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Abstract

For a commutative algebra the shu&e product is a morphism of complexes. We generalize
this result to the quantum shu&e product, associated to a class of non-commutative algebras
(for example all the Hopf algebras). As a 4rst application we show that the Hochschild–Serre
identity is the dual statement of our result. In particular, we extend this identity to Hopf algebras.
Secondly, we clarify the construction of a class of quasi-Hopf algebras.
c© 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

The shu&es were de4ned by Eilenberg and MacLane to give an explicit formula for
the equivalence of complexes of the Eilenberg–Zilber theorem. They were later used to
show that the homology of an abelian group (or a commutative algebra) is an algebra
with the shu&e product. On the other hand, the shu&es were used, more implicitly, by
Hochschild and Serre [7] in the de4nition of the Hochschild–Serre identity of a group.
Afterwards Habegger et al. [6] gave a formulation of the identity in terms of shu&es.

These two results were proved separately, by a long and technical veri4cation of
the two terms of the equality. In this paper, we prove that these results have a strong
interaction. In fact, we show that the Hochschild–Serre identity is a consequence of
the homological property of the shu&e map.
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More generally, we consider algebras with an automorphism � of the square tensor
product and some relations between the product and �; such a couple is called a
braided �-commutative algebra. For such algebras, we show 4rst that the quantum
shu&e product, associated to � and de4ned by Rosso [16], can be factorized by the
shu&e map. This factorization allows to prove that the quantum shu&e product is
a morphism of complexes from a braided tensor product of chain complexes to the
Hochschild chain complex of the algebra. The dual statement is a Hochschild–Serre
identity for braided �-commutative algebras.

A class of examples of such algebras is the class of Hopf algebras with invertible an-
tipode. The braidind is given by the Woronowicz braiding [20]. In particular the case of
the Hopf algebra of a group gives the classical Hochschild–Serre identity of the group.

Secondly, we give a multiplicative statement of the Hochschild–Serre identity for a
co-commutative Hopf algebra. Then, we use this result to clarify some constructions
of quasi-Hopf algebras, associated to the Drinfeld double, and de4ned by Dijkgraaf
et al. [3] and Bulacu and Panaite [2].

In [14] we show that the homological property of the quantum shu&e product
allows to extend the 4rst iteration of the abelian group homology construction [5]
to non-commutative Hopf algebras. The multiplicative cohomology associated to this
chain complex has applications to the theory of invariants for links and 3-manifolds.
For example, the 3-cocycles of this cohomology are weight systems for links.

Notations.K is a commutative 4eld.
All algebras considered are associative algebras over K with unit.
The product is denoted by �.
We use Sweedler’s notation for coproduct �(a) =

∑
a(1) ⊗ a(2).

Let V be a vector space over K. The tensor vector space T (V ) of V
is de4ned by T (V ) =

⊕
k¿0 V⊗k .

Let w∈V⊗n. We denote the degree n of w by |w|.

n is the set of all permutations of {1; : : : ; n}. For all  in 
n, we
denote the sign of  by (−1)||.

1. A new construction of the quantum shu�e product

The original de4nition of the quantum shu&e product was given in the framework
of representation theory. This point of view is not useful to study the homological
properties of the product. So we will give a factorization of this product by morphisms
of complexes, in particular by the shu&e map.

1.1. The original de5nition

The quantum shu&e product was 4rst de4ned by Rosso [15]. It describes the product
of the following cotensorial Hopf algebra. Let H be a Hopf algebra and M an H -Hopf
bimodule, with the bicomodule structure given by �L and �R. The cotensorial Hopf
algebra Tc

H (M) was de4ned by Nichols [13], by: Tc
H (M) = H ⊕⊕n¿1 M

n, where
M M is the kernel of �R ⊗ IdM − IdM ⊗ �L.
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This Hopf algebra is an H -Hopf bimodule. As algebra Tc
H (M) is the crossed product

of H by the left-coinvariant subspace of the cotensorial Hopf bimodule. The algebra
structure induced on the left-coinvariant subspace is given by the quantum shu&e
product.

More explicitly, let V be a vector space over K and �∈End(V ⊗V ) which satis4es
the braid equation:

�2�1�2 = �1�2�1; (1)

where for n; i non-negative integers such that n¿ i; �i ∈End(V⊗n) is de4ned by �i =
Id⊗i−1 ⊗ � ⊗ Id⊗n−i−1.

For n¿ 2, we denote by T� the representation of the braid group Bn on V⊗n de4ned
on the generators (!i)16i6n−1 by

T�(!i) = �i; 16 i6 n− 1:

For all non-negative integers p; q such that p+ q= n; Sp;n is the set of all (p; q)-
shu&es, i.e. the set of all w∈∑n such that w(1)¡ · · ·¡w(p) and w(p + 1)¡ · · ·
¡w(n).

Let (i)16i6n−1 be the transpositions (i; i + 1) of
∑

n. For w∈∑n and w = i1 : : : ir
a reduced decomposition of w we de4ne the extension of T� to

∑
n by

T�(w) = �i1 : : : �ir :

The quantum shu&e product ’� :T (V )⊗T (V ) → T (V ), associated to �, is de4ned for
all positive integers p + q = n by

’� : V⊗p ⊗ V⊗q → V⊗n

v⊗ v′ 
→
∑

w∈Sp; n

T�(w)(v⊗ v′):

If p = 0 or q = 0, the product is just the multiplication by elements of K. With this
product and the unit 1K, T (V ) is an algebra.

