systems which have been considered by Lindner
et al. recently. So, we shall investigate the existence of almost resolvable cycle systems in this paper.

A k-cycle system of order n is a pair (V, €), where C is a collection of k-cycles which partition the edges of K, with
vertex set V. Clearly, a k-cycle system of order n is a (k, 1)-CGDD of type 1". A k-cycle system of order n exists if and only
if3<k<n,n=1(mod 2)andn(n — 1) = 0 (mod 2k) [1,19]. A resolvable k-cycle system of order n exists if and only if
3 <k <n,nandkare odd, and n = 0 (mod k) [2].

If (V, @) is ak-cycle system of order nand n = 1 (mod 2k), then the k-cycle system is not resolvable. In this case, Hanani,
Vanstone, Lindner et al. started the research of the existence of an almost resolvable k-cycle system. A collection of (n— 1) /k
disjoint k-cycles is called an almost parallel class. In a k-cycle system of order n = 1 (mod 2k), the maximum possible number
of almost parallel classes is (n — 1)/2 in which case a half-parallel class containing (n — 1) /2k disjoint k-cycles is left over. A
k-cycle system of order n whose cycle set can be partitioned into (n — 1)/2 almost parallel classes and a half-parallel class
is called an almost resolvable k-cycle system, denoted by k-ARCS(n). Lindner et al. have considered the general existence
problem of almost resolvable k-cycle system from the commutative quasigroup for k = 0 (mod 2). We summarize the
known results for k-ARCS(11)s as follow.

Theorem 1.6 ([8,9,16,21]). There exists a k-ARCS(2kt + 1) for k € {3, 4,6, 10, 14} and t > 1, except for (k,t) € {(3, 1),
(3, 2), (4, 1)} and except possibly for (k, t) € {(4,5), (4,7), (14, 2)}.

Theorem 1.7 ([16]). Let k = 0 (mod 2) and k > 8. If there exists a k-ARCS(2k + 1), then there exists a k-ARCS(2kt + 1) except
possibly for t = 2.

In this paper, we give a recursive construction by using cycle frames which can also be applied when k = 1 (mod 2). Thus,
we can prove the existence of an almost resolvable cycle system k-ARCS(2kt 4+ 1) with k € {5, 7, 8, 9} as the application of
cycle frames. We shall update the known results and prove the following theorem.

Theorem 1.8. Let k > 3,t > 1 be integers and n = 2kt + 1. There exists a k-ARCS(n) for k € {3,4,5,6,7,8,9, 10, 14},
except for (k,n) € {(3,7), (3, 13), (4, 9)} and except possibly for (k, n) € {(4, 41), (4, 57), (8, 33), (14,57)}.

2. Recursive constructions

For the recursive constructions of cycle frames, we start with the definition of a group divisible design.

Let K be a set of positive integers. Suppose H is a complete m-partite graph K,,(nq, na, ..., ny,) with vertex set V. and m
independent sets Gy, Ga, ..., Gy of ny, na, ..., ny vertices respectively. Let § = {G1, G,, ..., Gp}. If the edges of AH can
be partitioned into a set 8 of complete graphs with the numbers of their vertices from K, then (V, §, 8) is called a group
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divisible design with index A, denoted by (K, A)-GDD. When K = {k}, we write (K, A)-GDD as (k, A)-GDD. The type of the
GDD (V, 4, 8) is the multiset of sizes |G| of the G € § and we usually use the “exponential” notation for its description as
that in the definition of CGDD.

A (K, 1)-GDD with group type 1? is called a pairwise balanced design, denoted by (K, A, v)-PBD. A (K, \)-frame is a
(K, A)-GDD (V, 4, 8) in which 8 can be partitioned into holey parallel classes, each holey parallel class being a partition
of V '\ G; for some G; € . Obviously, a (3, A)-frame is also a (3, A)-cycle frame. For later use, we need the following known
results on pairwise balanced designs and (2, A)-frames.

Theorem 2.1 ([7]). There exists a (K, 1, v)-PBD for the following parameters.
1 K_{3 4,5}, v #6,8.

{3, 5} v =1 (mod 2).

{4,5,6},v #7 — 12, 14, 15, 18, 19, 23.

{4, } v =1 (mod 3) and v # 10, 19.

Theorem 2.2 ([7]). There exists a (2, A)-frame of type h" if and only if u > 3 and h(u — 1) = 0 (mod 2).

Before giving our recursive constructions, we still need some other definitions in graph theory. If G and H are graphs, the
wreath product G H of G and H is the graph obtained by replacing each vertex u of G with a copy H(u) of H, joining each
vertex of H(u) to each vertex of H(v) if u and v are adjacent in G, and having no edges joining vertices of H(u) to vertices of
H(v) if u and v are not adjacent in G. o o

Here, we need the wreath product of C and K,, for our constructions, where K;, denotes the complement of K,,. The graph
Ci 2K, is called m-resolvable if its edge set can be partitioned into p 2-factors each of which consists of pk/m cycles of length

m. Next, we shall show that Cy  K; is k-resolvable for all positive t and all k > 3 with some definite exceptions.

Lemma 2.3 ([2]). Suppose k is an odd integer and p is a prime, 3 < k < p. Then ;2 E is p-resolvable.

Construction 2.4. Let k > 3. Suppose Cy z@ is k-resolvable. Then Cj4; 2 E is (k + 2)-resolvable.

Proof. Suppose C, = (1, 2, . — 1, k) and the vertex set offisl = {1 2,. ..,p} Let the vertex set of C;, sze I, X I.

Suppose the jth cycle in the lth 2 factor of the known Cj, 2 K is C = (b} i1 1), (b} 2 2), ..., (b},k, k)), bjs elp,1<i,j<
p,1<s<klet

M) = ((b}. 1), (b} 5, 2), ..., (bl k), (B, _q. k+ 1), (b, k+2)), 1<ij=<p.

et F; = Jf_ M/, 1 <i < p.ltis easy to check each F; is a 2-factor of C, ¢ K. Thus, iy ¢ K, is (k + 2)-resolvable. O
LetFi = |\, M/, 1 <i<p.Iti heck each F; is a 2-f. f C2 2 Ky. Thus, Ciyo 2 K, is (k + 2)-resolvabl

Lemma 2.5. C; ¢ K; is k-resolvable for all positive t and all k > 3 with the definite exceptions (t, k) = (6, 3) and (t, k) €
{(2, m) : m > 3is odd}.

Proof. The conclusion is trivial for ¢ = 1. According to the definition, it is easy to see that C3? Ks is not 3-resolvable, and
Cm 1 K5 (m > 3is odd) is not m-resolvable.

Forevenk > 4andallt > 1, we can start from a 1-factorization of K, (t, t) and use the same method of Construction 2.4
to obtain that C4 ¢ K; is 4-resolvable. Then C : K; is k-resolvable for all even k > 4 and all t > 1 by Construction 2.4.

