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a b s t r a c t

The PAF1 complex (PAF1C) is an evolutionarily conserved protein complex involved in transcriptional
regulation and chromatin remodeling. How the PAF1C is involved in animal development is still not well
understood. Here, we report that, in the nematode Caenorhabditis elegans, the PAF1C is involved in
epidermal morphogenesis in late embryogenesis. From an RNAi screen we identified the C. elegans
ortholog of a component of the PAF1C, CTR-9, as a gene whose depletion caused various defects during
embryonic epidermal morphogenesis, including epidermal cell positioning, ventral enclosure and
epidermal elongation. RNAi of orthologs of other four components of the PAF1C (PAFO-1, LEO-1, CDC-
73 and RTFO-1) caused similar epidermal defects. In these embryos, whereas the number and cell fate
determination of epidermal cells were apparently unaffected, their position and shape were severely
disorganized. PAFO-1::mCherry, mCherry::LEO-1 and GFP::RTFO-1 driven by the authentic promoters
were detected in the nuclei of a wide range of cells. Nuclear localization of GFP::RTFO-1 was
independent of other PAF1C components, while PAFO-1::mCherry and mCherry::LEO-1 dependent on
other components except RTFO-1. Epidermis-specific expression of mCherry::LEO-1 rescued embryonic
lethality of the leo-1 deletion mutant. Thus, although the PAF1C is universally expressed in C. elegans
embryos, its epidermal function is crucial for the viability of this animal.

& 2014 Elsevier Inc. All rights reserved.

Introduction

Temporally and spatially regulated gene transcription is essen-
tial during embryogenesis to produce diverse type of cells in a
coordinated manner. For the tightly regulated transcription,
recruitment of RNA polymerase II (Pol II) to the target genes and

modulation of the Pol II activity is crucial. In addition, chromatin
remodeling through alteration to nucleosomes by histone mod-
ification affects the DNA accessibility during transcription.

The Polymerase Associated Factor 1 (PAF1) complex, or PAF1C,
is a protein complex conserved in eukaryotes, which is involved in
multiple aspects of Pol II transcriptional regulation, including
transcriptional elongation, 30-terminal end processing, and histone
modification (Jaehning, 2010; Tomson and Arndt, 2013). This
complex was originally identified in Saccharomyces cerevisiae as
an RNA pol II interactor (Shi et al., 1996; Wade et al., 1996), and
consists of five proteins (Ctr9, Paf1/pancreatic differentiation 2,
Leo1, Cdc73/parafibromin and Rtf1) (Mueller and Jaehning, 2002;
Mueller et al., 2004). None of the PAF1C components are essential
for the viability of S. cerevisiae, but functional loss of the PAF1C
causes diverse phenotypes including sensitivity to cellular stres-
ses, which is linked to defects in chromatin and transcriptional
regulation (Kim and Levin, 2011).

Unlike in yeasts, the PAF1C in multicellular organisms are
essential for viability, and implicated in a variety of developmental
processes including the timing of flowering in plants (He et al.,
2004; Oh et al., 2004), and development of somite, heart, neuronal
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and craniofacial cartilage in zebrafish (Akanuma et al., 2007; Nguyen
et al., 2010; Zhang et al., 2013a). Additionally, the components of the
PAF1C affect Hedgehog, Notch and Wnt signaling (Akanuma et al.,
2007; Mosimann et al., 2006, 2009; Tenney et al., 2006). It also has
been shown that the PAF1C regulates cell proliferation, cell differ-
entiation, cell morphology, cell migration, maintenance of stem cells
and tumorigenesis (Bai et al., 2010; Carpten et al., 2002; Ding et al.,
2009; Langenbacher et al., 2011; Lin et al., 2008; Moniaux et al.,
2006; Ponnusamy et al., 2009; Shi et al., 1996; Zhang et al., 2013b).
Although all five PAF1C components are conserved throughout
eukaryotes, the human PAF1C contains another component Ski8/
Wdr61 that plays a role in mRNA decay (Zhu et al., 2005a). In
addition, Rtf1 in multicellular organisms is less tightly associated
with other PAF1C components (Adelman et al., 2006; Rozenblatt-
Rosen et al., 2005; Yart et al., 2005; Zhu et al., 2005a). Thus, during
the evolution of the PAF1C, alteration of the interaction within
components and with other interactors may have led to expansion
of the PAF1C function.

The nematode Caenorhabditis elegans provides an excellent sys-
tem to study genetic control of dynamic cellular behaviors because of
its highly reproducible development (Sulston et al., 1983). The body
elongation during C. elegans embryogenesis occurs through the
coordinated shape change, migration and rearrangement of epider-
mal cells, in the absence of cell proliferation and cell death (Sulston
et al., 1983). During this process, cytoskeletons of epidermal cells are
dynamically reorganized, and cell-to-cell adhesion and cell-to-ECM
interaction are modified (Chin-Sang and Chisholm, 2000; Labouesse,
2012; Lynch and Hardin, 2009; Michaux et al., 2001; Simske and
Hardin, 2001; Zhang and Labouesse, 2012). However, gene regula-
tions that control these dynamic behaviors of epidermal cells are still
not well understood.

