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mappings, allows us as well to establish the continuous dependence of fixed points sets of
set-valued contractions.
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1. Introduction

In a seminal paper dealing with differential calculus of nondifferentiable mappings, Ioffe [17] introduced a general class
of objects, for local approximation of nonsmooth single-valued function, consisting of set-valued mappings which are posi-
tively homogeneous and closed-valued. Such objects will be called prederivatives. His definition extended the framework of
differential calculus to more general classes of functions. Usual Fréchet or strict Fréchet derivatives are, respectively, deriva-
tives and strict prederivatives in the sense of Ioffe’s definition. Moreover, derivative containers of Warga [28] and screens
and fans of Halkin [16] belong to this class. More, the contingent derivative introduced by Aubin (see, e.g., [2,3]) coincides
with the weak derivative when it exists. For a comprehensive study of this topic, one may refer to [17] where the rela-
tionships between the above concepts and several other notions of generalized derivatives, such as generalized gradients of
Clarke [8] and derivatives introduced by Mordukhovich [20], are investigated in detail.

Ever since, a growing literature on generalized differentiation attests the importance of this topic, especially in variational
analysis where this kind of tools happen to be crucial. In particular, many efforts have been devoted to developing the theory
of generalized differentiation of set-valued maps; for an overview of the State-of-the-Art, one may refer to the monograph
by Mordukhovich [21].

Lately, Pang [23] extended the work of Ioffe by proposing a concept of generalized differentiation for set-valued mappings
involving positively homogeneous maps. Here is the definition proposed by Pang.

Definition 1.1. (See Pang [23].) Let X and Y be Banach spaces. Let H be a positively homogeneous set-valued mapping from
X into Y .
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(a) We say that a set-valued mapping S from X into Y is outer H-differentiable at x̄ if for any δ > 0, there exists a neigh-
borhood V of x̄ such that

S(x) ⊂ S(x̄) + H(x − x̄) + δ‖x − x̄‖B for all x ∈ V . (1)

It is inner H-differentiable at x̄ if the formula above is replaced by

S(x̄) ⊂ S(x) − H(x − x̄) + δ‖x − x̄‖B for all x ∈ V . (2)

It is H-differentiable at x̄ if it is both outer H-differentiable and inner H-differentiable.
(b) We say that a set-valued mapping S from X into Y is strictly H-differentiable at x̄ if for any δ > 0, there exists a

neighborhood V of x̄ such that

S(x) ⊂ S
(
x′) + H

(
x − x′) + δ

∥∥x − x′∥∥B for all x, x′ ∈ V . (3)

Obviously, when S is a single-valued map the definitions of outer H-differentiability, inner H-differentiability and
H-differentiability in the above definition coincide. Note also that if S is strictly H-differentiable with respect to a ho-
mogeneous map H satisfying H(x) ⊂ κ‖x‖B for all x ∈ X then S is Lipschitz continuous with constant κ . When S is outer
H-differentiable with respect to such a map H , then it is calm at x̄. For a comprehensive exposition of the concepts of Lip-
schitz continuity and calmness for set-valued mappings the reader could refer to [12]. Note also that recent developments
regarding the H-differentiability are available in [10].

In this paper, we are primarily interested in studying the stability of the (strict) H-differentiability of set-valued maps.
More precisely, we wonder whether the limit of a sequence of differentiable set-valued mappings (in the sense of Def-
inition 1.1) is differentiable. In the very simple case of a sequence of real differentiable functions fn : R → R, we know
that if fn converges pointwise to f and f ′

n (the sequence of derivatives) converges uniformly to a function g , then f is
differentiable and f ′ = g . In the last decades, this question has been investigated by many authors who studied the stability
of several concepts of derivatives or subdifferentials, see e.g., [1,3,6,9,11,15]. Carrying such a study, in the framework of
generalized differentiation of set-valued maps, is the purpose of this paper. To this end, in Section 2, we first have a closer
look at positively homogeneous mappings since they play a central role in the concept of differentiation we are interested
in. Then, in Section 3, we endeavor to propose a suitable topology from which we derive the notion of convergence – the
so-called Fisher convergence – required for establishing our stability results. We will say that a sequence Fn of closed-
valued mappings acting between two Banach spaces X and Y Fisher converges to a closed-valued mapping F if for all
x ∈ X , F (x) ⊂ lim infn Fn(x) and limn supx∈X e(Fn(x), F (x)) = 0, where e(A, B) denotes the excess of the set A over the set B
(see the notation at the end of the present section). Thanks to the Fisher convergence we are able to state our main result
regarding the stability of the (strict) H-differentiability of set-valued maps. Given a converging sequence Fn of closed-valued
mappings and a sequence Hn of homogeneous set-valued mappings, we prove that under some assumption of uniform Hn-
differentiability of the sequence Fn , the Fisher limit F of Fn is (strictly) H-differentiable whenever Hn converges (in some
sense) to a homogeneous mapping H with finite outer norm.

