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Abstract

Pituitary homeobox (pitx) genes have been identified in vertebrates as critical molecular determinants of various craniofacial ontogenetic

processes including pituitary organogenesis. Accordingly, a prominent conserved feature of pitx genes in chordates is their early expression

in the anterior neural boundary (ANB) and oral ectoderm, also known as the stomod&um. Here we used the ascidian model species Ciona

intestinalis to investigate pitx gene organization and cis-regulatory logic during early stages of oral development. Two distinct Ci-pitx mRNA

variants were found to be expressed in mutually exclusive embryonic domains. Ci-pitx and vertebrate pitx2 genes display remarkably similar

exon usage and organization, suggesting ancestry of the pitx transcriptional unit and regulation in chordates. We next combined phylogenetic

footprinting, transient transgenesis, and confocal imaging methods to study the Ci-pitx cis-regulatory system, with special emphasis on the

regulation of isoform-specific ANB/stomod&al expression. Among 10 conserved noncoding sequences (CNSs) interspersed in C. intestinalis

and Ciona savignyi pitx loci, we identified two separate cis-regulatory modules (CRMs) that drive ANB/stomod&al expression in

complementary spatiotemporal patterns. We discuss the developmental relevance of these data that provide an entry point to investigate the

gene regulatory networks (GRNs) that position and shape oral structures in chordates.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

In vertebrates, craniofacial development involves cells of

diverse ontogenetic origins including anterior mesendo-

derm, cranial neural crest, neural tube, placodes, and

epidermis (Le Douarin et al., 1997). In particular, olfactory

and oral epithelia, as well as the adenohypophysis, derive

from a morphogenetic unit known as the stomod&um,

which eventually invaginates, fuses with endodermal

pharyngeal epithelium, and forms the oral opening. Lineage
0012-1606/$ - see front matter D 2004 Elsevier Inc. All rights reserved.
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Abbreviations: ANB, anterior neural boundary; CRM, cis-regulatory

module; GRN, gene regulatory network; CNS, conserved noncoding

sequence.
$
Ci-pitxa/b mRNA variant, complete cds: GenBank accession no.

AY677185. Ci-pitx: gene model ci0100147848 at http://genome.jgi-psf.org/

ciona/.

* Corresponding author. Fax: +33 1 69823447.

E-mail address: joly@iaf.cnrs-gif.fr (J.-S. Joly).
studies showed that the stomod&um arises from an anterior

ectodermal territory that encompasses the anterior neural

boundary (ANB) and contacts anterior endoderm (Couly

and Le Douarin, 1985; Kouki et al., 2001). Thus, stomod&al
cell specification must integrate a dual epidermal/neural

origin, a pivotal position in the body plan, and maintain

diverse developmental potentialities (Wardle and Sive,

2003).

During organogenesis, field-specific selector genes are

key components of the gene regulatory networks (GRNs)

that specify homogenous morphogenetic fields through the

integration of various developmental cues. These integrative

properties are mostly hardwired in selector gene cis-

regulatory systems, which exhibit transcriptional modular-

ity, and a complex logic for each autonomous cis-regulatory

module (CRM; Carroll et al., 2001; Davidson, 2001).

Pituitary homeobox (pitx) genes are conserved early

markers of the stomod&al ectomere in chordates (Boorman

and Shimeld, 2002b; Essner et al., 2000; Lanctôt et al.,
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1997; Schweickert et al., 2001b; Uchida et al., 2003). In

humans, mutations of PITX2 in Axenfeld–Rieger patients

cause severe facial defects (Semina et al., 1996). In addition,

numerous functional studies have demonstrated that various

aspects of craniofacial development require pitx genes

(Kioussi et al., 2002; Schweickert et al., 2001a; Suh et al.,

2002; Szeto et al., 1999), suggesting these latter are critical

components of the selector gene battery specifying the

ANB/stomod&um morphogenetic field. The above-men-

tioned considerations raise further questions about upstream

mechanisms that trigger and precisely define pitx stomod&al
expression and to which extent these mechanisms are

conserved in chordates.