In this study, we identified an ortholog of the PAF1C compo-
nents, Ctr9 (CTR-9) through an RNAi screen for genes involved in
epidermal morphogenesis in late embryogenesis of C. elegans. We
further identified other four orthologs of the PAF1C components
(PAFO-1, LEO-1, CDC-73, and RTFO-1) and demonstrated that the
PAF1C in C. elegans contributes to embryonic epidermal morpho-
genesis. This is the first functional analysis of the PAF1C in
C. elegans, and will provide the bases for further studies on how
this complex is involved in gene regulations in embryogenesis.

Materials and methods

C. elegans strains

C. elegans strains were derived from the wild-type Bristol strain
N2 (Brenner, 1974). Worms were grown at 24.5 1C, except for leo-1
(gk1081), which was maintained at 20 1C. The following alleles were
used; unc-119(ed3), leo-1(gk1081) (C. elegans Gene Knockout Con-
sortium), nT1[qIs51], xnIs17[dlg-1::GFPþþrol-6(su1006)] (Firestein
and Rongo, 2001; Totong et al., 2007), tjIs57[pie-1p-mCherry::histone
H2B þunc-119(þ)] (Toya et al., 2010), mcIs50[lin-26p::vab-10ABD::GFP,
myo-2p::GFP, pBluescript] (Gally et al., 2009), ruIs32[pAZ132::pie-1p::
GFP::histone H2B] (Praitis et al., 2001), edIs20[neuronal promoter::GFP]
(kindly provided by Dr. Joel Rothman), ccIs4251[myo-3p::GFP-LacZ
(NLS), myo-3p::mitochondrial::GFP, dpy-20(þ)] (Kostas and Fire,
2002), and mcIs46[dlg-1::RFPþþunc-119(þ)] (Diogon et al., 2007).

Transgenic worms were generated by microparticle bombard-
ment transformation (for constructing integrated GFP/mCherry mar-
ker lines) (Praitis et al., 2001) or microinjection (for tissue specific
rescue experiments) (Mello et al., 1991), using unc-119(ed3) as the
host strain. For transformation markers, Cbr-unc-119(þ) (Maduro
and Pilgrim, 1996), unc-119(þ) (pDP♯MM061B) (Maduro and Pilgrim,
1995), or sur-5::GFP (pTG96) (Yochem et al., 1998) were used. The
strains constructed in this study are listed in Supplementary Table S2.

Homology analysis

The amino acid sequence comparison was performed using the
protein-protein BLAST. The amino acid sequences of C. elegans
CTR-9, PAFO-1, LEO-1, CDC-73 and RTFO-1 correspond to GeneBank
entries NP_499090.1, NP_505925.1, NP_502135.1, NP_500465.3 and
NP_505473.1, respectively. The amino acid sequences of H. sapiens
hCtr9, hPaf1, hLeo1, hCdc73 and hRtf1 correspond to GeneBank
entries NP_055448.2, NP_061961.2, NP_620147.1, NP_078805.3 and
NP_055953.3, respectively.

Plasmid construction

The list of the plasmids constructed in this study is listed in
Supplementary Table S3.

For epidermal specific expression, we made a GATEWAY (Invitro-
gen) vector pYKN1R by substituting the pie-1 promoter and the pie-1
30–UTR of pMTN1R (Toya et al., 2010) to the lin-26 promoter
(Landmann et al., 2004) and the let-858 30–UTR. The epidermal
mCherry::TBB-2 expression plasmid (pYKN1R-tbb-2) was con-
structed by inserting the tbb-2 coding sequence into pYKN1R by LR
reaction (Supplementary Table S3). To construct transgenes that
express mCherry or GFP fusion proteins from authentic promoter,
genomic fragments were PCR-amplified and fused with the mCherry/
GFP encoding DNA fragments. The details about the genomic frag-
ments are described in Supplementary methods.

Tissue-specific rescue experiments

Transgenic worms were made by microinjection (Mello et al.,
1991) using the following combination of plasmids: the mCherry-
tagged transgene (leo-1p::mCherry::leo-1, lin-26p::mCherry::leo-1,
hlh-1p::mCherry::leo-1 or kal-1p::mCherry::leo-1), 5 μg/ml; an
injection marker sur-5::GFP plasmid pTG96, 70 μg/ml; an unc-119(þ)
plasmid pDP♯MM016B (Maduro and Pilgrim, 1995), 30 μg/ml; and
pBluescript II KS(�), 45 μg/ml. The extrachromosomal arrays of the
resultant transgenic worms were transferred to unc-119(ed3);leo-1-
(gk1081)/nT1[qIs51] animals by mating (Supplementary Table S2).
To score embryonic lethality, embryos of the gk1081 homozygotes
were obtained by dissecting the gonads, and after incubating for
24 h at 20 1C, arrested embryos among the SUR-5::GFP-positive
progeny were scored.

Antibody production

The DNA fragment coding the N-terminal region (1–91 a.a.) of
LEO-1 was PCR amplified from the cDNA clone yk1402b12 (kindly
provided by Dr. Yuji Kohara) and cloned into an expression vector
pColdI (Takara) containing the cspA promoter and 6xHis-tag. The
6xHis-LEO-1(91 a.a.) protein was expressed in E. coli BL21 (Invitro-
gen) at 15 1C, purified and used as the antigen. Affinity purified
rabbit anti-LEO-1 antibody was generated by Medical and Biolo-
gical Laboratories (Nagoya, Japan).