Finally, by considering another problem, namely the data dependence of fixed-points sets of set-valued mappings, we
expand the scope of application of the convergence we introduced. The rest of the present section is devoted to collecting
the notation we shall use in the sequel.

Notation. Let (E,d) be a metric space. If x ∈ E and ρ > 0, then the open ball with center x and radius ρ is Bρ(x) := {z ∈
E | d(z, x) < ρ} and the closed ball with center x and radius ρ is Bρ(x) := {z ∈ E | d(z, x) � ρ}. The open (respectively closed)
unit ball will be denoted by B (respectively by B). If A ⊂ E and ε > 0, we denote by Bε(A) := ⋃

a∈A Bε(a) the ε-enlargement
of A.

If A and B are two subsets of (E,d), the excess of A over B (with respect to d) is defined by the formula

e(A, B) = sup
a∈A

d(a, B).

It is clear that

e(A, B) = inf{ε > 0 | A ⊂ B + εB} = inf
{
ε > 0

∣∣ A ⊂ Bε(B)
}
.

We adopt the convention that e(∅, B) = 0 when B 	= ∅ and e(∅, B) = ∞ if B = ∅.
Throughout, X and Y stand for real Banach spaces. Let F be a set-valued mapping from X into the subsets of Y ,

indicated by F : X ⇒ Y . Then, gph F = {(x, y) ∈ X × Y | y ∈ F (x)} is the graph of F and the range of F is the set rge F = {y ∈
Y | ∃x, F (x) � y}. The inverse of F , denoted by F −1, is defined as x ∈ F −1(y) ⇔ y ∈ F (x).

We denote by F (X, Y ) the space of all closed-valued mappings F : X ⇒ Y (i.e., F (x) is a closed subset of Y for all x ∈ X )
while the space H(X, Y ) consists of those closed-valued mappings H : X ⇒ Y which are positively homogeneous.
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2. Preliminary results

The concept of generalized differentiation we are dealing with strongly rely on positively homogeneous set-valued map-
pings. This is the reason why we found it useful to present a few results regarding these particular mappings. We start by
stating their definition.

Definition 2.1. Let H : X ⇒ Y be a set-valued mapping. It is called positively homogeneous if H(0) � 0 and H(λx) = λH(x)
for all x ∈ X and λ > 0.

One can immediately note that a mapping is positively homogeneous if and only if its graph is a cone and that the in-
verse of a positively homogeneous mapping is another positively homogeneous mapping. Graphical derivatives of set-valued
mappings, introduced by Aubin [2] (see also [3]), are positively homogeneous set-valued mappings and so are sublinear
mappings (i.e., set-valued mappings such that their graph is a convex cone). Let us recall that sublinear mappings have
been considered by Rockafellar under the name of convex processes (see [26,27]). A practical example of homogeneous set-
valued mappings (and, actually, sublinear mappings) is given by the constraint-type mappings, i.e., the mappings H such
that H(x) = Ax − K where A is a linear mapping and K a closed convex cone.

To be able to work efficaciously with positively homogeneous mappings we need some tools to be available. One of them
is the so-called outer norm.

Definition 2.2. Let H : X ⇒ Y be a positively homogeneous mapping. The outer norm of H is

|H|+ = sup
‖x‖�1

sup
y∈H(x)

‖y‖, (4)

with the convention that supy∈∅ ‖y‖ = −∞.

Note that an equivalent (and useful) formulation of (4) is given by

|H|+ = inf
{
κ > 0

∣∣ H(B) ⊂ κB
}
.

Positively homogeneous mappings having a finite outer norm are of undeniable interest and will play an important role
in the results we state in the next section. For this reason, it is worth presenting a few necessary conditions for a positively
homogeneous mapping to have this property. Such a question has already been meticulously studied by Robinson in a work
dealing with convex processes (see [25]). The following proposition is from [12].

Proposition 2.3. Let H : X ⇒ Y be a positively homogeneous mapping. Then

|H|+ < ∞ ⇒ H(0) = {0},
with this implication becoming an equivalence when H has closed graph and dim X < ∞.

