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Abstract

In this paper we prove two multiset analogs of classical results. We prove a multiset analog
of Lov5asz’s version of the Kruskal–Katona Theorem and an analog of the Bollob5as–Thomason
threshold result. As a corollary we obtain the existence of pebbling thresholds for arbitrary graph
sequences. In addition, we improve both the lower and upper bounds for the ‘random pebbling’
threshold of the sequence of paths.
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1. Introduction

Throughout this paper G will denote a simple connected graph, and n= n(G) will
denote the number of its vertices. The vertex set of G will be the set [n] = {1; 2; : : : ; n}.

1.1. Pebbling

Suppose t pebbles are distributed onto the vertices of a graph G. A pebbling step
[v; v′] consists of removing two pebbles from one vertex v and then placing one pebble
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at an adjacent vertex v′. We say a pebble can be moved to a vertex z, the root vertex,
if we can repeatedly apply pebbling steps so that in the resulting distribution z has at
least one pebble.

For a graph G, a distribution D of pebbles onto the vertices of G, and a ‘root’ vertex
z, we say that D is z-solvable if it is possible to move a pebble to z; otherwise, D is
z-unsolvable. Also D is solvable if it is z-solvable for all z, and unsolvable otherwise.

The pebbling number pn(G) is the smallest integer t such that all distributions of
t pebbles to the vertices of G are solvable. In this paper, we are concerned instead
with the minimum t such that almost all distributions of t pebbles to the vertices of
G are solvable. The interested reader is encouraged to read [6] for the history of and
the many results on graph pebbling.

1.2. Random distributions

In this paper we are interested in the probabilistic pebbling model, in which the peb-
bling distribution is selected uniformly at random from the set of all distributions with
a prescribed number t of pebbles (we emphasize that the pebbles are unlabeled and the
vertices are labeled). This is certainly not the only possible random pebbling model;
for instance, one could consider the model obtained by placing each of the pebbles
uniformly at random on a vertex of G—this model will exhibit very diKerent behavior.

We will study thresholds for the number t of pebbles so that if t is essentially
larger than the threshold, then a random distribution is almost surely solvable, and if
t is essentially smaller than the threshold, then a random distribution is almost surely
unsolvable. Formally, our notion of a pebbling threshold is deLned as follows. Let N
denote the set of non-negative integers, and let Dn : [n]→N denote a distribution of
pebbles on n vertices. For a particular function t = t(n), we consider the probability
space Dn;t of all distributions Dn of size t, i.e. with t =

∑
i∈[n] Dn(i) pebbles, with each

such distribution being equally likely. Given a graph sequence G= (G1; : : : ; Gn; : : :),
where Gn has vertex set [n], denote by PG(n; t) the probability that an element of Dn;t

chosen uniformly at random is Gn-solvable. We call a function t = t(n) a threshold
for G, and write t ∈ th(G), if the following two statements hold for every sequence
!=!(n) tending to inLnity (we write ! � 1): (i) PG(n; t!)→ 1 as n→∞, and (ii)
PG(n; t=!)→ 0 as n→∞. (Here and elsewhere, if t! and t=! are not integers, they
should be interpreted as taking on the nearest integer value.) Of course, the deLnition
mimics the important threshold concept in random graph theory. Unlike the situation in
random graphs, however, it did not seem obvious that even “natural” families of graphs
have pebbling thresholds, although the existence of a threshold for any graph sequence
is conjectured in [6]. The random pebbling model is also studied in [4], where the
following result is proved.

Theorem 1.1. For any �¿0 and any graph sequence G= (G1; : : : ; Gn; : : :), where
V (Gn) = [n] for each n; th(G)⊆Q(n1=2)∩ o(n1+�).

In other words, if there is a threshold function t(n) for a graph sequence, then
t(n) cannot be essentially smaller than n1=2 (the threshold function for the family of
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complete graphs) or as large as n1+�. Our results in this paper serve to improve the
upper bound.

Better bounds were obtained in [4] for graphs satisfying various diameter and con-
nectivity conditions, and threshold functions were found for the classes of stars and
wheels. Also in [4], bounds were found for the classes of paths and cycles.