Western blot analysis for LEO-1

Young adult worms were placed on agar plates without bacteria
to reduce bacterial contamination. Then, eight wild-type worms,
eight leo-1(RNAi) worms and twenty leo-1(gk1081) worms were
added to 15 μl each of 1� sample buffer. The tubes were frozen
and boiled for 5 min, then, the lysates were electrophoresed on a
4–15% gradient SDS–PAGE TGX gel (Bio-Rad). Rabbit anti-LEO-1
antibody (1:1000) and rabbit anti-histone H3 antibody (1:20,000,
ab1791, Abcam) were used as primary antibodies. Horseradish
peroxidase (HRP)-conjugated donkey anti-rabbit antibody
(1:50,000, Jackson) was used as secondary antibodies, and the signals
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were detected with chemilluminescence (Chemi-Lumi One Super
Western blotting detection reagent, Nacalai Tesque). Signal was
detected by ImageQuant 400 (GE Healthcare) and processed by
Adobe Photoshop CS6 (Adobe).

RNAi

RNAi was carried out by the soaking method as described
(Maeda et al., 2001). dsRNA was prepared by in vitro transcription
from cDNA clones (yk1575g06 for ctr-9/B0464.2, yk725d11 for
pafo-1/C55A6.9, yk1402b12 for leo-1/B0035.11, yk1503c9 for
cdc-73/F35F11.1, yk843e11 for rtfo-1/F25B3.6; all cDNA clones were
gifts from Yuji Kohara). L4 worms were soaked in 2 mg/ml dsRNA
soaking solutions and incubated at 24.5 1C for 24 h. The worms
were then recovered and cultured at 24.5 1C. Phenotypes of the
embryos were analyzed at 24 h after the recovery.

Microscopy

Fluorescence and Nomarski images of C. elegans embryos were
acquired as described (Toya et al., 2011). For time-lapse microscopy,
embryos expressing fluorescently tagged proteins in Egg Buffer were
mounted on 2% agarose pads. For each embryo, 15–60 Z-series
images (0.5 μm steps or 1 μm steps) were acquired. The fluorescent
Z-series images were projected using a maximum intensity algorithm
of MetaMorph software (Molecular Devices) to produce a single
integrated image. Images were processed with image J (NIH) or
Adobe Photoshop CS6.

Time-lapse Nomarski microscopy was performed using Olympus
BX63 microscope with iXonEMþ EM-CCD camera (ANDOR) and
PlanApo N X60 oil NA1.42 objective lens. Fluorescence confocal micro-
scopy was performed using the CSU-X1 spinning-disk confocal system
(Yokogawa Electric Corp) mounted on Zeiss Axioplan2 microscope
with iXonEMþ EM-CCD camera (ANDOR) and C-Apochromat X63
water NA1.2 objective lens. Images of nuclear localization of fluores-
cently tagged proteins were acquired using the CSU-X1 spinning-disk
confocal system mounted on Olympus IX71 microscope with Orca-R2
12 bit/16 bit cooled CCD camera (Hamamatsu Photonics), UPlanSApo
60X silicone oil NA1.3 objective lens and UPlanSApo 100X NA1.4
objective lens. For imaging of actin and tubulin, the Olympus DSU
(Disk Scanning Unit) system attached to Olympus BX61 microscope
with PlanApo N 60X oil NA1.42 objective lens was used. All microscope
systems were controlled by MetaMorph (Molecular Devices) software.

Results

The PAF1C is required for late embryogenesis of C. elegans

To identify genes involved in embryonic morphogenesis in C.
elegans, an RNAi screen was performed. We previously identified
�800 embryonic lethal genes by a large-scale RNAi analysis
(Maeda et al., 2001, and our unpublished data). The terminal RNAi
phenotypes of these embryonic lethal genes were analyzed with
the differential interference contrast (DIC) microscope and 60 of
them showed late morphogenetic defects, such as limited elonga-
tion or body rupture. These genes were further analyzed by DIC
live imaging, and the B0464.2 gene was identified as a gene that
caused a reproducible body elongation defect at a high penetrance.

A homology analysis revealed that B0464.2 is a C. elegans
ortholog of Ctr9 (hereafter, CTR-9), a component of the PAF1
complex (PAF1C) (Chu et al., 2013) (Table 1). The PAF1C is an
evolutionarily well conserved protein complex, and consists of five
components, Paf1, Ctr9, Leo1, Cdc73 and Rtf1 (Mueller and
Jaehning, 2002; Mueller et al., 2004). In addition to CTR-9, all
other components of the PAF1C were identified in the C. elegans

genome based on the sequence similarity (Paf1 ortholog C55A6.9/
PAFO-1, Leo1 ortholog B0035.11/LEO-1, Cdc73 ortholog F35F11.1/
CDC-73, and Rtf1 ortholog F25B3.6/RTFO-1) (Table 1).