In osteichthyans, pitx gene regulation occurs at both

transcriptional and posttranscriptional levels. For instance,

the conserved pitx2 transcriptional unit uses distinct distal

and proximal promoters to produce different isoforms with

identical homeodomains and carboxy termini, but different

amino termini (Arakawa et al., 1998; Essner et al., 2000;

Schweickert et al., 2000).

In addition, pitx paralogues and pitx2 isoforms are

expressed in both specific and common domains (Essner

et al., 2000; Lanctôt et al., 1997; Schweickert et al., 2001b).

Interestingly, functional and comparative gene expression

data suggest that a conserved genetic hierarchy controls

isoform-specific pitx2 expression during the establishment

of left–right asymmetry (Boorman and Shimeld, 2002a).

Thus, key aspects of pitx pre- and posttranscriptional gene

regulation rely on an ancestral genomic organization and

probably emerged before the early radiation of vertebrates.

Investigations in a broad range of chordate species are

therefore required to address key issues regarding pitx cis-

regulatory systems (Goodyer et al., 2003; Shiratori et al.,

2001).

We previously reported pitx gene expression in the

anterior neural boundary and stomod&um during ascidian

embryonic development (Christiaen et al., 2002). Ciona

intestinalis and Ciona savignyi species are particularly well

suitable for the analysis of gene regulation (for recent

review, see Satoh et al., 2003). Indeed, genomic information

is readily available through interfaced data mining tools

(Dehal et al., 2002), transient transformation of numerous

embryos can be achieved by simple egg electroporation

(Corbo et al., 1997), and reduced cell number throughout

embryogenesis allows developmental gene activities to be

studied at high resolution (Munro and Odell, 2002; Sardet et

al., 2003). We therefore combined interspecific sequence

comparison, transient transgenesis, and fluorescent imaging

to study pitx locus organization and cis-regulation during

development of the ascidian stomod&um (also referred to as

boral siphon primordiumQ or bprimordial pharynxQ in the

literature). Our results suggest that the organization and

usage of pitx exons are conserved in chordates. Moreover,

we identified distinct cis-regulatory modules that govern

isoform-specific ANB/stomod&al expression in comple-

mentary spatiotemporal patterns during embryogenesis.
Materials and methods

Animals and embryos

C. intestinalis adults were purchased at the Station

Zoologique de Roscoff (Brittany, France). Embryos were

obtained by in vitro cross-fertilization in artificial seawater

as described (Hudson and Lemaire, 2001). Single cell

zygotes were dechorionated according to Mita-Miyazawa et

al. (1985), except that the protease was inactivated with

glycine (1 mg/ml final in dechorionation solution), which

substantially improves survival of the eggs. Electroporation

and X-gal staining were performed as previously described

(Bertrand et al., 2003; Corbo et al., 1997).

Sequence comparison and analysis

C. intestinalis and C. savignyi genomic sequences were

obtained from JGI (Dehal et al., 2002, http://genome.jgi-

psf.org/ciona/) and from the Broad Institute (http://

www.broad.mit.edu/annotation/ciona/), respectively, and

handled with the Vector NTI Suite (Informax). The VISTA

algorithm (Mayor et al., 2000) was used for sequence

alignment and comparison with the following parameters:

80 bp windows, 65% identity threshold. Conserved non-

coding sequence (CNS) boundaries were refined by local

alignment.

Molecular cloning and dissection of Ci-pitx genomic

fragments

A mixture of 5V and 3V Ci-pitx RACE fragments was

used as 32P-labeled probes to screen a C. intestinalis

genomic cosmid library (Burgtorf et al., 1998). The distal

fragment was PCR amplified from cosmid clone

MPMGc119J0337Q3 using vector-anchored forward pri-

mer and a reverse primer annealing in Ci-pitx exon1

(primer details in Supplementary Materials and methods)