Foroddk > 3,t > landt # 6, we have a (3, 1)-RCGDD of type t> by Theorem 1.1 which indicates that Cs : K; is
3-resolvable. Thus, Cy @ K; is k-resolvable for all odd k > 3 and t # 6 by Construction 2.4. o

Now, we only need to decide whether Cj.2Kj is k-resolvable for all odd k > 5. This case can be solved if Cs:Kg is 5-resolvable
by Construction 2.4. Let the vertex set of C5 : Kg be Is x Is. A 5-resolvable Cs @ Kg is constructed below.

{(14, 12, 13, 14, 15), (21, 22, 23, 24, 25), (31, 32, 33, 34, 35), (41, 42, 43, 44, 4s), (51, 52, 53, 54, 55), (61, 62, 63, 64, 65)}
{(14, 22, 13, 24, 35), (21, 12, 23, 14, 4s), (31, 42, 33, 44, 15), (41, 32, 43, 54, 65), (51, 62, 53, 64, 25), (61, 52, 63, 34, 55)}
{(14, 32, 13, 34, 25), (21, 42, 23, 44, 55), (31, 52, 43, 64, 4s), (41, 62, 33, 24, 15), (51, 12, 53, 14, 65), (61, 22, 63, 54, 35)}
{(14, 42, 13, 54, 45), (21, 52, 23, 34, 65), (31, 62, 43, 24, 55), (41, 12, 63, 14, 35), (51, 22, 33, 64, 15), (61, 32, 53, 44, 25)}
{(14, 52, 13, 44, 65), (21, 62, 23, 64, 35), (31, 12, 33, 54, 25), (41, 22, 43, 14, 55), (51, 32, 63, 24, 4s), (61, 42, 53, 34, 15)}
{(14, 62, 13, 64, 55), (21, 32, 23, 54, 15), (31, 22, 53, 24, 65), (41, 52, 33, 14, 25), (51, 42, 63, 44, 35), (61, 12,43, 34,45)} O

Now, we are in the position to give our recursive constructions for cycle frames. The proofs of the following constructions
are similar to some well-known recursive constructions for frames or group divisible designs, see [2,4,7,11,20]. So, we just
state them without proof.

Construction 2.6 (Fundamental Cycle Frame Construction). If there exists a (K, 1)-GDD of type g* and a (k, 1)-cycle frame of
type h™ for each m € K, then there is a (k, )-cycle frame of type (hg)".

Construction 2.7 (Filling in Holes). Suppose there exists a (k, A)-cycle frame with groups of sizes from T = {tq, ..., t,} and
& > 0. For 1 <i < n, suppose there exists a (k, 1.)-cycle frame with groups of sizes from T; U {e}, where ZteTi t = t;. Then there

exists a (k, A)-cycle frame with groups of sizes from (U?:1 T) U {e}.
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Construction 2.8. Suppose there is a (K, 1)-cycle frame of type g" and C; K, is m-resolvable for each k € K, then there exists
a (m, L)-cycle frame of type (hg)".

Construction 2.9. Suppose there is a (K, A1)-frame of type g* and a (m, A,)-RCGDD of type h* for each k € K, then there exists
a (m, Aq)y)-cycle frame of type (hg)".

Construction 2.10. If there exists a (k, A;)-cycle frame of type g" for i = 1, 2, then there is a (k, L1 + A;)-cycle frame.

3. (4, A)-cycle frames
In this section, we deal with the existence of a (4, 1)-cycle frame of type g".

Lemma 3.1. There exist (4, 1)-cycle frames of type 2" for u € {3, 5} and type 4" for u € {3, 4,5, 6, 8}.

Proof. Take a (2, 1)-frame of type 13 or 1°> from Theorem 2.2. Applying Construction 2.9, we can obtain a cycle frame of
type 23 or 2°, where the input design (4, 1)-RCGDD of type 22 comes from Theorem 1.1. Similarly, start from a (2, 1)-frame
of type 2" foru € {3, 4, 5, 6, 8} to obtain a cycle frame of type 4. O

Theorem 3.2. There exists a (4, 1)-cycle frame of type g" if u > 3,g = 0 (mod 2), and g(u — 1) = 0 (mod 4).

Proof. We distinguish the necessary conditions into the following two cases.

(1)g = 0 (mod 4) and u > 3. Let g = 4m. We first prove the case m = 1. There exists a (4, 1)-cycle frame of type 4" for
u € {3,4,5, 6,8} by Lemma 3.1. For other values of u, take a PBD({3, 4, 5}, 1, u) from Theorem 2.1. Apply Construction 2.6
toobtain a (4, 1)-cycle frame of type 4". Further, applying Construction 2.8 with a C4:K;,, which is 4-resolvable by Lemma 2.5,
we can obtain a (4, 1)-cycle frame of type (4m)" for any m > 2.

(2)g=2(mod 4),u >3andu = 1 (mod 2). Let g = 4k + 2. Applying Construction 2.6 with a PBD({3, 5}, 1, u) from
Theorem 2.1, we can obtain a (4, 1)-cycle frame of type 2¥, where the input designs (4, 1)-cycle frames of types 23 and 2°
exist by Lemma 3.1. Then, we can use Construction 2.8 to obtain the required (4, 1)-cycle frame of type g" since C4 ¢ Koy11
is 4-resolvable by Lemma 2.5. 0O

Theorem 3.3. There exists a (4, 2)-cycle frame of type g" if u > 3 and g(u — 1) = 0 (mod 4).

Proof. The necessary conditions are distinguished into three cases: (1)u > 5,u = 1(mod 4) andg = 1 (mod 2),(2)u > 4
andg = 0 (mod 4),and (3)u > 3, u = 1 (mod 2) and g = 2 (mod 4). The last two cases can be obtained from a (4, 1)-cycle
frame of type g" from Theorem 3.2 by Construction 2.10. Start with a (4, 2)-cycle frame of type 1" by Theorem 1.4. Applying
Construction 2.8 with a C4 : K; which is 4-resolvable by Lemma 2.5, we can obtain the required (4, 2)-cycle frame of type g*
incase(1). O

The following conclusion comes from Construction 2.10, Theorems 3.2 and 3.3.

Theorem 3.4. There exists a (4, L)-cycle frame of type g" if and only if u > 3, g = 0 (mod 2) and g(u — 1) = 0 (mod 4).
4. (5, 1)-cycle frames

In this section, we investigate the existence of (5, 1)-cycle frames of type g". First we construct some cycle frames which
will be used as input designs for recursive constructions.

Lemma 4.1. There exists a (5, 1)-cycle frame of type g% for g € {2, 10}.