To test whether the components of the C. elegans PAF1C work as a
complex in late embryogenesis, RNAi phenotypes for each component
were compared by the time-lapse DIC microscopy. Similar to the RNAi
of the ctr-9 gene, RNAi knockdown of the four other genes caused
morphogenesis defects in late embryogenesis (Fig. 1, Table 1,
Supplementary Table S1). For all five genes, embryogenesis proceeded
slower than the control embryos; eventually the embryos reached to
morphogenesis stage, but their body elongation process was severely
affected (Fig. 1, Supplementary Table S1). While the majority of ctr-9,
pafo-1, leo-1, and rtfo-1 RNAi embryos exhibited aberrant body
elongation (Fig. 1B–D and F), �60% of the cdc-73(RNAi) arrested at
earlier stage without significant body shape change (Fig. 1E,
Supplementary Table S1). Thus, all five components of the PAF1C are
essential for the progression of late embryogenesis. The slight differ-
ences of the morphogenesis phenotypes and penetrance imply that
each component of the PAF1C may have distinct functions, either as a
component of the PAFC or in addition to their role as a PAF1C
component. It is also possible that the phenotypic differences were
caused by the variable efficiency of RNAi, but at least for pafo-1, leo-1
and rtfo-1, RNAi reduced the corresponding proteins to the undetect-
able level (see below), thus partial RNAi effects were unlikely.

Loss of the PAF1C function does not reduce general gene expression

In other organisms, it has been shown that the PAF1C interacts with
Pol II to modulate gene transcription (Jaehning, 2010; Tomson and
Arndt, 2013). To examine whether the late embryonic defects by RNAi
knockdown of the PAF1C components were caused by general reduc-
tion of gene expression, expression of cell-type specific GFP markers
were examined in these embryos. In all ctr-9(RNAi), pafo-1(RNAi), leo-1
(RNAi), cdc-73(RNAi) and rtfo-1(RNAi) embryos, the GFP signals of the
cell type specific markers (neuronal marker, neuronal promoter::GFP;
muscle marker, myo-3p::NLS::GFP; and epithelial marker, dlg-1p::DLG-
1::GFP) were detected at the equivalent levels with the wild type
(Fig. 2A–F, and data not shown). Thus, the loss of the PAF1C component
did not cause general reduction of gene expression, nor affect cell
specification at least for neurons, muscles and epithelia.

The PAF1C is involved in positioning and shape change of epidermal
cells

Since embryonic body elongation is driven by the epidermal
cell shape change and migration, we examined the epidermal
cell behaviors by live-imaging using a worm strain expressing an
epithelial junction marker, DLG-1::GFP (Fig. 2E and F, Supplementary
Fig. S1). In the wild-type embryos, DLG-1::GFP-positive epidermal

Table 1
Components of the PAF1C in C. elegans are required for embryogenesis.

Name of the PAF1C component Homologya

(%)
Embb (%) (N)

S.
cerevisiae

H. sapiens C. elegans

Ctr9 hCtr9 CTR-9 (B0464.2) 43 98.2%
(N¼395)

Paf1 hPaf1 PAFO-1 (C55A6.9) 34 98.6% (N¼217)
Leo1 hLeo1 LEO-1 (B0035.11) 55 26.2%

(N¼432)
Cdc73 hCdc73 CDC-73 (F35F11.1) 29 100% (N¼351)
Rtf1 hRtf1 RTFO-1 (F25B3.6) 36 94.1% (N¼461)

a Homology between H. sapiens and C. elegans orthologs.
b Embryonic lethality by RNAi knockdown in C. elegans. Control RNAi caused

2.0% embryonic lethality (N¼304); N: numbers of embryos scored.
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cells were formed dorsally, and they move ventrally to enclose the
embryos. After enclosure, epidermal cells elongate in the anterior-
posterior direction, which leads to the body elongation. In the
ctr-9(RNAi), pafo-1(RNAi), leo-1(RNAi), cdc-73(RNAi) and rtfo-1(RNAi)
embryos, position and cell shape of epidermal cells were aberrant
during epidermal morphogenesis (Fig. 2F, Supplementary Fig. S1).
The severity and the timing of epidermal defects were variable.
While most embryos showed defects in ventral enclosure of epider-
mal cells and epidermal elongation, some RNAi embryos showed
leading cell movement to ventral midline.

To further analyze the defects in epidermal cell patterning, nuclei
of seam cells, the lateral subset of epidermal cells, were visualized
with CEH-16::GFP (Cassata et al., 2005). In the wild type, nuclei of ten
seam cells are linearly aligned in each lateral side of embryos (Fig. 2G,
I, and K). In ctr-9(RNAi) embryos, the number of the seam cell nuclei
was equivalent to the wild type (Fig. 2H, J, and K). However, they are
not linearly arranged from the onset of the morphogenesis stage

(Fig. 2H), and the cell misplacement became more severe in later
stages (Fig. 2J). Misplacement of epidermal cells was already evident
at the time when the epidermal cells started expressing CEH-16::GFP
or DLG-1::GFP, thus the cell positioning defect might have initiated
before differentiation of epidermal cells.

These results suggest that the PAF1C does not affect epidermal
cell proliferation and specification, but is required for cell shape
change and positioning of epithelial cells.

CTR-9 is required for epidermal microtubule organization during
morphogenesis

Actin and microtubule cytoskeletons are involved in epidermal
cell shape change and migration in C. elegans embryogenesis
(Diogon et al., 2007; Gally et al., 2009; Piekny et al., 2003; Priess
and Hirsh, 1986; Williams-Masson et al., 1997, 1998; Wissmann et
al., 1997). To examine whether cytoskeleton in epithelial cells was

Fig. 1. The PAF1C is required for late embryogenesis of C. elegans. Time-laps DIC micrographs of (A) control, (B) ctr-9(RNAi), (C) pafo-1(RNAi), (D) leo-1(RNAi), (E) cdc-73 (RNAi)
and (F) rtfo-1(RNAi) embryos. Scale bar: 10 μm. Times in the pictures indicate minutes after the first picture (left panel, two-cell stage embryos).
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affected in the RNAi embryos, we analyzed the actin and micro-
tubule organization in epidermal cells by live-imaging during
embryonic morphogenesis.