Recall that a set-valued mapping F : X ⇒ Y is open at x̄ for ȳ, where ȳ ∈ F (x̄), if x̄ ∈ int(dom F ) and for every neighbor-
hood U of x̄, the set F (U ) = ⋃

x∈U F (x) is a neighborhood of ȳ.

Proposition 2.4. Let H : X ⇒ Y be a positively homogeneous mapping such that 0X ∈ int(dom H). If |H|+ < ∞ then H−1 is open at
0Y for 0X .

Proof. Let V be a neighborhood of 0Y in Y and let α be a positive constant such that Bα(0Y ) ⊂ V . We show that H−1(V )

is a neighborhood of 0X in X .
Since |H|+ < ∞, one can find β > 0 such that β|H|+ < α and, besides,

for all x ∈ X, H(x) ⊂ |H|+‖x‖B.

Making β smaller if necessary, we can assume that Bβ(0X ) ⊂ dom H then, for any x ∈ Bβ(0X ), there is an element y ∈ H(x)
such that ‖y‖ � β|H|+ < α, i.e., y ∈ Bα(0Y ).

We have thus proved that for all x ∈ Bβ(0X ), there exists y ∈ H(x) ∩ Bα(0Y ), hence

Bβ(0X ) ⊂ H−1(
Bα(0Y )

) ⊂ H−1(V ),

and H−1(V ) is a neighborhood of 0X in X . �
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3. Stability of generalized differentiation

To properly define the concept of convergence of set-valued mappings we will use in the sequel, it is necessary to
introduce the topology from which it derives. Since the mappings we are dealing with are closed-valued it seems natural
to consider a topology on the closed subsets of a metric (or normed linear) space; such a topological space is called
a hyperspace. When E is a Hausdorff topological space we denote by CL(E) the class of nonempty closed subsets of E .
Before presenting the topology we will consider here, we recall some usual notation. Let B be a subset of E , then the set
B− consists of those closed sets that hit B while the set B++ consists of those sets that are strongly contained in B; more
precisely

B− = {
A ∈ CL(E): A ∩ B 	= ∅}

, B++ = {
A ∈ CL(E): ∃ε > 0, Bε(A) ⊂ B

}
.

The following topology on CL(E) has been introduced by Beer et al. in [7].

Definition 3.1. Let (E,d) be a metric space. The proximal topology τδd on CL(E) has as a subbase all sets of the form V − ,
where V is open in E , and all sets of the form W ++ , where W is open in E .

A base for the proximal topology consists of all finite intersections of elements of its subbase. As mentioned in [7], since

(V ∩ W )++ = V ++ ∩ W ++,

a base for this topology consists of all the sets of the form

V ++ ∩ V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ;

where V , V 1, . . . , Vn are open in E . It follows that a local base for the proximal topology at A ∈ CL(E) consists of all the
sets of the form

Bε(A)++ ∩ Bε(a1)
− ∩ Bε(a2)

− ∩ · · · ∩ Bε(an)
−;

where the points a1,a2, . . . ,an lie in A and ε is a positive number. Thanks to this description, one can infer that the
proximal topology is compatible with Fisher convergence, the definition of which reads as follows.

Definition 3.2 (Fisher convergence). Let (E,d) be a metric space. A sequence An in CL(E) converges to A ∈ CL(E) in the sense
of Fisher if

(1) A ⊂ lim infn An;
(2) limn e(An, A) = 0.

A sequence An of closed subsets of E satisfying assertion (1) (respectively, assertion (2)) above will be said to be lower
Fisher convergent (respectively, upper Fisher convergent) to the subset A. Recall that the lower limit of a sequence An of
subsets of a normed space, with unit ball B, is defined by:

lim inf
n

An :=
⋂
ε>0

⋃
N>0

⋂
n�N

(An + εB).

A useful alternative formulation (in normed spaces) is given by:

lim inf
n

An =
{

x ∈ E
∣∣ lim sup

n→∞
d(x, An) = 0

}

= {x ∈ E | ∃xn ∈ An with xn → x}.
The convergence in the sense of Fisher was introduced in [13] and then, studied in several works (see e.g., [5,7,14]). One

can prove (see for instance [6]) that a sequence An converges to a subset A in (CL(E), τδd ) if and only if it is convergent to
A in the sense of Fisher.

Adapting these concepts to our framework we obtain the following convergence for set-valued maps that we will also
call Fisher convergence.