with the proofreading ThermalAce DNA polymerase

(Invitrogen). The PCR fragment was inserted in pCRII-

TOPO (Invitrogen), mapped by restriction analysis, and

subcloned in pSP1.72-pPD27 expression vector (Corbo et

al., 1997). Deleted constructs were obtained using native

restriction sites and PCR-based constructs. The 8.5-kb

proximal region was excised as an XhoI fragment from

the cosmid DNA, subcloned into pSP1.72-pPD27, and recut

with NotI. A first series of deleted constructs was made

using native restriction sites. P1 to P3 were amplified using

Pfu DNA polymerase (Promega) and corresponding primer

pairs (Supplementary Materials and Methods), digested and

cloned into the pCES vector, which contains the Ci-fkh core

promoter and first codons fused in frame with the lacZ

coding sequence (Harafuji et al., 2002). The lacZ reporter

gene was replaced in pSP1.72-pPD27 by the venus

enhanced yellow fluorescent protein (EYFP; Nagai et al.,

2002) coding sequence to create pSD1:venus. Distal and
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proximal fragments were cloned into pSD1:venus as

described above.

Whole mount in situ hybridization

The common 3V probe was generated from a 3VRACE
clone as previously described (Christiaen et al., 2002).

Isoform-specific fragments were amplified by PCR from

the cosmid DNA, cloned into pCRII-TOPO, linearized,

purified, and used for cRNA probe synthesis and

digoxigenin labeling (Roche) by in vitro transcription

with the Sp6 RNA-polymerase (Promega). In situ hybri-

dization was carried out in an InSituPro automate

(Intavis), following an established protocol (Moret et al.,

in press).

Fluorescent imaging

Electroporated embryos were fixed with 3.7% form-

aldehyde in calcium and magnesium-free artificial sea-

water (CMF-ASWH: 463 mM NaCl, 11 mM KCl, 25.5

mM Na2SO4, 2.15 mM NaHCO3, 10 mM HEPES, pH

8.1, recipe courtesy of Dr. P. Lemaire), permeabilized

with PBTT1 (0.4% Triton X-100, 0.2% Tween 20 in

phosphate buffer saline (PBS)), aldehyde autofluorescence

was quenched with 50 mM NH4Cl in PBTT2 (0.2%

Triton X-100, 0.1% Tween 20 in PBS) and counter-

stained with AlexafluorR568-phalloidin (1/500) and DAPI

(3 nM), diluted in PBTT2. Labeled embryos were

equilibrated and mounted in glycerol/PBS (1:1, v/v),

supplemented with 2% DABCO (w/v, Sigma D-2522).

Images were captured within 2 days on a Leica DM

RXA2 microscope equipped with a TCS SP2 confocal

scanning system.
Results and discussion

Ci-pitx encodes distinct isoforms expressed in

complementary domains

Previous studies independently reported cDNA cloning

of a single C. intestinalis pitx ortholog (Boorman and

Shimeld, 2002b; Christiaen et al., 2002). Detailed

comparison with current genomic and EST data led us

to hypothesize the existence of an alternative Ci-pitx

isoform (Supplementary Fig. S1) and to refine the current

gene model (Fig. 1A): the Ci-pitx transcriptional unit, which

encompasses a 14-kb region, produces two different mRNA

isoforms composed of exons3–5 and either exon1 or exon2.

We called these isoforms Ci-pitxa/b and Ci-pitxc by analogy

with vertebrates pitx2a/b and pitx2c, which use distal and

proximal isoform-specific upstream exons, respectively

(Fig. 1A; note that in addition to comparable linear

organization, Ci-pitx falls within the size range 5–20 kb of

vertebrate pitx genes).
Differential isoform expression was assessed in parallel

in situ hybridization experiments using isoform-specific and

common probes (see Fig. 1A for probe mapping).

At mid-tailbud stage, Ci-pitxa/b is only expressed in

three cells of the anterior neural boundary (ANB, Figs. 1B

and E, and Christiaen et al., 2002). In hatching larvae, the

Ci-pitxa/b-specific probe labels tail muscles and a crown-

shaped domain restricted to the deepest (ventral) part of the

stomod&um (Figs. 1C, D, F, and G).