To visualize F-actin localization in epidermal cells, an actin
marker VAB-10(ABD)::GFP was used (Gally et al., 2009). During
ventral enclosure, F-actin detected with VAB-10(ABD)::GFP was
accumulated at the leading edge of the ventral epidermal cells
(Patel et al., 2008) (Fig. 3A). During the elongation stage, actin
filaments in the dorsal and ventral epidermal cells were oriented

circumferentially (Gally et al., 2009; Priess and Hirsh, 1986)
(Fig. 3B). Although the epidermal cell shape and migration were
affected in the ctr-9(RNAi) embryos, VAB-10(ABD)::GFP accumula-
tion at the leading edge during ventral closure and circumferential
actin bundles in epidermal cells were detected (Fig. 3C and D).

Microtubules in epidermal cells during embryonic morphogen-
esis were visualized by mCherry::TBB-2 (β-tubulin) driven by the
epidermal promoter, lin-26p (Landmann et al., 2004). As reported
previously, microtubules aligned circumferentially in dorsal and
ventral epidermal cells in wild-type embryos at the elongation
stage (Priess and Hirsh, 1986) (Fig. 3E). In contrast, randomly
oriented microtubules and aggregated mCherry::TBB-2 signals
were often observed in ctr-9(RNAi) embryos during epidermal
elongation process (Fig. 3F).

These results imply that the loss of the PAF1C function affects
the alignment of microtubules more severely than actin filaments
in epidermal cells during the morphogenesis stage.

A deletion allele of leo-1 causes maternal effect embryonic lethality

To further analyze the requirement of the PAF1C in embry-
ogenesis, a deletion allele for leo-1, gk1081, was used, which was
isolated by the C. elegans Gene Knockout Consortium. The leo-1
locus encodes a predicted polypeptide of 430 amino acids, and the
gk1081 allele deleted 627 bp that would result in a C-terminally
truncated protein product of 137 amino acids (intrinsic 132 a.a.
with extra 5 a.a.) (Fig. 4A). A Western blot analysis using the anti-
LEO-1 antibody raised against N-terminus of LEO-1 detected a
65 kDa band that migrated slower than the predicted molecular
masse (48 kDa) in wild-type animals (Fig. 4B). This band appar-
ently corresponded to the LEO-1 protein because it was not
detected in leo-1(RNAi) and the leo-1(gk1081) animals (Fig. 4B).
Slower mobility of Leo1 protein in SDS–PAGE was also reported for
Leo1 orthologs in yeast and humans (Magdolen et al., 1994;
Mueller and Jaehning, 2002; Rozenblatt-Rosen et al., 2005). In
the Western blot of the leo-1(gk1081) mutant extract, a weak
22 kDa band was detected, which was likely to correspond to the
truncated LEO-1(gk1081) polypeptide (Fig. 4B).

We found that leo-1(gk1081) mutant is maternal effect embryo-
nic lethal. The gk1081 homozygotes from gk1081/þ heterozygotes
were viable (embryonic lethality; 1.8%, n¼552) but showed partial
sterility and defective vulvae (data not shown). The gk1081
homozygous progeny obtained by dissecting the gonads of these
animals were mostly embryonic lethal with epidermal morpho-
genesis defects (82%, n¼101) (Fig. 4D), which is consistent with
the phenotype of leo-1(RNAi) embryos. This maternal effect
embryonic lethality was rescued by integrated transgenes tjIs279-
[leo-1p::mCherry::leo-1] or tjIs308[leo-1p::GFP::leo-1] that contains
the leo-1 genomic region with an in-frame mCherry or GFP
insertion, confirming that this phenotype is caused by the loss of
the LEO-1 function.

Epidermal expression of mCherry::LEO-1 rescues embryonic lethality
of the leo-1(gk1081) mutant

As mentioned above, tjIs279[leo-1p::mCherry::leo-1] transgenes
(Fig. 4A) rescued embryonic lethality of leo-1(gk1081) homozygous
animals, thus, the fusion proteins were regarded functional
and their expression pattern was expected to reflect that of the
endogenous LEO-1. In embryos that have tjIs279[leo-1p::mCherry::
leo-1], mCherry::LEO-1 was detected in the nuclei of virtually all
cells throughout embryogenesis from the one-cell stage (Figs. 5B
and 6B).