Proof. For g = 2, let the point set be V = (Zs x Z;) U {a, b} and the group set be {{ip, i1} : 0 < i < 4} U {a, b}. One
holey 2-factor is composed of the two 5-cycles (0q, 29, 4o, 1o, 30) and (04, 11, 21, 31, 41). The other holey 2-factors will be
generated from the two 5-cycles (a, 3¢, 29, 41, 11) and (b, 1o, 21, 40, 31) by (41 mod 5, —). The case g = 10 can be solved
by applying Construction 2.8 since Cs : K5 is 5-resolvable. O

Lemma 4.2. There exist (5, 1)-cycle frames of types 21, 10! and 10?3.

Proof. Let the point set be V = Z;; x Z, and the group set be {{ig,i1} : 0 < i < 10}. The required 11 holey
2-factors of a (5, 1)-cycle frame of type 2! can be obtained from the following initial holey 2-factor {(1¢, 20, 40, 11, 21), (60,
30, 80, 31, 101), (41, 91, 70, 61, 100), (71, 51, 81, 59, 90)} by (+1 mod 11, —) Further, we can apply Construction 2.8 to
obtain a (5, 1)-cycle frame of type 10! since Cs : Ks is 5-resolvable.

Fora (5, 1)-cycle frame of type 10?3, let the point set be V = Z,3 x Z;¢ and the group set G; be {{i} x Zyo : 0 < i < 22}.The
five holey 2-factors of group Gy can be obtained from four cycles in Fy by (x5% mod 23, +2 mod 10)forj = 0, 1, 2, 3, 4,
where FO = {(]0,50,62,43, 112), (1],51,64,208,27), (53, 16,29,74,98), (65,56, 109,75,207)}. All the other holey
2-factors can be obtained from the five holey 2-factors of group Go by (4+1 mod 23, —). O
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Lemma 4.3. There exists a (5, 1)-cycle frame of type g* where g and u are

(1) g =2andu = 16;

(2) g=4andu € {6, 11, 16};

(3) g=10andu € {4,5, 7, 8, 10, 19};
(4) g=20andu € {4,6,7, 10, 19}.

Proof. Let the point set be V = Zg, and the group set be {{i,i+u,...,i+ (g — Du} : 0 <i < u — 1}. First, we can obtain
an initial holey 2-factor Fy from g(u — 1) /10 5-cycles in the following table by +gu/2 mod gu. Then, all the other required
gu/2 — 1 holey 2-factors can be generated from Fy by +i mod gu, i=1,2,...,gu/2 — 1.

g=2u=16:  (1,2,4,7,11) (3,8,21,10,28)  (6,14,29,9, 15)

g=4,u=6: (1,2,5,3, 10) (4,8,21,7,23)

g=4u=11: (3,8,12,5,19) (6,14,39,10,37) (9, 18, 38, 20, 43)
(1,2,4,7,13)

g=4u=16:  (6,13,21,10,23) (9,27,51,25,50) (12, 31,60, 29, 56)
(15,30,52,22,58) (3,8, 14,5,17) (1,2,4,7,11)

g=10,u=5  (3,11,18,14,37) (6,17,34,16,47) (8,21, 49, 23, 44)
(1,2,4,7,13)

g=10,u=8:  (10,2558,19,61) (1,11,63,2,78) (6, 13,26, 15,33)
(12,75,29,60,37)  (7,28,30,31,67) (4,34,79,36,62)
(3,9, 14,5, 17)

Start from a (5, 1)-cycle frame of type 4% and apply Construction 2.8 with a 5-resolvable Cs : K5 to obtain a cycle frame
of type 20°. For eachu e {4,7, 10, 19}, take a (3, 1)-cycle frame of type 2" or 4" from Theorem 1.3. Then we can apply
Construction 2.8 with a C3 ¢ K5 which is 5-resolvable by Theorem 1.1 to obtain a cycle frame of type 10" or 20%. O

Lemma 4.4. There exist ({3, 5}, 1)-cycle frames of type 2" for u € {9, 12} and type 4" for any u € {5, 8,9, 11, 12, 14, 15,
18, 23}.

Proof. Let the point set be V = Zg, and the group setbe {{i+mu:0 <m < g — 1} : 0 <i < u — 1}. First, we can obtain
an initial holey 2-factor Fy from g(u — 1)/10 cycles in the following table by +gu/2 mod gu. Then, all the other required

gu/2 — 1 holey 2-factors can be generated from Fy by +i mod gu, i=1,2,...,gu/2—1. O

g=2,u=9: (1,2,4,7,15) (3,8, 14)

g=2,u=12: (1,2,4,7,20) (5,9,23) (3,10, 18)

g=4, u=>5: (1,2,8,6,9) (3,7,14)

g=4,u=38: (6, 11,26, 12, 31) (3,7,13) (5, 14, 25)
(1,2,4)

g=4,u=9 (3, 8,28, 14, 33) (1,2,4,7,11) (5, 13, 34)
(6, 17, 30)

g=4, u=11 (9, 15, 36, 19, 39) (5, 13, 20) (6, 16, 32)
(8,21, 40) (3,7,12) (1,2, 4)

g=4u=12 (9, 23, 45, 20, 40) (5, 10, 18) (1,2, 4)
(8,19,38,11,41) (3,7,13) (6, 15, 22)

g=4, u=14 (9,27, 50, 24, 43) (5,11, 18, 6, 16) (1,2, 4)
(8,21, 13, 45, 25) (10, 26,47,20,51)  (3,7,12)

g=4 u=15 (3,7, 12,5, 11) (6, 16,25, 8, 19) (13, 27, 47, 26, 48)
(9,21, 44, 20, 53) (10,29,58,24,52)  (1,2,4)

g=4, u=18 (16,29,64,22,67)  (15,35,60,27,53)  (1,2,4)
(6, 13,23, 8,25) (9,20, 32, 10, 33) (3,7,12)
(14, 30, 70, 26, 57) (5,11,19)

g=4 u=23 (17,41, 83,28, 82) (21,42,75,40,81)  (3,7,12)
(25,45, 79, 27, 89) (6, 14, 24, 8, 20) (1,2,4)
(9, 26, 15, 30, 56) (13,31,62,19,38) (5,11, 18)

(22, 44, 80, 32, 85)
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Lemma 4.5. There exists a ({3, 5}, 1)-cycle frame of type 2" for u € {14, 18}.

2225

Proof. Let the point setbe V = Z,, x Z4 and the group set be {{ip, i} : 0 <i <u/2—1}U{{i1,i3} : 0 <i <u/2—1}.The

required u holey 2-factors will be generated from the two initial holey 2-factors F; and F{' by (+1 mod u/2, —).