In mid-tailbud embryos, the Ci-pitxc-specific probe

revealed an epidermal expression in an anterior cap and

dorsolateral caudal stripe (Figs. 1B and H), which corre-

sponds to the asymmetric epidermal expression reported in

C. intestinalis (Boorman and Shimeld, 2002b) and Hal-

ocynthia roretzi (Morokuma et al., 2002). In addition,

transient Ci-pitxc expression was observed in two cells of

the posterior cerebral vesicle (Figs. 1B and H). At hatching,

Ci-pitxc is expressed in photoreceptor cells, left visceral

ganglion, and left posterior trunk endoderm (Figs. 1C, D, I,

and J, and Supplementary Fig. S2). Interestingly, only Ci-

pitxc is expressed asymmetrically, which further supports its

homology with vertebrate pitx2c isoforms (e.g., Essner et

al., 2000; Schweickert et al., 2000).

Strikingly, isoform-specific expression patterns are

mutually exclusive and the pitx3V probe labels every

above-mentioned domain (Figs. 1B–D), showing that

isoform-specific Ci-pitx expression profiles are comple-

mentary (Figs. 1K–M). In particular, ANB/stomod&al
cells uniquely express Ci-pitxa/b from mid-tailbud stage

till hatching.

Ci-pitx regulation involves separate basal promoters and

cis-regulatory regions

To investigate Ci-pitx cis-regulation, the spatiotemporal

transcriptional activity of two non-overlapping genomic

fragments was assessed by transient transgenesis. These

fragments map upstream from exons1 and 2 and will

henceforth be referred to as distal and proximal, respectively

(Fig. 2A).

The distal fragment is active in tail muscles and posterior

stomod&um at hatching, extending ectopically in dorso-

posterior stomod&al cells (Fig. 2C). At mid-tailbud stage, its

activity is restricted to the ANB (Fig. 2B). We obtained

identical data with the Venus reporter (Figs. 2H and I) and

by in situ hybridization (Supplementary Fig. S2), showing

that the distal construct retains stomod&al activity during

the whole embryonic period, while expression in tail

muscles starts by the end of late tailbud stage (Figs. 2F

and G). According to key temporal aspects of Ci-pitx ANB/

stomod&al expression, the distal construct is not active

before early tailbud stage (data not shown).

The proximal construct exhibits a more pleiotropic

expression pattern. At mid-tailbud stage, endogenous Ci-

pitx expression is recapitulated in the posterior cerebral

vesicle, but neither in the ANB nor in the epidermis (Fig.



Fig. 1. Ci-pitx isoforms are expressed in mutually exclusive domains. (A) Comparative maps of Ciona pitx, human and zebrafish pitx2 loci, and isoforms. Scale

bar (1 kb) applies to all gene maps. (B–M) Ci-pitx isoforms expression patterns. (B–G) Ci-pitxa/b-specific expression in anterior neural boundary (anb, black

arrows), stomod&um (st, black arrows), and tail muscles (tm, out of focus in C and D, obscured by background in F and G). (B–D and H–J) Ci-pitxc-specific

expression in posterior neural cells (pnc, black arrowheads in B and H), left epidermis (epi, black asterisks), ocellus (oc, white arrows), left visceral ganglion

(vg, white arrowheads), and left posterior trunk endoderm (pte, white asterisks). (K–M) Summary of Ci-pitx isoforms expression. Scale bar: 25 Am.
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2D). In addition to widespread ectopic staining (compare

Figs. 1D and 2E), the proximal construct labels endogenous

Ci-pitx expression domains at hatching, including the

anterior stomod&um, ocellus, left visceral ganglion, and

dorso-posterior cerebral vesicle (Figs. 2E and G; the latter is

stained by h-galactosidase activity remaining from the

tailbud stage, see Fig. 2D). Expression dynamics was

assessed by in situ hybridization, showing that the proximal

construct activity is restricted to the anterior stomod&um,

ocellus, and visceral ganglion at hatching (Fig. 2G and

Supplementary Fig. S2).