Since leo-1(RNAi) and leo-1(gk1081) both exhibited defects in
epidermal morphogenesis, we next asked whether expression of
LEO-1 in epidermal cells was sufficient to rescue the mutant

Fig. 2. The PAF1C is involved in positioning and shape change of epidermal cells.
GFP marker expression in control (A, C, E, G, and I) and ctr-9(RNAi) (B, D, F, H, and J)
embryos. (A and B) Neuronal marker (neuronal promoter::GFP) at comma �1.5-
fold stage. (C and D) Muscle cell marker (myo-3p::NLS::GFP) at 2-fold�pretzel
stage. (E and F) Epithelial cell junction marker (DLG-1::GFP) at bean�comma stage.
Seam cell nuclei marker (CEH-16::GFP) at ventral enclosure stage (G and H) and
comma �1.5-fold stage (I and J). Images of the control and ctr-9(RNAi) embryos
were captured and processed with the same condition. In (G) and (H), two CEH-16::
GFP-positive caudal seam cells (T cells) are out of focus, thus 18 CEH-16-positive
cells are visible. (K) Average number of seam cells scored using the CEH-16::GFP
signal at comma stage in the control and ctr-9(RNAi) embryos (n¼10). The data
represent the mean7standard deviation. Scale bar: 10 μm.
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phenotype. The mCherry::leo-1 coding fragment was expressed
under promoters that drive expression in specific cell types
(epidermal promoter, lin-26p; neuronal precursor promoter, kal-1p;
and muscle promoter, hlh-1p). Expression of mCherry::LEO-1
under the control of the epidermal promoter (lin-26p) rescued the
leo-1(gk1081) lethality, as efficient as the authentic leo-1 promoter
(Fig. 4C). On the other hand, expression of mCherry::LEO-1 under
the muscle promoter or the neuronal promoter did not rescue
embryonic lethality (Fig. 4C). Thus, although LEO-1 is expressed in
a wide range of cells during embryogenesis, its expression in
epidermal cells is crucial for the viability of the animal.

Components of the PAF1C localize to the nuclei of a wide range of cells
during embryogenesis

In addition to LEO-1, expression patterns of PAFO-1 and RTFO-1
were analyzed by constructing transgenic insertion strains in
which PAFO-1::mCherry or GFP::RTFO-1 were expressed under
the control of authentic promoters. Similar to LEO-1, PAFO-1::
mCherry was detected in the nuclei of virtually all embryonic cells
from the one-cell stage (Fig. 5A, and data not shown). GFP::RTFO-1
was also detected in nuclei of a wide range of cells but only after
�30-cell stage and except for germ cells (Fig. 5C, and data not
shown). Thus, these three components of the PAF1C were co-
expressed in the majority of somatic cells during embryogenesis.

Subnuclear localization of PAFO-1::mCherry, mCherry::LEO-1
and GFP::RTFO-1 were examined using GFP::histone H2B or

mCherry::histone H2B as a comparison. PAFO-1::mCherry,
mCherry::LEO-1 and GFP::RTFO-1 were not uniformly present
within the nuclei, but enriched in discrete nuclear regions
(Fig. 5A–C). Notably, these proteins were only partially colocalized
with histone signals within the nuclei (Fig. 5A–C). A larger fraction
was colocalized within the nuclei for the combinations [GFP::LEO-1
and PAFO-1::mCherry] and [GFP::RTFO-1 and PAFO-1::mCherry],
whereas GFP::RTFO-1 appeared more uniformly distributed in the
nuclei than PAFO-1::mCherry (Fig. 5D and E).

To analyze the cell cycle-dependent change of the localization of
the PAF1C, mCherry::LEO-1 was observed by live-imaging of
1-cell stage embryos, in which the nuclear size is much larger than
late embryos and localization change can be readily observed. Before
mitosis, the intense mCherry::LEO-1 signal was detected within the
nuclei. Upon mitotic nuclear envelope breakdown (NEBD), the
nuclear mCherry::LEO-1 signal apparently diffused within the cyto-
plasm (Fig. 5F). During metaphase through anaphase, mCherry::LEO-1
was not detected on condensed chromosomes. In telophase when
nuclear envelope is reassembled, mCherry::LEO-1 signal became
detectable again in the nuclei (Fig. 5F). These results suggest that
the vast majority of LEO-1 is not tightly associated with chromatins,
and it is actively transported to the nucleus from the cytoplasm.

Interdependency of the nuclear localization of the PAF1C components

In yeast, it has been shown that the overexpression or depletion
of each component of the PAF1C can influence the level of other

Fig. 3. F-actin and microtubule organization in epidermal cells of control and ctr-9(RNAi) embryos. Images of F-actin marker, VAB-10(ABD)::GFP in the control (A and B) and
ctr-9(RNAi) (C and D) embryos at ventral enclosure (A and C) and bean-comma (B and D) stage. Magnified images of the boxed areas are shown in the right panels. (E and F)
Images of mCherry::TBB-2 (β-tubulin) (top), DLG-1::GFP (epidermal cell junction) (middle), and merged images of the mCherry::TBB-2 (green) and DLG-1::GFP (magenta)
(bottom) in the control (E) and ctr-9(RNAi) (F) embryos at comma stage. Magnified images of the boxed areas are shown in the right panels. Scale bar: 10 μm.
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components (Mueller et al., 2004; Shi et al., 1997). Therefore, we
asked whether the depletion of each PAF1C component affect the
protein level or subcellular localization of other components in
C. elegans. The subcellular localization of PAFO-1::mCherry, mCherry::
LEO-1 and GFP::RTFO-1 were analyzed in embryos in which one of
the components of the PAF1C was depleted by RNAi (Fig. 6). In
pafo-1(RNAi), leo-1(RNAi) and rtfo-1(RNAi) embryos, corresponding
fluorescently tagged proteins (PAFO-1::mCherry, mCherry::LEO-1
and GFP::RTFO-1, respectively) became undetectable, confirming
the efficiency of RNAi depletion (Fig. 6G, K, and R).