O

Fo*: (11,22,33)  (62,21,03,3;,50) (43, 13,29, 4, 1)
(40,51, 10) (61,01, 52, 31,23) (53, 30, 63, 60, 41)
Fi*: (0o, 62,43) (33,20, 41,40,23) (51,42,63,02, 12)
(22,50,60) (03, 31, 32,52,53) (1o, 04, 21, 61, 30)
Fg8: (11,2, 33) (62,01, 41) (73, 12, 30) (23, 63, 87) (42, 19, 32, 60, 43)
(52, 13, 83) (70, 31, 03) (20,21, 72) (40, 51, 80) (53, 50, 83, 71, 61)
F/8: (0o, 70, 83) (22,441, 4) (33, 63, 53) (40, 52, 03) (01,74, 23, 32, 83)
(73, 02, 10) (80, 20, 61) (62,31, 72) (51, 30, 21) (12, 60, 50, 81, 43)

Lemma 4.6. There exists a ({3, 5}, 1)-cycle frame of type 2" for u € {15, 23}.

Proof. Let the point set be V = Z,, and the group set be {{i,i 4+ u} : 0 < i < u — 1}. The required u holey 2-factors will be
generated from the initial holey 2-factor Fj by +2 mod 2u. O

Fp?: (12,17,25) (4,6,9,13,18) (11,23, 14, 21,27)
(1,2,3,5,8) (7,20,24,16,26) (10,22,28,19,29)

F23: (20,37,41) (19,36,43) (11,17, 27, 39, 26)
(10,13,15)  (1,33,38) (5,31, 34, 16, 35)
(12,24,32) (4,29, 40) (2,42,28,21,3)
(14,25,44)  (9,18,22) (6,8,7, 45, 30)

Lemma 4.7. There exist (5, 1)-cycle frames of type 10" for each u € {9, 12, 14, 15, 18} and type 20" for eachu € {5, 8,9,
11, 12, 14, 15, 18, 23}.

Proof. Take a ({3, 5}, 1)-cycle frame of type 2 for each u € {9, 12, 14, 15, 18} or type 4" for each u € {5, 8,9, 11,
12, 14, 15, 18, 23} from Lemmas 4.4-4.6. Applying Construction 2.8 with a C3 : K5 and a Cs : K5 which are both 5-resolvable,
we can obtain a cycle frame of type 10" or 20*. O

Lemma 4.8. There exists a (5, 2)-cycle frame of type 531 for k > 1.

Proof. Take a (3, 2)-cycle frame of type 13*t! for k > 1 from Theorem 1.3 and apply Construction 2.8 to obtain a (5, 2)-cycle
frame of type 5%+, 0O

Lemma 4.9. There exists a (5, 2)-cycle frame of type 5" for u € {5, 6, 8, 11}

Proof. For u = 5, 8, let the point set be V = Zs, and the group setbe {{i + mu: 0 <m < 4} : 0 <i < u— 1}. The required
5u holey 2-factors will be generated from the initial holey 2-factor F§ by +1 mod 5u.

F3: (1,2,3,6,4)
F§: (4,9,6,10,13)
(1,2,29,27,7)

(7,9, 16,22, 18)
(11, 15, 20, 14, 21)
(3,30,5,33,31)

(8, 14,23, 11, 19)
(12, 19, 38, 23, 34)
(22, 36, 26, 25, 39)

(12,21, 13, 17, 24)
(18,37, 28, 17, 35)

Take a (5, 2)-cycle frame of type 1° or type 1'! from Theorem 1.4. Apply Construction 2.8 to obtain a cycle frame of type
560r5'., O

Lemma 4.10. There exists a ({3, 5}, 2)-cycle frame of type 1" for u € {9, 12, 15, 23}.

Proof. Let the point setbe V = Z, and the group set be {{i} : 0 < i < u— 1}. The required u holey 2-factors will be generated
from the initial holey 2-factor F§ by +1 mod u. O
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Fy:  (3,5,8) (1,2,4,7,6)
Fj?%: (4,6,9) (5,8, 10) (1,2,3,11,7)
F’: (4,7,12)  (6,9,13) (1,2,3,5,11) (8,10, 14)
F2: (4,6,9) (5,10, 17) (8,18, 15,11, 19)
(1,2,3) (7, 14, 20) (12, 16,22, 13, 21)

Lemma 4.11. There exists a ({3, 5}, 2)-cycle frame of type 1" for u € {14, 18}.

Proof. Let the pointsetbe V = Z, and the group set be {{i} : 0 < i < u— 1}. The required u holey 2-factors will be generated
from the initial two holey 2-factors Fj and F{ by +2 mod u. O

Fg%: (9,11,13) (1,2,3,4,5) (6,8,10,7,12)

F*: (7,10,13) (0,4,9,2,6) (3,8,11,5,12)

Fi%: (6,8, 10) (7,12, 15) (9,13, 16) (11,14,17)  (1,2,3,4,5)
Fl%: (2,7,14) (3,9,11) (5, 10, 16) (6,13, 15) (0,4,12,17,8)

Lemma 4.12. There exists a (5, 2)-cycle frame of type 5" for u € {9, 12, 14, 15, 18, 23}.

Proof. Take a ({3, 5}, 2)-cycle frame of type 1 from Lemmas 4.10 and 4.11. Then, apply Construction 2.8 to obtain a (5, 2)-
cycle frame of type 5¥. O

Theorem 4.13. There exists a (5, 1)-cycle frame of type g" if u > 4, g = 0 (mod 2), and g(u — 1) = 0 (mod 5).

Proof. We distinguish the necessary conditions into the following two cases.

(1)g =0(mod 10) and u > 4.

Let g = 10m. We start withm = 1,2. Foru € {4-12, 14, 15, 18, 19, 23}, there exists a (5, 1)-cycle frame of type
g" by Lemmas 4.1-4.3 and 4.7. For other values of u, we start from a PBD({4, 5, 6}, 1, u) from Theorem 2.1. Then apply
Construction 2.6 to obtain a (5, 1)-cycle frame of type g“. For m > 3 and m # 2 (mod 4), we start from a (5, 1)-cycle
frame of type 10“. Applying Construction 2.8 with a Cs K, which is 5-resolvable by Lemma 2.5, we can obtain a (5, 1)-cycle
frame of type (10m)". For m > 3 and m = 2 (mod 4), let m = 4e + 2. Take a (5, 1)-cycle frame of type 20". We can use
Construction 2.8 to obtain a (5, 1)-cycle frame of type (10m)" since Cs ¢ K.+ is 5-resolvable.

(2)g=2,4,6,8(mod 10),u > 4andu = 1 (mod 5).

Llet g = 2mand u = 5k + 1. We begin with m = 1, 2. There exist (5, 1)-cycle frames of types g°, g'! and g'¢
from Lemmas 4.1-4.3. For other values of u, we start from a cycle frame of type (5g)¥ for k > 4 in case (1). Applying
Construction 2.7, we get a (5, 1)-cycle frame of type g°**1. Form > 3 and m = 2 (mod 4), we start froma (5, 1)-cycle frame
of type 2°**1, We can apply Construction 2.8 to obtain a (5, 1)-cycle frame of type (2m)%**! since Cs : K, is 5-resolvable. For
m > 3and m = 2 (mod 4), let m = 4e 4 2, we start from a (5, 1)-cycle frame of type 4°**!, Applying Construction 2.8 with
a Cs 2 Koe41 Which is 5-resolvable, we can obtain a (5, 1)-cycle frame of type 2m)>**!. O

Theorem 4.14. There exists a (5, 2)-cycle frame of type g" if u > 4and g(u — 1) = 0 (mod 5).