The distal and proximal regulatory regions are non-

overlapping (Fig. 2A). Nonetheless, both can drive

reporter gene expression, indicating that the Ci-pitx

transcriptional unit contains distinct distal and proximal

basal promoters.
The overlap between endogenous and reporter patterns

fits the topological relationship between regulatory regions

and isoform-specific exons (Figs. 1K–M and 2F and G),

raising the simple straightforward conclusion that tran-

scription of each isoform is driven by its own promoter and

tissue-specific cis-elements. In particular, the distal regu-

latory region is sufficient for early Ci-pitxa/b expression in

ANB (Figs. 2B and F).

However, each construct drives reporter gene expression

in larval stomod&um (Fig. 2G), which in contrast expresses

only Ci-pitxa/b (Figs. 1F and G). Confocal imaging

revealed that expression of the distal construct extends up

to a flexure in the antero-ventral stomod&al layer that faces
an actin-rich area in endoderm (Figs. 2J and N). Interest-

ingly, the proximal fragment drives reporter gene expression

in an anterior crescent-shaped stomod&al domain (Figs. 2M



Fig. 2. Distinct cis-regulatory regions control Ci-pitx expression in complementary stomod&al patterns. (A) VISTA plot (percent identity with Cs-pitx) and map

of Ci-pitx locus showing distal and proximal constructs, exons (open and black boxes), and conserved noncoding sequences (CNSs, purple boxes). (B and C)

Distal construct activity in ANB and posterior stomod&um (black arrows, lateral views, inset: close-up, dorsal view). Note the ectopic expression in dorso-

posterior stomod&al cells (squared bracket). (D and E) Proximal construct activity in posterior neural cells and derivatives (pnc, black arrowheads), anterior

stomod&um (ast, black arrow; inset: close-up, dorsal view), ocellus (oc, white arrows), and visceral ganglion (white arrowhead). Ectopic expression in

mesenchyme (mes), tail tissues (tt), and ventral cerebral vesicle (vCV). (F and G) Summary of distal and proximal construct expression in endogenous Ci-pitx

expression domains, lateral views. Note that asymmetric expression is recapitulated by none of the constructs, suggesting that it requires additional elements,

possibly located in the downstream CNS (I1-5) as it is the case in mice (Shiratori et al., 2001). (H–O) Detailed stomod&al activities of distal (H–K) and

proximal (L–O) constructs using EYFP (green), lateral (H, J, L, and N) and dorsal (I, K, M, and O) views. Confocal sections (J, K, N, and O) show cell cortices

(F-actin, red), nuclei (DAPI, blue); note the antero-ventral stomod&al flexure and endodermal actin-rich area (open arrowheads). Open arrows point to the tip of

anterior-most expressing cells. Scale bar: 10 Am.

L. Christiaen et al. / Developmental Biology 277 (2005) 557–566 561
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and O), which lays two cells above this stomod&al flexure
(Fig. 2N) and is therefore adjacent to the distal expression

domain. Taken together, these data show that distinct cis-

regulatory elements control Ci-pitxa/b expression in com-

plementary stomod&al territories at hatching.

Phylogenetic footprinting of putative cis-regulatory

modules in Ci-pitx locus

Next, we sought to identify cis-elements regulating Ci-

pitx with special emphasis on stomod&al expression.

Conserved noncoding sequences (CNSs) have recently been

emphasized as valuable predictive footprints of functional

elements (e.g., Frazer et al., 2003), and actual transcription

factor binding sites within Ci-otx early neural enhancer

showed sequence conservation between C. intestinalis and

C. savignyi (Bertrand et al., 2003). Aiming at uncovering

regulatory modules, we extended interspecific sequence

comparisons to the 20-kb pitx loci.

We found that pitx exons are conserved in both

sequence and relative positions (Fig. 2A and data not

shown). Moreover, conserved noncoding sequences

allowed us to define putative cis-regulatory modules

(pCRMs). We identified one (D1, 307 bp) and four

(P1–4; 69, 470, 210, and 118 bp) pCRMs in the above-

mentioned distal and proximal noncoding regions, respec-

tively (Fig. 2A).
Fig. 3. D1 is necessary and sufficient for stomod&al expression. (A) Molecular diss

of the Ci-pitxa/b primary transcript (Christiaen et al., 2002), distal promoter was

Expression is represented as + or �, meaning that stomod&al expression is ball or n
(e.g., compare C and D for expression in tail muscles, and mesenchyme). Scale b
Noticeably, pCRMs could be readily identified in a

global alignment, suggesting that the evolutionary distance

between Ciona species is adequate to efficiently pinpoint

functional elements (see below) by phylogenetic footprint-

ing of large genomic data sets.