Definition 3.3. Let X and Y be Banach spaces and let Fn be a sequence in F (X, Y ). We say that Fn Fisher converges to

F ∈ F (X, Y ), and we write
F

Fn −→ F , if

(a) F (x) ⊂ lim infn Fn(x) for all x ∈ X ;
(b) limn supx∈X e(Fn(x), F (x)) = 0.
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If the mappings Fn and F satisfy assertion (a) in Definition 3.3 then we say that Fn lower Fisher converges to F while
relation (b) corresponds to the upper Fisher convergence of the sequence Fn to F . For the sake of simplicity, we chose not to
mention in the terminology we adopt here the “uniformity” of the convergence in (b).

Remark. When the mappings Fn := fn (for all n) and F := f are single-valued then assertion (a) in Definition 3.3 reduces
to the convergence of the sequence fn(x) to f (x) for all x ∈ X while assertion (b) is nothing but the uniform convergence
of the sequence fn to f .

From now on, and until the end of the present section, we work in the finite dimensional setting. The following propo-
sition states that the positive homogeneity of set-valued mappings is stable with respect to Fisher convergence.

Proposition 3.4. Let Hn be a sequence in H(Rm,R
p) and let H ∈ F (Rm,R

p) be such that
F

Hn −→ H. Then H is a positively homo-
geneous mapping.

Proof. Take an element x ∈ R
m and a positive scalar λ. We first prove that H(λx) ⊂ λH(x). If H(λx) = ∅, there is nothing to

prove. Otherwise, let y ∈ H(λx). Since H(λx) ⊂ lim inf Hn(λx) there is a sequence yn , the elements of which are in Hn(λx)
for each n, converging to y. It follows that

yn/λ ∈ Hn(x) for all n. (5)

Moreover, supz∈Rm e(Hn(z), H(z)) → 0 then

∀ε > 0, ∃N ∈ N, n � N ⇒ ∀z ∈ R
m, e

(
Hn(z), H(z)

)
< ε.

Hence,

∀ε > 0, ∃N ∈ N, n � N ⇒ ∀z ∈ R
m, Hn(z) ⊂ H(z) + εB.

It follows from (5) that

∀ε > 0, ∃N ∈ N, n � N ⇒ yn/λ ∈ H(x) + εB.

Passing to the limit over n we obtain that for all ε > 0, y/λ ∈ H(x) + εB. Since H(x) is a closed subset of R
p , together with

the fact that εB is compact, the set H(x) + εB is closed. Hence, y/λ ∈ ⋂
ε>0(H(x) + εB). Consequently, y/λ ∈ H(x) = H(x)

and we get

H(λx) ⊂ λH(x). (6)

Conversely, let x ∈ R
m and let λ > 0. If H(x) = ∅ then there is nothing more to do. Otherwise, take y ∈ λH(x); since

H(z) ⊂ lim inf Hn(z), for all z ∈ R
m , there is a sequence yn in R

p such that yn ∈ Hn(x) for n = 0,1, . . . and yn → y/λ. Then
the sequence λyn converges to y and we have λyn ∈ λHn(x) = Hn(λx) for n = 0,1, . . . .

Thanks to the upper Fisher convergence of the sequence Hn to H we get

∀ε > 0, ∃N ∈ N, n � N ⇒ Hn(λx) ⊂ H(λx) + εB.

Thus,

∀ε > 0, ∃N ∈ N, n � N ⇒ λyn ∈ H(λx) + εB.

Then, ∀ε > 0, y ∈ H(λx) + εB = H(λx) + εB. Therefore, y ∈ H(λx) and we thus get

λH(x) ⊂ H(λx). (7)

Combining inclusions (6) and (7) we obtain that H(λx) = λH(x) for all x ∈ R
m and λ > 0. To complete the proof, it remains

to show that 0 ∈ H(0). Thanks to the upper Fisher convergence of the sequence Hn to H , for all positive ε, we have

Hn(0) ⊂ H(0) + εB, eventually.

Since 0 ∈ Hn(0) for all n, we infer that, for all positive ε, 0 ∈ H(0) + εB. It follows that 0 ∈ H(0) = H(0) and we have
completed the proof. �

Now we are interested in investigating the relationships between a converging sequence of positively homogeneous
mappings, having a finite norm, and the finiteness of the norm of its limit. Propositions 3.5, 3.6 and 3.7 below provide us
with some answers.
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Proposition 3.5. Let Hn be a sequence in H(Rm,R
p) and let H ∈ H(Rm,R

p). Assume that the sequence Hn is uniformly bounded,
i.e., there is κ > 0 such that |Hn|+ � κ for n = 0,1, . . . . If the sequence Hn lower Fisher converges to H then |H|+ � κ .