Theorem 1.2. (a) For the sequence of paths P= (P1; P2; : : : ; Pn; : : :), we have
th(P)⊆Q(n)∩ o(n1+�) for every �¿0.

(b) For the sequence of cycles C= (C1; C2; : : : ; Cn; : : :), we have th(C)⊆Q(n)∩
o(n1+�) for every �¿0.

Our purpose in this paper is Lrstly to show that every graph sequence does have a
threshold, and secondly to prove much tighter bounds for the threshold functions of
classes of paths and cycles.

Theorem 1.3. Let G= (G1; : : : ; Gn; : : :) be any graph sequence, and de<ne t = t(n) =
min{r | PG(n; r)¿1=2}. Then t ∈ th(G).

Theorem 1.4. For the sequence of paths P= (P1; : : : ; Pn; : : :) we have
(a) th(P)⊆Q(n2c

√
lg n), where c is any constant less than 1=

√
2;

(b) th(P)⊆O(n22
√

lg n).

Here and throughout, lg denotes the logarithm to base 2. Our proofs apply equally
well to the sequence of cycles C= (C1; : : : ; Cn; : : :).

In fact, Theorem 1.3 follows from a very general result about thresholds in random
multiset models. For a natural number n, let Mn denote the partially ordered set (poset)
of all multisets of [n], ordered by inclusion. For Fn a subfamily of Mn, and t a natural
number, let Fn(t) denote the family of t-element multisets in Fn. If Fn ⊆Mn, the
family Fn is said to be increasing if E⊇F ∈Fn implies E ∈Fn, and decreasing if
E⊆F ∈Fn implies E ∈Fn.

The size of Mn(t) is 〈 nt 〉= ( n+t−1
t ), and therefore Pt(Fn(t)) ≡ |Fn(t)|=〈 nt 〉 is the

probability that a uniformly randomly chosen t-multiset of [n] is in the family Fn.
We say that t = t(n) is a threshold for a sequence (F1; : : : ;Fn; : : :) of increasing fam-
ilies of multisets if, for any function !=!(n) � 1, we have Pt!(Fn(t!))→ 1 and
Pt=!(Fn(t=!))→ 0.

Theorem 1.5. Let F= (F1; : : : ;Fn; : : :) be a sequence of increasing families, with
Fn ⊆ Mn for each n. De<ne t = t(n) = min {r |Pr(Fn(r))¿1=2}. Then t ∈ th(F).

Theorem 1.5 is an analog of a result of Bollob5as and Thomason [1], stating that any
sequence of increasing families of the subset lattice has a threshold function.

One can view a particular distribution of t pebbles to n vertices as a particular
multiset of t elements from the ground set [n]. Thus the set of all solvable distributions
for a particular graph on n vertices corresponds to a family of multisets on [n]. Since
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the set of all solvable distributions for a particular graph has the increasing property,
Theorem 1.3 is an immediate consequence of Theorem 1.5.

In our proof of Theorem 1.5, the crucial tool will be the following 1969 result of
Clements and LindstrSom, extending an earlier result of Macauley [10], which is the
multiset analog of the celebrated Kruskal–Katona Theorem [5,7,8] for the subset lattice.

Given any subfamily A⊆Mn(t), we deLne its shadow @A= {C ∈Mn(t − 1) |C ⊂
A for some A∈A}, and set @i+1A= @@iA.

For a multiset A∈Mn(t), and i∈ [n], let A(i) denote the multiplicity of i in A. The
colexicographic order on Mn(t) is deLned by setting A¡B if A �=B and, for some
i∈ [n], A(i)¡B(i) while A(j) =B(j) for j¿i.

Theorem 1.6 (Clements–LindstrSom). Suppose that F is a subset of Mn(t), and that
G consists of the <rst |F| elements of Mn(t) in colexicographic order. Then, for any
k¿1,

|@kF|¿|@kG|:

In other words, the size of the shadow (at any level) of a subset of Mn(t) is
minimized by taking an initial segment of the colexicographic order on Mn(t).