D1 is an autonomous ANB/stomodæal enhancer

Sequence conservation suggests that D1 may contribute

to distal regulatory inputs in ANB/stomod&al cells. A first

series of deleted constructs was generated and tested by

transient transgenesis and X-gal staining at larval stage (Fig.

3A, #3–7). These data show that specific abolishment of

stomod&al expression correlates with a deletion of the first

188 bp of D1.

We next generated internal deletions that remove D1

(Fig. 3A, #8, 9). These constructs were unable to drive

reporter gene expression in the stomod&um, showing that

the first 188 bp of D1 is absolutely required for stomod&al
expression of the transgenes.

We then asked whether D1 could drive stomod&al
expression in a minimal context (Fig. 3A, #10,11).

Constructs #10 and #11 drive expression uniquely in

the stomod&um, showing that partial D1 is sufficient to

enhance transcription specifically in stomod&al cells. The
complete and partial D1 fragments could also activate

expression in tailbud ANB and larval stomod&um when
ection of the distal construct. SL trans-splicing occurs during the maturation

roughly mapped between �1652 and �1328 bp (#2 and data not shown).

othingQ (N85% or 0%), +/� means reduced expression relative to maximum

ar: 20 Am.
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fused to the heterologous Ci-fkh basal promoter (pFkh in

pCES construct, data not shown). Taken together, these

data show that D1 is a bona fide stomod&al activation

module that could be efficiently identified upon sequence

conservation and accounts for ANB/stomod&al activity of

the distal regulatory region during embryogenesis.

P2 is a second major stomodæal activation module

We next sought to identify proximal cis-regulatory

elements driving Ci-pitx expression in the anterior cres-

cent-shaped stomod&al territory. We generated a prelimi-

nary set of 5V deleted constructs and focused on stomod&al
expression. These deletions were designed to remove

successively larger fragments containing the above-men-

tioned pCRMs, P1 to P4 (Fig. 4A).

The first deletion does not affect reporter gene pattern

(Fig. 4B), suggesting that P4 is not required for stomod&al
expression during embryogenesis.

The next deletion removes P3 and leads to a substantial

reduction of stomod&al staining at hatching (Figs. 4A and

C), but not at later stages (data not shown). In addition, P3 is

unable to drive stomod&al expression when fused to a

heterologous basal promoter (Fig. 4A, pCES:P3). Thus, P3

is likely to be a co-activation module, not sufficient for

stomod&al expression on its own.

The next deletion removes P2 and abolishes stomod&al
expression, opening the possibility that this latter requires
Fig. 4. P2 is a major stomod&al enhancer. (A) Molecular dissection of the pro

semiquantitatively (%exp: percentage of expression, n: number of embryos). (B–E

expression in B, D, and E (black arrow). Note the ectopic epidermal staining in

expression.
P2 (Fig. 4A). We next found that a P2:pFkh fusion drives

reporter gene expression in anterior stomod&al cells (Figs.
4A and D). P2 thus appears as an additional autonomous

stomod&al enhancer.
Given the topology of the Ci-pitx locus, Ci-pitxa/b

expression implies that transcription is initiated from the

distal core promoter in stomod&al cells (Figs. 1A and L).

Therefore, we assessed the ability of P2 to drive stomod&al
expression through the distal promoter (Figs. 4A and E,

P2:pdist). This expression was enhanced by P3, which

appears again as a co-activation module in stomod&al cells
(Fig. 4A, P2P3:pdist).