In ctr-9(RNAi) and leo-1(RNAi) embryos, nuclear PAFO-1::
mCherry was significantly decreased and while cytoplasmic
fraction increased (Fig. 6D and J). In cdc-73(RNAi) embryos,
PAFO-1::mCherry was evenly detected in cytoplasm and nuclei
(Fig. 6M). In contrast, in rtfo-1(RNAi) embryos, nuclear localiza-
tion of PAFO-1::mCherry was unaffected (Fig. 6P). Similarly, in
ctr-9(RNAi) and pafo-1(RNAi) embryos, mCherry::LEO-1 was
mainly detected in the cytoplasm, but not in the nuclei
(Fig. 6E and H). In cdc-73(RNAi) embryos, nuclear mCherry::
LEO-1 was decreased and it was detected evenly both in
cytoplasm and nuclei (Fig. 6N). As seen for PAFO-1::mCherry,
the nuclear localization of mCherry::LEO-1 was unaffected in
rtfo-1(RNAi) embryos (Fig. 6Q). These results suggest that PAFO-1
and LEO-1 localize to the nuclei independently of RTFO-1, but
dependent on other three components.

Unlike mCherry::LEO-1 and PAFO-1::Cherry, nuclear localiza-
tion of GFP::RTFO-1 was unaffected in leo-1(RNAi), pafo-1(RNAi),
ctr-9(RNAi) and cdc-73(RNAi) embryos (Fig. 6F, I, L, and O). These

results suggest that RTFO-1 localizes in nuclei independently of
other components of the PAF1C.

Taken together, we speculate that four components of the
PAF1C except RTFO-1 form a subcomplex to be transported to
nuclei in an interdependent manner; on the other hand, RTFO-1
can localize to nuclei independently of other components (Fig. 6S).

Discussion

The PAF1C is an evolutionarily conserved protein complex that
consists of Paf1, Ctr9, Rtf1, Cdc73 and Leo1 (Mueller and Jaehning,
2002; Mueller et al., 2004). The studies mainly in yeasts and
mammalian culture cells demonstrated that the PAF1C is involved in
multiple aspects of RNA pol II transcriptional regulation and histone
modifications (Jaehning, 2010; Tomson and Arndt, 2013). Whereas the
PAF1C is dispensable for yeast (Chang et al., 1999; Porter et al., 2002;
Shi et al., 1996, 1997), recent studies revealed that it is required in
diverse biological processes including stem cell pluripotency, cell cycle
regulation, and development (Ding et al., 2009; Mosimann et al., 2009;
Ponnusamy et al., 2009; Porter et al., 2002; Tenney et al., 2006). In this
study, we performed the first functional analysis of the PAF1C in the
development of C. elegans, and demonstrated its requirement in
various processes of epidermal morphogenesis, including epidermal
cell positioning, ventral enclosure and epidermal elongation.

While components of the PAF1C were present in the majority of
cells throughout C. elegans embryogenesis, its expression in epidermal
cells was crucial for the viability of this animal. While epidermal cell

Fig. 4. Analysis of the leo-1(gk1081) mutant. (A) Structures of genomic translational mCherry/GFP fusion constructs of leo-1 and the deleted region of the gk1081 mutant.
(B) Western blotting of the LEO-1 protein. Expression of the LEO-1 protein in young adult worms were detected by rabbit anti-LEO-1 antibody. Extracts from control (lane 1),
leo-1(RNAi) (lane 2) and leo-1(gk1081) (lane 3) young adult worms were used. Rabbit anti-histone H3 antibody was used as a loading control. The asterisk indicates a faint
band that corresponds to the truncated LEO-1 protein in the gk1081 mutant. (C) Tissue-specific rescue experiments of the leo-1(gk1081) mutant. mCherry::LEO-1 was
expressed in the gk1081 mutant under the control of the authentic promoter (leo-1p), an epidermal specific promoter (lin-26p), a muscle specific promoter (hlh-1p) and a
neuronal cell specific promoter (kal-1p). Two independent transgenic lines (♯1 and ♯2) were scored for each transgene construct. N: number of animals analyzed.
(D) Terminal phenotype of the progeny of leo-1(gkl081) homozygotes. Scale bar: 10 μm.
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fate determination was not apparently inhibited by the loss of the
PAF1C components, circumferentially oriented microtubules in the
dorsal and ventral epidermal cells during epidermal morphogenesis

(Priess and Hirsh, 1986) were disorganized in ctr-9(RNAi) embryos.
Thus, one possibility of the role of the PAF1C might be modulating
expression of microtubule regulators by controlling RNA pol II

Fig. 5. Nuclear localization of PAFO-1::mCherry, mCherry/GFP::LEO-1 and GFP::RTFO-1 during embryogenesis. Live fluorescent images of the integrated transgenic worms that
express mCherry or GFP-tagged PAF1C components under the control of authentic promoters. Comma stage embryos coexpressing GFP- and mCherry-tagged proteins: (A) PAFO-1::
mCherry and GFP::histone H2B, (B) mCherry::LEO-1 and GFP::histone H2B, (C) GFP::RTFO-1 and mCherry::histone H2B, (D) GFP::LEO-1 and PAFO-1::mCherry, and (E) GFP::RTFO-1
and PAFO-1::mCherry. Magnified images of single somatic nuclei (boxed area) and single germ cells (arrowheads) are shown in the right panels. (F) Time series images of mCherry::
LEO-1 (top) and GFP::histone H2B (bottom) during the first cell division. Prophase (left), metaphase (middle) and telophase (right). Scale bar: 10 μm.
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transcription or by affecting histone modifications. It remains unclear
whether the microtubule defects at elongation stage are causative or a
result of earlier defects in epidermal cell positioning.