In 1979, Lov5asz proved a version of the Kruskal–Katona theorem which was used by
Bollob5as and Thomason [1] to prove the existence of threshold functions. An analogous
version of the Clements–LindstrSom theorem was conjectured in [6]. We prove this
conjecture in the next section.

For x a non-negative real number, let 〈 xt 〉= (x)(x + 1) · · · (x + t − 1)=t!. (Note that
this coincides with our earlier deLnition if x is a natural number.)

Theorem 1.7. Suppose that A⊆Mn(t) and de<ne x by |A|= 〈 xt 〉. Then |@A|¿〈 x
t−1 〉.

For the case in which A= 〈mt 〉 for m a natural number, the Lrst |A| elements of
Mn(t) in colexicographic order are the t-multisets of {1; : : : ; m}. The shadow of the
family consisting of these multisets is the family of (t − 1)-multisets of {1; : : : ; m}, of
size 〈 x

t−1 〉, so Theorem 1.6 is equivalent to Theorem 1.7 in this case. For families of
intermediate sizes, Theorem 1.6 is a “smoothed” version of Theorem 1.6.

The rest of this paper is organized as follows. In Section 2 we prove Theorem
1.7 (Section 2.1) and Theorem 1.5 (Section 2.2). Section 3 is devoted to a proof of
Theorem 1.4.

2. Set theory

In this section, we prove the two results concerning the multiset lattice. First, veri-
fying a conjecture from [6], we prove our multiset analog of Lov5asz’s version of the
Kruskal–Katona theorem. Second, we establish our multiset analog of the Bollob5as–
Thomason threshold theorem [1]. As an immediate corollary we obtain the existence
of the pebbling threshold for any graph sequence.
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2.1. Multiset analog of Lov>asz’s theorem

Let 〈 [n]
t 〉 denote the family of t-element multisets of [n], and as before let 〈 nt 〉=

( n+t−1
t ) denote its cardinality. (For convenience in reading, the reader may enjoy using

the terminology “n pebble t”.) Also as before, let 〈 xt 〉 denote the polynomial evaluation
of 〈 nt 〉 for any real number x; that is,〈

x
t

〉
= (x)(x + 1) · · · (x + t − 1)=t!:

Let A⊆〈 [n]
t 〉, and for any A∈A and i∈ [n], let A(i) denote the multiplicity of i

in A. We adopt the convention of writing an element of a multiset just once, with its
multiplicity written as an exponent; for example {1j} denotes the multiset of j ones.
Also, for any multisubset I of [n] we set A− I = {A− I |A∈A}.

In the proof of Theorem 1.7, we make use of various diKerent partitions of a family
A⊆〈 [n]

t 〉. For 06j6t, deLne the sets Aj = {A∈A |A(1) = j}, forming a partition of
A. If A= 〈 [n]

t 〉, this partition gives rise to the relation

〈
n
t

〉
=

t∑
j=0

〈
n− 1
j

〉
;

which has the polynomial equivalent

〈
x
t

〉
=

t∑
j=0

〈
x − 1
j

〉
: (1)

For each i∈ [n], deLne the sets Ai = {A∈A |A(i)¿0 and A(j) = 0 for all j¡i},
forming a second partition of A. More important for us is that the sets A1; : : : ;At

partition A1.
A third partition of A is given by A=A1 ∪A0, which in the case that A= 〈 [n]

t 〉
gives rise to the relation〈

n
t

〉
=

〈
n

t − 1

〉
+
〈
n− 1
t

〉
;

having the polynomial equivalent〈
x
t

〉
=

〈
x

t − 1

〉
+
〈
x − 1
t

〉
: (2)

Given a family A⊆Mn(t), and indices i; j with 16i¡j6n, a compression of A
is obtained by taking each member A of A such that A(j)¿1 and A−{j}+ {i} =∈A,
and replacing it by A− {j} + {i}.

A family A is said to be compressed if, for all 16i¡j6n, we have A − {j} +
{i}∈A whenever A∈A, i.e., A is unchanged by any compression. Note that any
family can be transformed into a compressed one by a sequence of compressions. Note
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also that initial segments of the colexicographic order are compressed families, but that
these are not the only ones.