Proof. We distinguish the necessary conditions into the following two cases.

(1)g =0(mod 5)and u > 4.

Let g = 5m. For m = 2, take a (5, 1)-cycle frame of type 10" in case (1) from Theorem 4.13. Apply Construction 2.10 to
obtain a (5, 2)-cycle frame of type 10". Further, we consider the case m = 1. For u € {4-12, 14, 15, 18, 19, 23}, there
exists a (5, 2)-cycle frame of type 5" by Lemmas 4.8, 4.9 and 4.12. For other values of u, use Construction 2.6 with a
PBD({4, 5, 6}, 1, u) to get a (5, 2)-cycle frame of type 5*. For m > 3 and m # 2 (mod 4), we start from a (5, 2)-cycle
frame of type 5" constructed above. Then, apply Construction 2.8 to obtain a (5, 2)-cycle frame of type (5m)". For m > 3
and m = 2 (mod 4), let m = 4e+ 2. Take a (5, 2)-cycle frame of type 10" and apply Construction 2.8 to obtain a (5, 2)-cycle
frame of type (5m)".

(2)g>1,u>6andu =1 (mod 5).

Let u = 5k + 1. We start with g = 1, 2. There exists a (5, 2)-cycle frame of type 1" by Theorem 1.4. Take a (5, 1)-cycle
frame of type 2°**1 in case (2) from Theorem 4.13. Apply Construction 2.10 to obtain a (5, 2)-cycle frame of type 2%+, For
g > 3andg # 2 (mod 4), we can obtain a (5, 2)-cycle frame of type g°**! by applying Construction 2.8 with a (5, 2)-cycle
frame of type 1°**1. Forg > 6 and g = 2 (mod 4), let g = 4e + 2, thus e > 1. Apply Construction 2.8 with a (5, 2)-cycle
frame of type 2°%*1 to get the required designs. O

By Construction 2.10, Theorems 4.13 and 4.14, we have the following theorem.

Theorem 4.15. There exists a (5, 1)-cycle frame of type g¥, if and only if u > 4, Ag = 0 (mod 2), and g(u — 1) = 0 (mod 5).
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5. (6, A)-cycle frames

In this section, we deal with the existence of a (6, 1)-cycle frame of type g". We begin with some direct constructions for
small designs.

Lemma 5.1. There exists a (6, 1)-cycle frame of type 2" for u € {4,7, 10, 19}.

Proof. For u = 4, let the point set be V = Zs U {a, b} and the group set be {{i, i+ 3} : 0 < i < 2} J{a, b}. One holey 2-factor
is (0, 1, 2, 3, 4, 5) and the other holey 2-factors will be generated from the holey 2-factor (a, 0, 4, b, 1, 3) by +2 mod 6.

Foru = 7, 19, let the point set be V = Z,, and the group set be {{i, i+ u} : 0 <i < u— 1}. The required u holey 2-factors
will be generated from the initial holey 2-factor Fj by +2 mod 2u. O

FJ: (4,8,10,13,9, 12)
F%: (1,2,23,5,3,9)
(6,18, 26, 20, 30, 35)

(1,2,3,5,11,6)
(4,7,22,8,33,11)
(13,24, 37,27, 15, 36)

(17,21, 28,29, 34, 31)
(10, 14, 25, 16, 32, 12)

For u = 10, let the point set be V = Z,y and the group set be {{i,i + 10} : 0 < i < 9}. The required 10 holey 2-factors
will be generated from the two initial holey 2-factors Fy and F; by +4 mod 20.
Fo: (1,2,3,4,5,7)
Fi:  (10,2,6,19,4,17)

(6,8,11,13, 16, 12)
(12,14, 3,9,13,18)

(9,17, 14, 19, 15, 18)
(15,7, 16, 5,0, 8)

Lemma 5.2. There exists a (6, 1)-cycle frame of type 6" for u € {5, 6,9, 11, 15}.

Proof. Let the point set be V = Zg, and the group set be {{i, i+ u, i+ 2u,i+3u,i+4u,i+5u} : 0 <i <u—1}.Foru =6,

the required 18 holey 2-factors will be generated from the two initial holey 2-factors Fy and F; by +4 mod 36.

Fo: (7,9, 11,14, 10, 15) (13,17,22,20,16,23) (19,29, 26,35, 21, 32)
(25,33,28,31,27,34) (1,2,3,4,5,8)

Fi:  (27,11,34,23,2,16)  (29,9,24,5,32, 15) (30, 17, 10, 21, 6, 22)
( (

For other values of u, the required 3u holey 2-factors will be generated from the initial holey 2-factor F§ by +-2 mod 6u.

33, 14, 4, 18, 35, 20)

21,18, 51, 64, 16, 80)
4,54,29,71,72,23)
11,7,44,88,33,9)

26,0,8,3, 12, 28)

55,74, 81, 89, 13,67)

25,42,37,83, 31, 34)

56,24, 1,41,68,77)
69, 20, 47, 36, 65, 26)

(
(
(
(28,52,32,46,8,6)

F:  (13,24,17,21,19,27)  (8,12,26,14,23,16) (9, 18,29, 11,28,22)
(1,2,3,6,4,7)

FO: (49,30,53,24,50,35) (20,28,8,12,7,10) (2, 43,22, 15,17, 34)
(23,29, 48,46,40,51)  (16,5,42,21,25,47) (26, 14,38, 37, 32, 33)
(44, 4,19, 39, 31, 6) (1,13, 3,41, 11,52)

Fi1: (64,37,65,46,62,32)  (60,23,21,42,39,45) (57,41,29,38,56,52)
(26, 1, 49, 63, 48, 7) (50,59, 28, 35,36,53) (34,8, 10, 20, 40, 17)
(58,30,54,47,12,6)  (25,15,61,19,27,4) (2,3, 16,24,51, 14)
(5,9, 43, 13, 18, 31)

F%: (50,87,59,85,53,86) (63,62,78,39,49,43) (5,12,73,57,79,61)
(

(
(
(

2,58, 40, 48, 76, 82)

(
(
(19, 84,17, 38,3, 14)
(
(

10, 22, 35, 66, 70, 27)

Lemma 5.3. There exists a (6, 1)-cycle frame of type 6" for u € {8, 12}.