Proof. From the uniform boundedness of the sequence Hn we obtain the existence of a positive scalar κ such that

Hn(x) ⊂ κ‖x‖B, ∀x ∈ R
m. (8)

Let x ∈ dom H and let y ∈ H(x). Since H(x) ⊂ lim inf Hn(x), there is a sequence yn converging to y, such that yn ∈ Hn(x)
for n = 0,1, . . . . It follows from (8) that yn ∈ κ‖x‖B, ∀n ∈ N. Passing to the limit over n we get y ∈ κ‖x‖B and therefore
H(x) ⊂ κ‖x‖B. This clearly yields |H|+ � κ . �

A more precise statement is available in Proposition 3.6 where the convergence of the sequence Hn is strengthened.

Proposition 3.6. Let Hn be a sequence in H(Rm,R
p) and let H ∈ F (Rm,R

p). Assume that there is a positive constant κ such that

|Hn|+ = κ for n = 0,1, . . . . If
F

Hn −→ H then H ∈ H(Rm,R
p) and |H|+ = κ .

Proof. From Proposition 3.4 we have H ∈ H(Rm,R
p) while Proposition 3.5 yields |H|+ � κ . If |H|+ < κ then there is a

positive scalar κ̃ < κ such that |H|+ < κ̃ . Let ε > 0 be such that κ̃ + ε < κ . It follows, from the upper Fisher convergence of
the sequence Hn to H , that there is an integer N such that for all n � N and x ∈ R

m , Hn(x) ⊂ H(x) + εB. Since |H|+ < κ̃ ,
using the convexity of the unit ball B, we obtain that for all x in B

Hn(x) ⊂ (κ̃ + ε)B, eventually.

Consequently, |Hn|+ < κ , eventually. This contradicts our assumption that |Hn|+ = κ for n = 0,1, . . . and terminates the
proof. �
Proposition 3.7. Let Hn be a sequence in H(Rm,R

p) and let H ∈ H(Rm,R
p) be such that the sequence Hn upper Fisher converges

to H. If |H|+ < ∞ then the sequence Hn is eventually uniformly bounded.

Proof. Since |H|+ < ∞ there is a constant κ � 0 such that H(x) ⊂ κB for all x ∈ B. Fix ε > 0; there is an integer N such
that for any integer n � N one has

sup
x∈X

e
(

Hn(x), H(x)
)
� ε.

In particular, for all n � N , x ∈ B we can write

Hn(x) ⊂ H(x) + εB ⊂ κB + εB = (κ + ε)B.

It follows that the sequence Hn is eventually uniformly bounded. �
In the light of Propositions 3.5 and 3.7 we can state the following result, the proof of which is straightforward.

Proposition 3.8. Let Hn be a sequence in H(Rm,R
p) and let H ∈ H(Rm,R

p) be such that
F

Hn −→ H. Then |H|+ < ∞ if and only if
the sequence Hn is eventually uniformly bounded.

Definition 3.9. Let Fn be a sequence in F (Rm,R
p) and let Hn be a sequence in H(Rm,R

p). We say that the sequence Fn

is uniformly strictly Hn-differentiable at x̄ if for any δ > 0, there exists a uniform neighborhood V of x̄ (i.e., which does not
depend on n) such that for n = 0,1, . . .

Fn(x) ⊂ Fn
(
x′) + Hn

(
x − x′) + δ

∥∥x − x′∥∥B for all x, x′ ∈ V .

Of course, a slight and obvious modification of Definition 3.9 allows us to define the concepts of uniform outer Hn-
differentiability, uniform inner Hn-differentiability and uniform Hn-differentiability.

Theorem 3.10. Consider a sequence Fn in F (Rm,R
p) along with two mappings F ∈ F (Rm,R

p) and H ∈ H(Rm,R
p). Let Hn be a

sequence in H(Rm,R
p). We make the following assumptions:

(1) The sequence Fn is uniformly strictly Hn-differentiable at x̄ ∈ R
m;

(2) The sequence Fn Fisher converges to F ;
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(3) The sequence Hn upper Fisher converges to H ;
(4) |H|+ < ∞.

Then, the mapping F is strictly H-differentiable at x̄.