If A is compressed and C ∈ @A, then C =A−{i} for some A∈A, i∈ [n]. Because
A is compressed, the set E =A− {i} + {1} is in A. Since C =E − {1}, we see that
@A⊆A1 − {1}, which implies that

|@A|6|A1|:
On the other hand, we know that A1 − {1}⊆ @A1 ⊆ @A, and so

|A1|6|@A|:
These two facts together imply the following lemma.

Lemma 2.1. Let A⊆Mn(t) and suppose that A is a compressed family. Then
|@A|= |A1|.

The following lemma is proved by Clements in [2].

Lemma 2.2. Suppose that A⊆Mn(t) and let q(A) be a compression of A. Then
|@A|¿|@q(A)|.

With these tools we now can prove Theorem 1.7.

Proof of Theorem 1.7. We use induction on n. Because of Lemma 2.2 we may assume
that A is compressed. If |A1|¿〈 x

t−1 〉 then we are done because of Lemma 2.1. So
we will assume that |A1|¡〈 x

t−1 〉 and argue to a contradiction.

Claim. For each 06j6t we have |Aj|¿〈 x−1
t−j 〉.

The truth of this claim yields the following contradiction. Because the families
A1; : : : ;At partition the family A1, we have

|A1|=
t∑

j=1

|Aj|¿
t∑

j=1

〈
x − 1
t − j

〉
=

t−1∑
k=0

〈
x − 1
k

〉
=

〈
x

t − 1

〉
;

using Eq. (1). Thus we need only to prove the claim.
Induction on j shows that |@jA0|¿〈 x−1

t−j 〉. Indeed, for j = 0 we know from Eq. (2)

that |A0|¿〈 x−1
t 〉. Also, @jA0 is a family of (t − j)-multisets of the set {2; : : : ; n} of

size n − 1, and so if |@jA0|¿〈 x−1
t−j 〉, then |@j+1A0|¿〈 x−1

t−j−1 〉 (by induction on n for
the theorem).

Now, if C ∈ @jA0 then C =A− I for some A∈A0 and some submultiset I of A of
size j. Because A is compressed, the set E =A− I + {1j} is in A, and in particular
is in Aj. Since C =E − {1j} we see that @jA0 ⊆Aj − {1j}, which implies that

|Aj| = |Aj − {1j}| ¿|@jA0|¿
〈
x − 1
t − j

〉
:

This proves the claim, and the theorem follows.
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2.2. Thresholds

The main result of this section is the analog of the Bollob5as–Thomason threshold
theorem.

Proof of Theorem 1.5. We consider the two “reference” families:

Mn(r; b) = {A∈Mn(r) |A(n)¡b} (16b6r);

Nn(r; b) = {A∈Mn(r) |A(n− b + 1) = · · · =A(n) = 0}

(16b6n− 1):

Note that each family Mn(r; b) and Nn(r; b) is an initial segment of the colexicographic
order on Mn(r), and that, for any k¿1,

@kMn(r; b) =Mn(r − k; b); @kNn(r; b) =Nn(r − k; b):

We use these families, rather than general initial segments of the colexicographic order,
since their sizes are a little easier to estimate. Our strategy is, for each r, to compare
Fn(r) =Mn(r)−Fn(r) with an appropriate member of one of these reference families,
at levels r near t, somewhat above t, and somewhat below t.

First, we need some estimates on the probabilities of the reference families, which
we shall use repeatedly. For any positive integers n, r and b with b6r,

|Mn(r; b)|= |Mn(r)| − |Mn(r − b)|=
〈
n
r

〉
−
〈

n
r − b

〉
;

and so

Pr(Mn(r; b)) = 1 − (n + r − b− 1)!r!
(n + r − 1)!(r − b)!