Proof. Let the point set be V = Zg, and the group set be {{i,i 4+ u,i 4+ 2u, i+ 3u,i+4u,i+5u} : 0 <i < u — 1}. The
initial holey 2-factor F§ will be generated from u/2 cycles by 4+-3u mod 6u in F¥. All the required 3u holey 2-factors will be
generated from the initial holey 2-factor F§ by +i mod 6ufor0 <i<3u—1. O
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F8: (5,11,6,17,37,18) (9,19,44,14,47,21)  (1,2,4,7,3,10)
(12, 39, 22, 36, 15, 46)

F'2: (5,11,19,6, 15,25) (9,20,34,13,28,46)  (1,2,4,7,3,8)
(17,58, 35,54,27,59)  (14,30,52,26,69,31) (21,65, 32,57, 29, 68)

Lemma 5.4. There exists a (6, 1)-cycle frame of type 6" for u € {14, 18}.

Proof. Let the pointsetbe V = (Z3,_3 xZ;)U{001, 00, ..., 00g} and the group set be {{ip, (i+u—1)g, (i+2u—2)o, i1, (i+
u—1), ([(+2u—2)1}:0<i<u—2}U{ooq, 003, ..., 00g}. Three holey 2-factors of the group {co1, 00;, ..., 00g} will be
generated from the Fj by +1 mod 3u — 3. All the required holey 2-factors of other groups will be generated from an initial
holey 2-factor F} by +1 mod 3u — 3. O

Fi*: (0p, 11, 20, 01, 49, 81)

F1*: (80,220, 300, 270, 310, 15¢) (21, 31,61, 184, 244, 4) (51,271, 224, 331, 251, 214)
(30, 351, 230, 114, 4o, 141) (1o, 151, 109, 14, 250, 71) (170, 201, 340, 364, 200, 371)
(90, 314, 70, 304, 2, 381) (140, 169, 330, 18¢, 240, 350) (50, 60, 11g, 219, 129, 32¢)

(91, 194, 104, 344, 164, 23¢) (190, 281, 369, 001, 121, 004) (289, 81, 299, 003, 174, 00s)
(370, 321, 389, 003, 291, 006)
Fg®: (0o, 11, 20, 01, 4o, 81)

Fi3: (44,22q, 42, 134, 15, 184) (20, 71, 460, 51, 450, 271) (60, 481, 200, 11, 290, 491)
(230, 280, 379, 18, 250, 19¢) (400, 41, 1o, 139, 480, 15¢) (309, 251, 229, 61, 449, 81)
(90, 401, 47¢, 002, 314, 00s5) (31, 164, 94, 204, 434, 33) (40, 441, 389, 001, 231, 004)

(121, 361, 451, 411, 471,281) (70, 360, 16q, 390, 31¢, 21p) (120, 279, 240, 11p, 350, 14o)
(420, 104, 39, 244, 49, 391) (80, 261, 500, 291, 430, 307) (114, 194, 144, 24, 384, 371)
(50, 214, 330, 351, 260, 501) (109, 461, 32, 003, 321, 00g)

Lemma 5.5. There exists a (6, 1)-cycle frame of type 623.

Proof. Let the point set be V = Zgg x Z; and the group set be {{ig, (i +23)o, (i +46)o, i1, (i+23)1, (i+46)1} : 0 <i < 22}.
One holey 2-factor F§3 will be generated from (1¢, 29, 59, 120, 11, 617) and (51, 31, 21, 10¢, 151, 66¢) by (x4j mod 69, —)
forj =0, ..., 10. The required 69 holey 2-factors will be generated from the holey 2-factor F§3 by (+1 mod 69, —). O

Lemma 5.6. There exists a (6, 2)-cycle frame of type 3" for u € {3, 5}.

Proof. Let the point set be V = Z3, and the group set be {{i,i + u,i + 2u} : 0 < i < u — 1}. The required 3u
holey 2-factors will be generated from the initial holey 2-factor F} by +1 mod 3u, where Fg = {(1,2,4,8,7,5)} and
F; ={(1,2,3,6,4,12),(7,13,9,11,8,14)}. O

Lemma 5.7. There exists a (6, 1)-cycle frame of type 63 for A = 2, 3.

Proof. Let the point set be V = Z;53 and the group set be {{i,i+ 3,i+6,i+9,i+ 12,i+ 15} : 0 <i < 2}. For A = 2, the
required 18 holey 2-factors will be generated from the initial holey 2-factor Fy = {(1, 2, 4, 5, 13, 8), (7, 11, 16, 14, 10, 17)}
by +1 mod 18. For A = 3, the required 27 holey 2-factors will be generated from the initial three holey 2-factors Fy, F; and
F,by+2mod 18. O

Fo: (1,2,4,5,7,8) (10, 11, 13, 14, 16, 17)
Fi: (1,5,10,17,7, 14) (11,13,2,4,8,16)
F: (2,7,11,1, 14, 10) (4,8,16,5,13,17)

Theorem 5.8. There exists a (6, 1)-cycle frame of type g" if u > 3,g = 0 (mod 2), and g(u — 1) = 0 (mod 6), except for
(g, u) =(6,3).

Proof. We distinguish the necessary conditions into the following two cases.

(1)g=2,4(mod 6),u > 4andu =1 (mod 3).

Let g = 2m. We start with m = 1. There exists a (6, 1)-cycle frame of type 2" for u € {4, 7, 10, 19} by Lemma 5.1. For
other values of u, we start from a PBD({4, 7}, 1, v) from Theorem 2.1. Then, a (6, 1)-cycle frame of type 2" can be obtained by
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Construction 2.6. Further, we can apply Construction 2.8 to obtain a (6, 1)-cycle frame of type g* since Cg : K,y is 6-resolvable
for m > 2 by Lemma 2.5.

(2)g =0 (mod 6), u > 3.

Let g = 6m. We begin with u = 3. There does not exist a (6, 1)-cycle frame of the type 6° since the three holey 2-factors
of one hole form a (6, 1)-RCGDD of type 62 which does not exist by Theorem 1.1. For m > 2, a (6, 1)-cycle frame of type
(6m)> can be obtained by using Construction 2.9 with a (2, 1)-frame of type 13 and a (6, 1)-RCGDD of type (6m)? from
Theorem 1.1.

Now, we suppose u > 3. Foru = 5, 6, we have a (6, 1)-cycle frame of type 6" by Lemma 5.2. For u = 4,7, 10, 19,
there exists a (6, 1)-cycle frame of type 2" by case (1). Applying Construction 2.8 with a Cs @ K5 which is 6-resolvable by
Lemma 2.5, we can obtain a (6, 1)-cycle frame of type 6". Further, there exists a (6, 1)-cycle frame of type 6" for any u €
{8,9, 11, 12, 14, 15, 18, 23} by Lemmas 5.2-5.4. For other values of u, we apply Construction 2.6 with a PBD({4, 5, 6}, 1, u)
to obtain a (6, 1)-cycle frame of type 6". Thus, there exists a (6, 1)-cycle frame of type 6" for any u > 4. Finally, we can apply
Construction 2.8 to obtain a (6, 1)-cycle frame of type g since Cs ¢ K, is 6-resolvable form > 2. O

Theorem 5.9. There exists a (6, 2)-cycle frame of type g" if u > 3 and g(u — 1) = 0 (mod 6).