Proof. Assertion (1) above means that for any δ > 0, there is a neighborhood V of x̄ such that

Fn(x) ⊂ Fn
(
x′) + Hn

(
x − x′) + δ

∥∥x − x′∥∥B, ∀x, x′ ∈ V , n ∈ N. (9)

Fix ε> 0. Since the sequence Fn Fisher converges to F there is an integer N1
ε such that for all n � N1

ε , supx∈Rm e(Fn(x), F (x))<

ε/2. It follows that

∀n � N1
ε, Fn

(
x′) ⊂ F

(
x′) + ε/2B, for all x′ ∈ R

m. (10)

In a very similar manner one can prove that the upper Fisher convergence of the sequence Hn to H yields the existence of
an integer N2

ε such that

∀n � N2
ε, Hn

(
x − x′) ⊂ H

(
x − x′) + ε/2B, for all x, x′ ∈ R

m. (11)

From the uniform strict Hn-differentiability of the sequence Fn at x̄, together with inclusions (10) and (11), we infer that
for all δ > 0, there is a neighborhood V of x̄ such that

Fn(x) ⊂ F
(
x′) + H

(
x − x′) + εB + δ

∥∥x − x′∥∥B, ∀x, x′ ∈ V , n � Nε;
where Nε := max{N1

ε, N2
ε}. Then,

lim inf
n

Fn(x) ⊂ F
(
x′) + H

(
x − x′) + (

ε + δ
∥∥x − x′∥∥)

B, ∀x, x′ ∈ V . (12)

Since |H|+ < ∞, H(x − x′) is compact. Moreover, the sets F (x′) and (ε + δ‖x − x′‖)B are, respectively, closed and compact,
consequently F (x′) + H(x − x′) + (ε + δ‖x − x′‖)B is a closed subset of R

p and relation (12), together with the Fisher
convergence of the sequence Fn to F , yields

F (x) ⊂ F
(
x′) + H

(
x − x′) + (

ε + δ
∥∥x − x′∥∥)

B, ∀x, x′ ∈ V .

Thus, we have proved so far that, for all δ > 0 there is a neighborhood V of x̄ such that for all ε > 0 one has

F (x) ⊂ F
(
x′) + H

(
x − x′) + δ

∥∥x − x′∥∥B + εB, ∀x, x′ ∈ V .

Since the set F (x′) + H(x − x′) + δ‖x − x′‖B is closed it follows that for all δ > 0 there is a neighborhood V of x̄ such that

F (x) ⊂ F
(
x′) + H

(
x − x′) + δ

∥∥x − x′∥∥B, ∀x, x′ ∈ V . (13)

Then the mapping F is strictly H-differentiable at x̄. �
Obviously, by considering in Theorem 3.10 a sequence Fn which is uniformly outer Hn-differentiable at x̄ (respec-

tively, uniformly inner Hn-differentiable at x̄ or uniformly Hn-differentiable at x̄) we obtain, as a conclusion, the outer
H-differentiability (respectively, the inner H-differentiability or the H-differentiability) of the mapping F at x̄.

The following result is a straightforward consequence of the above theorem. It asserts that, by strengthening the conver-
gence of the sequence Hn to H , one can remove most of the assumptions regarding the mapping H made in Theorem 3.10;
namely, the positive homogeneity of H as well as the finiteness of its outer norm.

Corollary 3.11. Consider a sequence Fn in F (Rm,R
p) along with two mappings F and H in F (Rm,R

p). Let Hn be a sequence in
H(Rm,R

p). We make the following assumptions:

(1) The sequence Fn is uniformly strictly Hn-differentiable at x̄ ∈ R
m;

(2) The sequences Fn and Hn Fisher converge respectively to F and H ;
(3) The sequence Hn is eventually uniformly bounded.

Then, the mapping F is strictly H-differentiable at x̄.

Proof. Assertions (1) and (2) above clearly yield assumptions (1) to (3) of Theorem 3.10. Moreover, thanks to Proposition 3.4
we have that H ∈ H(Rm,R

p) while Proposition 3.8 gives us |H|+ < ∞. It remains to apply Theorem 3.10 to obtain the
desired conclusion. �
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Remark. To the best of our knowledge there are no similar results, dealing with the variational stability of the main concepts
of generalized differentiation for set-valued mappings, namely, the contingent derivative of Aubin (see, e.g., [3]) and the
coderivative of Mordukhovich (see e.g., [21]). This issue is of course related to the stability of the contingent cone (for the
contingent derivative) and to the stability of the normal cone with respect of a set (for the coderivative). Some answers
about the stability of these cones can be found in [3,21], nevertheless properly speaking, there are no works regarding the
variational stability of these concepts we are aware of.