= 1 −
(

r
n + r − 1

)(
r − 1

n + r − 2

)
· · ·

(
r − b + 1
n + r − b

)
:

We derive the lower bounds

Pr(Mn(r; b)) ¿ 1 −
(

r
n + r − 1

)b

= 1 −
(

1 − n− 1
n + r − 1

)b

¿ 1 − exp(−b(n− 1)=(n + r − 1))
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and the upper bounds

Pr(Mn(r; b)) 6 1 −
(
r − b + 1
n + r − b

)b

= 1 −
(

1 +
n− 1

r − b + 1

)−b

6 1 − exp(−b(n− 1)=(r − b + 1)):

Similarly we see that, for positive integers n; r and b with b6n − 1; |Nn(r; b)|=
|Mn−b(r)|= 〈 n−b

r 〉, and so

Pr(Nn(r; b)) =
(n− b + r − 1)!(n− 1)!
(n− b− 1)!(n + r − 1)!

=
(

n− 1
n + r − 1

)
· · ·

(
n− b

n− b + r

)
:

This gives the bounds

Pr(Nn(r; b)) ¿
(

n− b
n− b + r

)b

=
(

1 +
r

n− b

)−b

¿ exp(−rb=(n− b));

Pr(Nn(r; b)) 6
(

n− 1
n + r − 1

)b

=
(

1 − r
n + r − 1

)b

6 exp(−rb=(n + r − 1)):

Recall that t = t(n) is deLned as the least integer such that Pt(Fn(t))¿1=2. Let
!=!(n) be any function tending to inLnity with n such that t(n)=!(n) takes inte-
ger values. We shall show that Pt=!(Fn(t=!)) → 0 as n → ∞, or equivalently that
Pt=!(Fn(t=!)) → 1. We may assume without loss of generality that n¿3 and !¿30,
and so t¿30.

We Lx n for the moment and consider two cases.
(1) Suppose that t = t(n)¿2n− 1.
In this case, we set b= �t=(2n − 1)�. Note that our assumption on t ensures that

b¿1, and that our choice of b ensures that b(n− 1)=(t − b)61=2. Now we have

Pt−1(Mn(t − 1; b))6 1 − exp(−b(n− 1)=(t − b))

6 1 − e−1=2
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¡ 1=2

¡Pt−1(Fn(t − 1)):

Then, since Fn is decreasing and Mn(t − 1; b) is an initial segment of the colexico-
graphic order, the Clements–LindstrSom theorem implies that

Pt=!(Fn(t=!)) ¿ Pt=!(@t−1−t=!Fn(t − 1))

¿ Pt=!(@t−1−t=!Mn(t − 1; b))

= Pt=!(Mn(t=!; b))

¿ 1 −
(

t=!
n + t=!− 1

)b

:

If n − 1¿t=
√
!, then this gives Pt=!(Fn(t=!))¿1 − 1=

√
! + 1. On the other hand,

if n − 16t=
√
!6t=5, then t=2n − 1¿5n − 5=2n − 1¿2, so b¿1=2(t=2n − 1)¿

t=5(n− 1)¿
√
!=5, so

Pt=!(Fn(t=!)) ¿ 1 −
(

t=!
t=5b + t=!

)b

= 1 −
(

1 − !
! + 5b

)b

¿ 1 − exp(−b!=(! + 5b))

¿ 1 − exp(
√
!=10):

(2) Now suppose that t = t(n)62n− 2.
This time we set b= �(n + t − 2)=(t − 1)�, and use exactly the same method as in

(1), but this time comparing with Nn(t − 1; b). Indeed

Pt−1(Nn(t − 1; b))6 exp(−(t − 1)b=(n + t − 2))

6 e−1

¡ 1=2

¡Pt−1(Fn(t − 1)):

As before we deduce that

Pt=!(Fn(t=!))¿Pt=!(Nn(t=!; b))¿ exp(−tb=!(n− b)):

Now observe that b65n=t, and so Pt=!(Fn(t=!))¿ exp(−6=!).
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Summarizing, we see that

Pt=!(Fn(t=!))¿min

{
1 − 1√

!(n) + 1
; 1 − exp(−

√
!(n)=10); exp(−6=!(n))

}
;

so Pt=!(Fn(t=!)) → 1 as n → ∞.
Now let !(n) → ∞ be such that t(n)!(n) takes integer values; we claim that