Proof. We distinguish the necessary conditions into the following four cases.

(1)g=0(mod 6) and u > 3.

Letg = 6m, m > 1.For u = 3, we have a (6, 2)-cycle frame of type 6> by Lemma 5.7. Applying Construction 2.8 with a
Cs 2 K, which is 6-resolvable by Lemma 2.5, we can obtain a (6, 2)-cycle frame of type (6m)> for m > 2. For u > 3, we take
a (6, 1)-cycle frame of type (6m)" from Theorem 5.8 and apply Construction 2.10 to obtain a (6, 2)-cycle frame of type g".

(2)g =1or5 (mod 6) and u = 1 (mod 6).

Letg = 6m+1o0r6m+5, m > 0.Suppose u = 6k+ 1, k > 1. There exists a (6, 2)-cycle frame of type 1" by Theorem 1.4.
We can apply Construction 2.8 with a Cs 2 Kz which is 6-resolvable by Lemma 2.5 to obtain a (6, 2)-cycle frame of type g".

(3)g =3 (mod 6) and u = 1 (mod 2).

Letg = 6m+3andu = 2k+ 1,m > 0,k > 1. A (6, 2)-cycle frame of type g" can be obtained from a (6, 2)-cycle
frame of type 3" by applying Construction 2.8 with a Cs ¢ K341 Which is 6-resolvable by Lemma 2.5. So we only need to
construct a (6, 2)-cycle frame of type 3“ For k = 1, 2, a (6, 2)-cycle frame of type 3° exists by Lemma 5.6. For k = 3, we
take a (6, 2)-cycle frame of type 17 from Theorem 1.4. Then, apply Construction 2.8 with a Cg 2 K3 which is 6-resolvable by
Lemma 2.5 to obtain a (6, 2)-cycle frame of type 37. For k > 4, we take a (6, 1)-cycle frame of type 6% from Theorem 5.8
and apply Construction 2.10 to obtain a (6, 2)-cycle frame of type 6. Further, applying Construction 2.7 with a (6, 2)-cycle
frame of type 33, we can obtain a (6, 2)-cycle frame of type 32+,

(4)g =2o0r4 (mod 6) and u = 1 (mod 3).

This case can be proved by applying Construction 2.10 with a (6, 1)-cycle frame of type g" from Theorem 5.8. O

Theorem 5.10. There exists a (6, A)-cycle frame of type g" if and only if u > 3, Ag = 0 (mod 2), and g(u — 1) = 0 (mod 6),
except for (A, g, u) = (1,6, 3).

Proof. There does not exista (6, 1)-cycle frame of type 63 by Theorem 5.8. For (A, g, u) = (2k+1, 6, 3), k > 1,a (6, 2k+1)-
cycle frame of type 6> can be obtained from a (6, A)-cycle frame of type 6% (A = 2, 3) from Lemma 5.7 by Construction 2.10.

For (A, g, u) # (2k+ 1,6, 3), k > 0, we apply Construction 2.10 with a (6, 1)-cycle frame of type g" from Theorem 5.8 and
a (6, 2)-cycle frame of type g" from Theorem 5.9 to get the required designs. O

Combining Theorems 3.4, 4.15 and 5.10, we have proved Theorem 1.5.

6. Constructions for ARCS

In this section, we shall will use cycle frames to construct almost resolvable k-cycle systems for k < 10. We first present
a general construction for an almost resolvable k-cycle system which can also be applied when k is odd.

Construction 6.1. Suppose there exists a (k, 1)-cycle frame of type (2k)! and a k-ARCS(2k + 1). Then there exists a
k-ARCS(2kt + 1).

Proof. Let (V, §, C) bea (k, 1)-cycle frame of type (2k)*. Suppose the point setbe V = Zy, and § = {Gy, Gy, ..., G_1}, Gi =
{i,i+¢t,....,i+ Qk— 1t},0 <i <t — 1. We denote these k holey parallel classes for the group G; by Q{ 1<j<k
For each group G;, we construct a k-ARCS(2k + 1) on the point set G; U {oo}. It has k almost parallel classes denoted by
M{ 1 < j < k, and a half-parallel class denoted by H;. It should be mentioned that the point co does not appear in H;. Let
P = {Pii | P,’ = Q,?UM{,I <j<kO0O<i<t—1}andH = {H; : 0 <i <t — 1}. Then P is the set of these required kt
almost parallel classes of a k-ARCS(2kt + 1) and H is the required half-parallel class. O

Lemma 6.2. There exists a (k, 1)-cycle frame of type (2k)" for k = 0 (mod 2), k > 8andt > 3.
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Proof. Starting from a (2, 1)-frame of type 2! from Theorem 2.2, we can obtain a (k, 1)-cycle frame of type (2k)! by
Construction 2.9, where the input design (k, 1)-RCGDD of type k? comes from Theorem 1.1. O

From Construction 6.1 and the above lemma, we have obtained the same conclusion as Theorem 1.7. Furthermore, we
shall prove the existence of an almost resolvable k-cycle system for k € {5, 7, 8, 9}. We start with k = 8. By Theorem 1.7,
we only need to construct a 8-ARCS(17) for recursive constructions.

Theorem 6.3. There exists a 8-ARCS(16t + 1) for t = 1and forallt > 3.

Proof. For t = 1, let the point set be V = Z;. The cycle set € of a 8-ARCS(16¢ + 1) contains the following 8 almost parallel
classes and one half-parallel class.

(0,16, 2,12,8,13,1, 14) (10,5,9,7,11,6, 15, 3)
(0,1,16,10,9, 15,8, 11) (4,3,12,6,7,13,14,5)
(0,3,6,1,5,2,7,4) (8,10, 14,9, 12,15, 11, 16)
(0,5,8,1,7,3,9,13) (2,6, 10, 15, 16, 4, 11, 14)
(0,6,4,8,2,9,1,10,) (3,11,5,12,7, 15, 13, 16)
(0,9,4,10,2,11,1, 12) (3,8,6,13,5, 16,7, 14)
(0,2,4,12,16,14,8,7) (1,3,13,11,9,6, 5, 15)
(0,8,9, 16, 6, 14, 4, 15) (2,3,5,7,10,11, 12, 13)
(1,2,15,14, 12,10, 13, 4)

Fort > 3, we start with a (8, 1)-cycle frame of type 16' from Lemma 6.2. Then apply Construction 6.1 with a 8-ARCS(17)
to get a 8-ARCS(16t + 1). O

For k = 5, 7, 9, we begin with the direct constructions for some designs of small orders. We also construct some (k, 1)-
cycle frames for later use.
Lemma 6.4. There exists a k-ARCS(2kt 4+ 1) for k € {5,7,9}and t € {1, 2, 3}.