4. Continuous dependence of fixed points sets

In this last section we study the stability of fixed points sets of set-valued contractions. Such studies have already been
carried out by Markin (see [19]) who proved a stability theorem in Hilbert spaces for closed- and convex-valued mappings
while Lim [18] established a few years later a similar result for closed-valued mappings defined in a complete metric space.
In both these works, a uniform Hausdorff-type convergence was needed to guarantee the good behavior of fixed points sets
of a sequence of set-valued contractions. For additional developments on this topic, including applications to the dependence
of solutions to differential inclusions or partial differential equations, one may refer also to [4,22,24]. Here, we prove that
if a sequence of set-valued mappings Tn upper Fisher converges to a set-valued contraction T then the sequence of fixed
points of Tn upper Fisher converges to a fixed point of T . Before going further we recall two useful definitions and present
the results of Lim which are the very inspiration behind our investigations.

Let us now recall the definitions of the Pompeiu–Hausdorff distance and set-valued contractions.

Definition 4.1. The Pompeiu–Hausdorff distance between two subsets A and B of a metric space is the quantity

h(A, B) = max
{

e(A, B); e(B, A)
}
.

Equivalently, it can be expressed by

h(A, B) = inf{ε > 0 | A ⊂ B + εB, B ⊂ A + εB}.

Definition 4.2. Let (X,d) and (Y , δ) be two metric spaces and let T : X ⇒ Y be a closed-valued mapping. We say that T is
a λ-contraction if there is a constant λ ∈ (0,1) such that

h
(
T (x), T (y)

)
� λd(x, y), ∀x, y ∈ X .

In [18], Lim proved the following result establishing the continuous dependence of fixed points sets of set-valued con-
tractions.

Proposition 4.3. Let X be a complete metric space and T1 and T2 be λ-contractions from X into CL(X). Then,

h
(
φ(T1),φ(T2)

)
� 1

1 − λ
sup
x∈X

h
(
T1(x), T2(x)

)
,

where φ(T1) and φ(T2) denote, respectively, the fixed points sets of the mappings T1 and T2 .

Next comes a straightforward consequence of Proposition 4.3, namely a result regarding the stability of the fixed points
of a uniformly convergent sequence of set-valued contractions.

Proposition 4.4. Let X be a complete metric space and Ti : X → CL(X) a sequence of λ-contractions, i = 0,1,2, . . . If limn→∞ h(Ti(x),
T0(x)) = 0 uniformly for all x in X, then limn→∞ h(φ(Ti),φ(T0)) = 0.

An adaptation of the proof of Proposition 4.3 leads us to the following result, the assumptions of which are more
general than the ones made by Lim since we do not need the two set-valued mappings involved in the statement to be
λ-contractions.

Proposition 4.5. Let X be a complete metric space. Let T0 be a λ-contraction from X into CL(X) and let T : X ⇒ X be any set-valued
mapping. Then,

e
(
φ(T ),φ(T0)

)
� 1

1 − λ
sup
x∈X

e
(
T (x), T0(x)

);
where φ(T ) and φ(T0) denote, respectively, the fixed points sets of the mappings T and T0 .
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Proof. If the quantity supx∈X e(T (x), T0(x)) = ∞ there is nothing to prove; therefore, we may assume that M :=
supx∈X e(T (x), T0(x)) < ∞.

Moreover, if φ(T ) = ∅ then according to the convention we adopted in Section 1, e(φ(T ),φ(T0)) = 0 and we are done.
Otherwise, φ(T ) 	= ∅ and we take x0 ∈ φ(T ), i.e., x0 ∈ φ(x0).

Fix ε > 0, clearly e(T (x0), T0(x0)) < M + ε thus, d(x0, T0(x0)) < M + ε and, consequently, there exists x1 ∈ T0(x0) such
that d(x0, x1) < M + ε.

The mapping T0 being a λ-contraction we have e(T0(x0), T0(x1)) � λd(x0, x1). It follows that d(x1, T0(x1)) � λd(x0, x1).
Hence

d
(
x1, T0(x1)

)
< λd(x0, x1) + λε1, (14)

where ε1 := cε/(1 − λ), c being any positive constant such that

c
∞∑

n=1

nλn < 1. (15)

From (14) we infer the existence of an element x2 ∈ T0(x1) such that

d(x1, x2) < λd(x0, x1) + λε1.

Since T0 is a λ-contraction we have again

e
(
T0(x1), T0(x2)

)
� λd(x1, x2) < λd(x1, x2) + λ2ε1.