Pt!(Fn(t!)) → 0 as n → ∞. We may assume that n¿2 and !(n)¿36.
As before, we Lx n for the moment and consider two cases.
(1) Suppose t = t(n)¿n=2. In this case, we set b= �(n + t − 1)=(n − 1)�, and note

that b= 1 + �t=(n− 1)�62t=(n− 1) + 2t=(n− 1) = 4t=(n− 1) and b− 16t!=2. Observe
that

Pt(Mn(t; b))¿ 1 − exp(−b(n− 1)=(n + t − 1))

¿ 1 − e−1

¿ 1=2

¿ Pt(Fn(t)):

This implies that Pt!(Fn(t!))6Pt!(Mn(t!; b)), since otherwise we would have

|Fn(t)|¿|@t!−tFn(t!)|¿|@t!−tMn(t!; b)|= |Mn(t; b)|:
Therefore we see that

Pt!(Fn(t!)) 6 1 − exp(−b(n− 1)=(t!− b + 1))

6 1 − exp(−4t=(t!=2))

= 1 − exp(−8=!):

(2) Now suppose t6(n − 1)=2. Here we set b= � n
2t+1�¿1, and observe that

tb=(n− b)61=2. We see that

Pt(Nn(t; b))¿ exp(−tb=(n− b))

¿ e−1=2

¿ 1=2

¿ Pt(Fn(t));

which, as before, implies that

Pt!(Fn(t!))6Pt!(Nn(t!; b))6
(

n− 1
n + t!− 1

)b

:
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If n − 16t
√
!, this yields Pt!(Fn(t!))61=(1 +

√
!). On the other hand, if

n− 1¿t
√
!, then n=(2t + 1)¿n− 1=3t¿2, so b¿(n− 1)=6t¿

√
!=6, and

Pt!(Fn(t!)) 6
(

6tb
6tb + t!

)b

=
(

1 − !
6b + !

)b

6 exp(−!b=(6b + !))

6 exp(−√
!=12):

Combining all the cases gives

Pt!(Fn(t!))6max

{
1 − exp(8=!(n));

1

1 +
√
!(n)

; exp(−
√
!(n)=12)

}
;

so Pt!(Fn(t!)) → 0 as n → ∞.
This completes the proof.

3. The threshold for paths

For convenience we will assume that all logarithms and roots take on the value of
their nearest integer. Let Pn be the path on n vertices, c be any constant less than
1=
√

2; u= c
√

lg n; t = n2u, and p= (1 + �)2u ln n, for some �¿0. In addition, let Di

be the random variable which is the number of pebbles on vertex i when a random
distribution of t pebbles is selected, and let Si denote the event that Di6p and Ti =¬Si.
Finally, we will also need the following random variables

Y+
i =

n∑
l=i

Dl

2l−i (3)

and

Y−
i =

i∑
l=1

Dl

2i−l : (4)

Lemma 3.1. Let p; t; n; u be as above. Then Pr[T1 ∪T2 ∪ · · · ∪Tn]→ 0.

Proof. For 16i6n, we have

Pr[Ti] =
〈 n
t−p 〉
〈 nt 〉

=
(t − p + 1) · · · (t)

(t + n− p) · · · (t + n− 1)

6
(

t
t + n

)p

6e−np=(t+n):
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Therefore,

Pr[T1 ∪ · · · ∪Tn]6ne−p=(2u+1) = exp
(

ln n
(

1 − 2u

2u + 1
(1 + �)

))
→ 0:

Note that the role of u is not important in the above lemma. However, we stated
the lemma as such because of its use in the proof of Theorem 1.4.

For the next lemma, we will need m=
√

2 lg n, and k = �n=m�. Partition Pn into
consecutively disjoint paths (blocks) B1; : : : ; Bk of lengths m or m+ 1. For a randomly
chosen distribution of t pebbles on Pn we denote by Ei the event that block Bi contains
no pebbles (is empty), and set Fi =¬Ei.

Lemma 3.2. Let m; k be as above and let s= s(n) be such that n�msmem=s. If t = ns
then Pr[F1 ∩ · · · ∩Fk ]→ 0.