We showed in C. elegans late embryos that PAFO-1, LEO-1 and
RTFO-1 tagged with GFP or mCherry were unevenly localized in the
nuclei of a wide range of cells. This finding is consistent with the

Fig. 6. Interdependency of nuclear localization of the PAF1C components. Fluorescent live images of the comma-stage embryos: PAFO-1::mCherry (A, D, G, J, M, and P),
mCherry::LEO-1 (B, E, H, K, N, and Q) and GFP::RTFO-1 (C, F, I, L, O, and R). Control (A–C), ctr-9(RNAi) (D–F), pafo-1(RNAi) (G–I), leo-1(RNAi) (J–L), cdc-73(RNAi) (M–O) and rtfo-
1(RNAi) (P–R). Magnified images of the boxed areas are shown in the right panels. Images of control and RNAi embryos were captured and processed with the same
condition. Scale bar: 10 μm. (S) A model of the interaction between the PAF1C components. Four components of the PAF1C, CTR-9, PAFO-1, LEO-1 and CDC-73, make a
subcomplex and localize to nucleus in an interdependent manner. RTFO-1 localizes to nucleus independently of other components.

Y. Kubota et al. / Developmental Biology 391 (2014) 43–53 51



report in other organisms that the PAF1C localizes at transcriptionally
active chromatin loci (Adelman et al., 2006; Chen et al., 2009; Kim
et al., 2010; Rozenblatt-Rosen et al., 2009). For example, in Drosophila
salivary glands, Paf1 and Rtf1 are colocalized with RNA pol II at
actively transcribed loci on chromatins (Adelman et al., 2006). On the
other hand, the vast majority of nuclear PAF1C were not tightly
associated with chromatins at least in early C. elegans embryos,
which may correlate to the fact that transcription is globally
repressed in early C. elegans embryos (Edgar et al., 1994).

The nuclear localization of PAFO-1 and LEO-1 was dependent on
other PAF1C components except RTFO-1. On the other hand, RTFO-1
localized to nuclei independently of other PAF1C components. In
addition, whereas PAFO-1 and LEO-1 were expressed in virtually all
cells from the 1-cell stage, RTFO-1 was not expressed before �30
cells and in germline cells. Thus, RTFO-1 and other four components
apparently behave differently during embryogenesis. We speculate
that nuclear localization of PAFO-1, LEO-1, CTR-9 and CDC-73 are
interdependent, probably by forming a subcomplex. CDC-73 contains
a nuclear localization signal that is conserved in Cdc73 orthologs in
other organisms (Bradley et al., 2007; Hahn and Marsh, 2005), which
may contribute to the nuclear localization of the potential subcom-
plex. RTFO-1 is likely to be independently transported to nuclei, then
forms the complete PAF1C by associating with the subcomplex,
which promotes epidermal morphogenesis in C. elegans.

Our observations of the distinct behavior of RTFO-1 from other
four PAF1C components are consistent with the findings in other
organisms (Adelman et al., 2006; Kim et al., 2010; Langenbacher
et al., 2011; Rozenblatt-Rosen et al., 2005). In Drosophila, recruit-
ment of Paf1 and Rtf1 to transcriptionally activated Hsp70 loci is
independently controlled (Adelman et al., 2006). Biochemical
analysis showed that hRtf1 was not included in the same fraction
as that of hCdc73/hPaf1 in human cells (Rozenblatt-Rosen et al.,
2005). Furthermore, in human cells, it was reported that some
PAF1 complexes contain hSki8 instead of hRtf1 (Ponnusamy et al.,
2009; Zhu et al., 2005b). Thus, in some C. elegans cells, such as the
early embryonic cells before �30 cell stage or in germline cells in
which RTFO-1 is undetected, it is plausible the PAF1 subcomplex
composed of PAFO-1, LEO-1, CTF-9 and CDC73 may function
independently of RTFO-1, possibly by associating other factor(s).

Our study also demonstrated that the loss of each component of
the PAF1C caused similar epidermal morphogenesis phenotypes, but
their severity and penetrance were different for each gene. Interest-
ingly, differential phenotypes by the loss of the each PAFC compo-
nent have also been reported in zebrafish in which the PAF1C is
involved in cardiac specification and heart morphogenesis (Nguyen
et al., 2010). Phenotypes caused by the knockdown of individual
component of the PAF1C were overlapping but distinct, and loss of
Rtf1 function resulted in the most severe defects in the specification
of cardiac precursors (Langenbacher et al., 2011). Our results and the
report in zebrafish raise the possibility that, while all PAF1C
components are required for the PAF1C function, each component
may have distinct roles in regulating gene expression, possibly by
affecting the stability of the complex or specific protein-protein/
protein-DNA/RNA interactions. Alternatively, these proteins may have
additional function(s) unrelated to the PAF1C. Further studies on the
role of each component and that of the PAF1C as a whole will be
needed to understand how these proteins participate in the regula-
tion of gene expression during development.
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