Hence, there exists x3 ∈ T0(x2) such that d(x2, x3) < λd(x1, x2) + λ2ε1. The construction process is now clear and we are
thus able to define a sequence xn such that{

xn+1 ∈ T0(xn);
d(xn+1, xn) � λd(xn, xn−1) + λnε1 (n � 1).

Then,

d(xn+1, xn) � λd(xn, xn−1) + λnε1

� λ2d(xn−1, xn−2) + 2λnε1

...

� λnd(x1, x0) + nλnε1.

Hence, for all integers p and q such that p � q, one has

d(xp, xq) �
∞∑

i=q

d(xi+1, xi) � λq

1 − λ
d(x1, x0) +

∞∑
i=q

iλiε1,

and using (15) we get limq→∞
∑∞

i=q d(xi+1, xi) = 0. Therefore, xn is a Cauchy sequence and the space X being complete xn
converges to some point x ∈ X . Before going further, we need the following result:

Claim. Since T0 is a closed-valued λ-contraction, it has closed graph.

Indeed, let (xn, yn) be a sequence in gph T such that (xn, yn) converges to some (x̄, ȳ) ∈ X × X . Since T is a λ-
contraction we have h(T (xn), T (x̄)) � λd(xn, x̄) which yields d(yn, T (x̄)) � λd(xn, x̄). The sequence xn converging to x̄, we
get limn→∞ d(yn, T (x̄)) = d( ȳ, T (x̄)) = 0. And because T is closed-valued it follows that ȳ ∈ T (x̄) which completes the proof
of the claim.

Since for all n ∈ N, xn+1 ∈ T0(xn), thanks to the claim we get x ∈ T0(x), i.e., x ∈ φ(T0). Moreover,

d(x0, x) �
∞∑

n=0

d(xn+1, xn)

� 1

1 − λ
d(x1, x0) +

∞∑
n=1

nλnε1

� 1

1 − λ

(
d(x1, x0) + ε

)

� 1
(M + 2ε).
1 − λ
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Since d(x0, φ(T0)) � d(x0, x) we obtain

d
(
x0, φ(T0)

)
� 1

1 − λ
(M + 2ε). (16)

The last inequality being valid for any x0 ∈ φ(T ) we get

e
(
φ(T ),φ(T0)

)
� 1

1 − λ
(M + 2ε), (17)

letting ε go to zero we complete the proof. �
From Proposition 4.5, we derive the following stability result and its corollary.

Proposition 4.6. Let X be a Banach space. Let T be a λ-contraction from X into CL(X) and let Tn : X ⇒ X be a sequence in F (X, X)

upper Fisher converging to T . Then, the sequence φ(Tn) upper Fisher converges to φ(T ).

Proof. From Proposition 4.5, we get

e
(
φ(Tn),φ(T )

)
� 1

1 − λ
sup
x∈X

e
(
Tn(x), T (x)

)
for n = 0,1,2, . . . .

Moreover, thanks to the upper Fisher convergence of the sequence Tn to T , we obtain

∀ε > 0, ∃N ∈ N, n � N ⇒ sup
x∈X

e
(
Tn(x), T (x)

)
< (1 − λ)ε.

Combining these two relations, we thus get

∀ε > 0, ∃N ∈ N, n � N ⇒ e
(
φ(Tn),φ(T )

)
< ε,

which gives the upper Fisher convergence of the sequence φ(Tn) to φ(T ) and completes the proof. �
Corollary 4.7. Let T : R

m ⇒ R
m be a closed-valued λ-contraction. Let Tn be a sequence in F (Rm,R

m) upper Fisher converging to T .
If, for n = 0,1,2, . . . , xn is a fixed point of Tn and the sequence xn converges to some x̄ ∈ R

m then x̄ is a fixed point of T .

Proof. Let ε > 0. From Proposition 4.6, the sequence φ(Tn) upper Fisher converges to the set φ(T ). Therefore, there is an
integer N such that for all n � N one has

φ(Tn) ⊂ φ(T ) + εB.

Since xn ∈ φ(Tn), for n = 0,1,2, . . . and xn → x̄ we have x̄ ∈ lim infn φ(Tn). Thanks to the claim established in the proof of
Proposition 4.5 we know that the graph of T is closed, it follows that the set φ(T ) is a closed subset of R

m . Consequently,

x̄ ∈ φ(T ) + εB = φ(T ) + εB.

Since ε is an arbitrary positive number we get x̄ ∈ φ(T ). �
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