The lack of detectable Ci-pitxc expression suggests that

the proximal core promoter is isolated from the P2 input in

stomod&al cells. The mechanism of P2 promoter selectivity

remains elusive. However, close examination of core

promoter sequences revealed the presence of a TATA-box

in the distal core promoter, while the proximal promoter

only possesses a putative downstream promoter element

(Kadonaga, 2002; see supplementary Fig. S3). Such a

difference in basal promoter sequence could account for P2

promoter preference, as reported for AE1 and IAB5

elements in Drosophila (Ohtsuki et al., 1998), thus leading

to correct isoform expression in stomod&al cells.
These observations led us to propose that P2 is a

second major stomod&al enhancer, its input on the distal

core promoter being eventually reinforced by the P3 co-

activation module (Fig. 5D). The transcriptional outcome
ximal construct. Expression is scored both qualitatively (+, +/�, �) and

) Characteristic embryos and corresponding constructs. Anterior stomod&al
C. Mosaic embryos (such as D and E) were scored positive for stomod&al



Fig. 5. Model of Ci-pitx cis-regulation in ascidian stomod&um. (A) Confocal section through the stomod&um of a hatching larva stained with Alexa488-

conjugated phalloidin (labels F-actin), sagittal view, dorsal up, anterior left. Note the stomod&al flexure (open arrowhead), epidermal cells have a cuboidal

shape, while stomod&al cells are rather prismatic. (B) Realistic drawing from A, the cis-regulatory logics (D and E) were mapped using the stomod&al flexure
as morphological landmark (color codes apply to B–E). (C) Schematic mapping of cis-regulatory logic in larval stomod&um, dorsal view, anterior left.

Importantly, the D1 cis-regulatory input (blue dot) also controls expression in the anterior neural boundary at mid-tailbud stage (epi, epidermis; cv, cerebral

vesicle; end, endoderm).

L. Christiaen et al. / Developmental Biology 277 (2005) 557–566564
of such combinatory interplay of individual cis-regulatory

modules would result in accurate Ci-pitxa/b expression in

the anterior crescent-shaped stomod&al territory (Figs. 5B

and C), which is complementary to the D1 activation

pattern in posterior stomod&al cells (Figs. 5B, C, and E)

and ANB.

This current model, together with confocal imaging of

reporter gene expression, lets us envision elements of

stomod&um patterning in ascidians (Figs. 5A–C). In

particular, distinct superficial and deep stomod&al compart-

ments can be defined upon restricted Ci-pitxa/b expression

in ventral/deep stomod&al cells. Lineage studies suggest

that these superficial and deep stomod&al compartments

originate from a/a6.7 and a/a6.5, sixth generation blasto-

meres, respectively (Nishida and Satoh, 1985). Moreover,

neural induction overrides a-line epidermal default fate in a/

a6.5 blastomeres (Hudson and Lemaire, 2001), suggesting

that distinct stomod&al compartments in ascidians may

reflect dual ontogenetic origin of the stomod&um in

chordates.

Though clonal restriction of cell fate is of special

importance in ascidians (reviewed in Satoh, 1994), it does

not fully explain stomod&al cell specification. In fact, deep

stomod&al cells originate from a/a8.19 and a/a8.17

blastomeres (descendants of a/a6.5), which share posterior

position after the eighth cleavage, while their respective a/

a8.20 and a/a8.18 anterior sister cells give birth to the palps

(Nishida, 1987). In addition, the anterior cerebral vesicle

also arises from a/a8.19 and a/a8.17 (Nishida, 1987). Taken

together, these data suggest that stomod&al fate is estab-
lished after the eighth cleavage, possibly by position-

dependant induction events that overcome differences in

clonal origins. Indeed, the stomod&al presumptive territory

encompasses neural and nonneural ectoderm and contacts

anterior endoderm. The complexity of pitx cis-regulation in

ascidians might therefore witness combined developmental

cues that position the ancestral chordate mouth and

associated structures.

This study provides us with an entry point to

investigate the genomic hardwiring of GRNs underlying

oral development in chordates, with the hope that the

Ciona system could lead the way toward a detailed

comprehension of stomod&al GRN in the more complex

vertebrate species.
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