Proof. We will apply the second moment method. Let Xi be the indicator variable of
Ei and let X =

∑k
i=1 Xi. We have

Pr(X = 0)6
)2(X )

(E(X ))2

and

)2(X ) = E(X 2) − (E(X ))2

=
∑
i;j

E(XiXj) −
∑
i;j

E(Xi)E(Xj)

6
∑
i

E(X 2
i );

where the last inequality follows from the fact that E(XiXj) ≤ E(Xi)E(Xj) for i �= j.
Therefore,

)2(X )6
∑
i

E(X 2
i ) =

∑
i

E(Xi) =E(X ):

We also have

E(X ) =
( n
m

) ( t+n−m−1
t )

( t+n−1
t )

¿
( n
m

)(
n− m

t + n− m

)m

∼
( n
msm

)
e−m2=n−m=s

→ ∞:

Thus Pr[X = 0]→ 0.
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Proof of Theorem 1.4(a). We Lrst remark that it is easy to check that s= 2u

satisLes hypothesis of Lemma 3.2. Next, for each block B= [i; j], let Y−
B =Y−

i and
Y+
B =Y+

j . Then Lemma 3.1 and Lemma 3.2 imply that with probability tending to
one there is a block B of length m which is empty and such that both Y−

B and Y+
B are

less than or equal to (1 + �)2u ln n. Since (1 + �)2u ln n¡2m=2 for large enough n, there
is a vertex of B, namely the center vertex, to which it is not possible to pebble using
Y−
B and Y+

B .

We also shall prove that th(Pn)⊆O(n22
√

lg n). The argument is a modiLcation of an
idea from [4]. We will use the fact [4] that any distribution of at least 2m pebbles on
a connected graph of m + 1 vertices is solvable.

Proof of Theorem 1.4(b). Let m=
√

lg n, k = �n=m�, s= 22m+2, t = ns, and partition Pn
into consecutively disjoint paths (blocks) B1; : : : ; Bk , each with m or m+1 vertices. Let
Zi denote the event that the ith block contains less than 2m pebbles. We will show that
Pr[Z1 ∪ · · · ∪Zk ]→ 0, which, by the remark preceding the proof, implies the result.

We have that

Pr[Z1 ∪ · · · ∪Zk ]6k
2m−1∑
i=0

(i+m−1
i

)(t+n−m−i−1
t−i

)
(t+n−1

t

) :

Since
(t+n−m−i−1

t−i

)
6( t

t+n−m−1 )i
(t+n−m−1

t

)
6
(t+n−m−1

t

)
6( n

n+t )
m
(t+n−1

t

)
, we have

(
t + n− m− i − 1

t − i

)
6

(
n

n + t

)m (
t + n− 1

t

)
: (5)

For 06i¡2m, we have(
i + m− 1

i

)
62m2m2

: (6)

Using (5) and (6), we see that

Pr[Z1 ∪ · · · ∪Zk ]6k22m+m2
(

n
n + t

)m

6
n
m

(
1
s

)m

22m+m2
=

1
m

→ 0:

References

[1] B. Bollob5as, A. Thomason, Threshold functions, Combinatorica 7 (1987) 35–38.
[2] G.F. Clements, On existence of distinct representative sets for subsets of a Lnite set, Can. J. Math. 22

(1970) 1284–1292.
[3] G.F. Clements, B. LindstrSom, A generalization of a combinatorial theorem of Macaulay, J. Combin.

Theory 7 (1969) 230–238.
[4] A. Czygrinow, N. Eaton, G. Hurlbert, P.M. Kayll, On pebbling thresholds functions for graph sequences,

Discrete Math. 247 (2002) 93–105.



34 A. Bekmetjev et al. / Discrete Mathematics 269 (2003) 21–34

[5] P. Frankl, A new short proof for the Kruskal–Katona theorem, Discrete Math. 48 (1984) 327–329.
[6] G.H. Hurlbert, A survey of graph pebbling, Congress. Numer. 139 (1999) 41–64.
[7] G.O.H. Katona, A theorem on Lnite sets, in: P. Erdős, G.O.H. Katona (Eds.), Theory of Graphs,
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