Proof. Let X = {00} U Zy. The half-parallel class can be generated from (0, 2t, 4t, ..., 2(k — 1)t) by +2 mod 2kt. The
required kt almost parallel classes can be generated from the following initial base cycles by +2 mod 2kt for t € {1, 3} or

+4 mod 2kt fort =2. O
k=5,t=1. (0,1,2,6,3) (00,4,9,5,7)
t=2: (11,14,19,12,17) (00,0,1,2,3) (4,6,8,5,7)
(9, 13, 10, 16, 15)
(5, 13,11, 19, 15) (00, 1,6,0,10) (3,8,17,4,12)
(2,9,18,7,14)
t=3: (11,19,28,13,24) (6, 14, 23, 10, 22) (3,5,8,12,17)
(00, 15, 25, 29, 18) (9, 16, 26, 21, 27) 0,1,2,4,7)
k=7,t=1 (00,4,10,6,13,7,11) 0,1,2,5,3,12,9)
t= (00, 8,21, 13, 27, 20, 10) (4, 15,6, 23, 19, 25, 16) (5,9,7,17,22,12,18)
0,1,2,3,11, 26, 14)
(00,9, 20, 15, 24, 16, 19) (5,11, 14,6, 12,27, 17) (7,8, 13, 22, 25, 18, 23)
0,2,4,1,3,10,21)
t=3: (o0, 15,29,41,30,23,32) (5, 37, 22, 36, 20, 39, 31) (8,28, 16, 34,9, 26, 35)
(11, 14, 24, 13, 19, 38, 33) (6, 10, 17, 12, 25, 27, 40) 0,1,2,4,7,3,21)
k=9,t=1 0,1,2,5,3,6,10,15,7) (00,4, 14,8,17,11, 16,9, 13)
t= (00,9, 31, 20, 34, 10, 29, 12, 32) (0,27,19, 25,1, 14, 3, 30, 22)
(2,8,18,35,4,17, 26,11, 15) (5,21,13,28,7,23,33,24,6)
(00, 18, 34,28, 17, 31, 25, 35, 23) 4,6,8,13, 12, 11, 10, 20, 27)
(14, 21, 26, 19, 22, 33, 15, 32, 29) (0,3,1,5,2,7,9, 16, 24)
t=3: (13,24,14,22,31,19,29, 18, 32) (17, 34, 53, 38, 50, 35, 44, 51, 37)

(12, 28, 49, 27, 43, 20, 47, 21, 45)
(00, 23, 48, 30, 52, 39, 26, 46, 42)

(6,11, 16,9, 15, 33, 41, 10, 36)
(0,1,2,4,7,3,5,8,25)
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Theorem 6.5. There exists a (7, 1)-cycle frame of type 14" for any u > 4.

Proof. For u = 5, let the point set be V = Z;¢ and the group set be {{i,i+ 5, ...,i+ 65} : 0 < i < 4}. First, we can obtain
an initial holey 2-factor Fy from the four cycles: (11, 24, 47, 26, 64, 18, 62), (6, 13, 22, 8, 19, 31, 49), (1, 2,4, 7, 3,9, 17),
(16, 33,67, 28,69, 21,58) by +35 mod 70. Then, all the other 34 holey 2-factors can be generated from F, by
4+imod70,i=1,2,...,34

Foru € {4, 7, 10, 19}, we begin with a (3, 1)-cycle frame of type 2* from Theorem 1.3. Applying Construction 2.8 with
a (3 1 K7 which is 7-resolvable by Lemma 2.3, we can obtain a (7, 1)-cycle frame of type 14". For u € {6, 11}, we start with
a (5, 1)-cycle frame of type 2" from Theorem 4.15. Then we apply Construction 2.8 with a Cs : K7 which is 7-resolvable by
Lemma 2.3 to obtain a (7, 1)-cycle frame of type 14".

For u = 8, we first construct a (7, 1)-cycle frame of type 2%. Let the point set be V = Zj5 and the group set
be {{i,i + 8 : 0 < i < 7}. The required 8 holey 2-factors will be generated from the initial holey 2-factor
{(1,2,4,7,3,13,6), (9,10, 12,15,11,5,14)} by +i mod 16, i = 0, 1, 2, 3,4, 5,6, 7. Thus, a (7, 1)-cycle frame of type
148 can be obtained by applying Construction 2.8 since C; : K7 is 7-resolvable. For u € {9, 12, 14, 15, 18, 23}, we take a
({3, 5}, 1)-cycle frame of type 2" from Lemmas 4.4-4.6. Then we apply Construction 2.8 with a Cs : K7 and a C; : K7 which
are both 7-resolvable by Lemma 2.3 to obtain a (7, 1)-cycle frame of type 14".

For other values of u, we start from a PBD({4, 5, 6}, 1, u) from Theorem 2.1. Applying Construction 2.6, we can obtain a
(7, 1)-cycle frame of type 14%, where the input designs (7, 1)-cycle frames of types 144, 14° and 14° have been constructed
above. O

Theorem 6.6. There exists a (9, 1)-cycle frame of type 18" for any u > 4.

Proof. Take a (3, 1)-cycle frame of type 6* from Theorem 1.3. Applying Construction 2.8 with a (9, 1)-RCGDD of type 33
from Theorem 1.1, we can get a (9, 1)-cycle frame of type 18%. O

Theorem 6.7. There exists a k-ARCS(2kt 4+ 1) for k € {5,7,9}andt > 1.

Proof. Fort € {1, 2, 3}, these designs exist by Lemma 6.4. For t > 4, we start from a (k, 1)-cycle frame of type (2k)*
which exists by Theorems 4.15, 6.5 and 6.6. Applying Construction 6.1 with a k-ARCS(2k + 1) from Lemma 6.4, we can get
ak-ARCS(2kt +1). O

Combining Theorems 1.6, 6.3 and 6.7, we have proved Theorem 1.8.

7. Concluding remarks

In this paper, we have solved the existence of a (k, 1)-cycle frame with type g* for4 < k < 6. We also obtain some results
for k > 7. These results lead to some progress on the existence of a k-ARCS(2k + 1). Cycle frames also play a significant
role in the construction for the well-known Oberwolfach Problems, see [6,14,15]. Suppose m; > 3and o; > 1(1 <i < t)
are integers. Letn = Y ;_, m;. The Oberwolfach Problem OP(m]', m$?, ..., m{") is to determine whether the edges of K,
(for n odd) or K, minus a 1-factor (for n even) can be partitioned into isomorphic 2-factors such that each 2-factor consists
of exactly «; cycles of length m;. The problem was formulated by Ringel at a graph theory conference in 1967. With these
cycle frames constructed in this paper, we can obtain some new OPs by using the recursive constructions in [6,14,15]. For
example, we have solved the existence of an OP(5%,s') for 3 < s < 7 completely. Thus, it is necessary to research the
existence of cycle frames. Currently, we just get some results with small cycle size k. The general problem is to show the
existence of a (k, 1)-cycle frames forany k > 7and A > 1.
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