In this paper, we will always use a quantum shu&e product with sign, i.e. associated
to the braid −�. We will still denote it by ’�. It is de4ned for all positive integers
p + q = n by

’� : V⊗p ⊗ V⊗q → V⊗n

v⊗ v′ 
→
∑

w∈Sp; n

(−1)|w|T�(w)(v⊗ v′):

1.2. A twisted version of the shu7e map

The shu&e map was de4ned by Eilenberg and MacLane [5] as a map from the
tensor product of two simplicial chain complexes to the cartesian product of these
chain complexes (for the classical de4nitions and results of the simplicial theory, we
refer to MacLane [12] and to Loday [11]).

They have shown that this map is a morphism of complexes. The proof is based
only on the properties of the simplicial objects and of the (p; q)-shu&es.
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We use this map on the un-normalized bar resolution of an algebra A, de4ned by
MacLane [12] as the following simplicial object  (A; A):

 n(A; A) = A⊗ A⊗n ⊗ A;

and for a = a0[a1 | · · · | an]an+1 ∈  n(A; A) the operators are given by

d0(a) = a0a1[a2 | · · · | an]an+1;

di(a) = a0[a1 | · · · | aiai+1 | · · · | an]an+1 ∀i∈ [1; : : : ; n− 1];

dn(a) = a0[a1 | · · · | an−1]anan+1;

si(a) = a0[a1 | · · · | ai | 1A|ai+1 | · · · | an]an+1 ∀i∈ [0; : : : ; n]:

For the standard tensor product and cartesian product of simplicial chain complexes,
Eilenberg and MacLane have proved:

Theorem 1.1. The shu7e map g : (A; A) ⊗  (A; A) →  (A; A) ×  (A; A); de5ned for
all non-negative integers p + q = n and a∈  p(A; A); b∈  q(A; A) by

gn(a⊗ b) =
∑
∈Sp; n

(−1)||s(p+q)−1 ◦ · · · ◦ s(p+1)−1(a) ⊗ s(p)−1 ◦ · · · ◦ s(1)−1(b);

is a morphism of complexes.

We will twist this map by a braiding �, i.e. an automorphism of A ⊗ A. For this,
we de4ne a map:

 : (A; A) ×  (A; A) →  (A⊗ A; A⊗ A);

of degree 0. For n∈N, the map  n is de4ned on  n(A; A) ⊗  n(A; A) by:

 n = �2n+2 ◦ (�2n�2n+1) ◦ · · · ◦ (�4 : : : �n+3) ◦ (�2 : : : �n+2):

In the classical case � is the Mip & de4ned on A⊗ A by �(a⊗ b) = b⊗ a and the map
 is a morphism of complexes.

More generally, it is easy to see that for the classical structure of algebra on A⊗ A
and � diNerent from &;  is not a morphism of complexes.

Thus we braid the product of A ⊗ A by �. Therefore, using the ideas of Baez [1],
Joyal and Street [9], Van Daele and Van Keer [18], Wambst [19] we give conditions
on � to de4ne a braided algebra structure on A⊗ A.

Proposition 1.1. Let �� : (A⊗ A) ⊗ (A⊗ A) → A⊗ A be the linear map de5ned by

�� = (� ⊗ �)�−1
2 :

The vector space A ⊗ A is an algebra with product �� and unit 1� = 1A ⊗ 1A if and
only if

�1(� ⊗ Id) = (Id ⊗ �)�1�2; �1(Id ⊗ �) = (� ⊗ Id)�2�1 (2)

�(a⊗ 1A) = 1A ⊗ a; �(1A ⊗ a) = a⊗ 1A ∀a∈A: (3)

This algebra is denoted by A⊗� A.
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Example. For � the Mip & de4ned on a; b∈A by &(a⊗ b) = b⊗ a; the braided algebra
A⊗& A is just the classical algebra A⊗ A.

With this braided algebra structure, we have:

Proposition 1.2. The map  is a morphism of complexes between  (A; A) ×  (A; A)
and  (A⊗� A; A⊗� A).

Proof. Using the de4nition of the un-normalized bar resolution the proposition is
proved if; for all integers n; i such that n¿ 0 and 06 i6 n; we show that:

 n−1 ◦ (dn
i ⊗ dn

i ) = (Id⊗2i ⊗ �� ⊗ Id⊗2n−2i) ◦  n:

To make this proof more intuitive; we use the graphical technique introduced by many
authors; for example see Kassel [10].

The product � of A is represented by , the map � by ,

the map �−1 by , and the composition f ◦ g of two maps by .

So the map  n is represented by

Now using the property (2), we prove the equality. For example, for i = n the
graphical proof is
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Thus, the map  ◦ g is a morphism of complexes from  (A; A) ⊗  (A; A) to  (A ⊗�

A; A⊗� A).

1.3. Braided bimodule structure and braided di9erential

Let M be an A ⊗� A-bimodule; we show that the map  ◦ g can be extended to a
map of complexes from M ⊗T (A)⊗T (A) to M ⊗T (A⊗� A). For this, we 4rst de4ne a
braided A⊗� A-bimodule structure on  (A; A)⊗ (A; A), and then we produce a braided
diNerential on M ⊗ T (A) ⊗ T (A).

On the one hand, for an algebra A, the vector space  (A; A) has a natural structure
of A-bimodule: the left action, respectively, right action, is given by the product with
the 4rst element, respectively, the last element.

In particular let us consider the algebra A⊗� A. Then using the associativity of the
algebra A⊗�A, one can prove that the vector space  (A⊗�A; A⊗�A) is a chain complex
of A ⊗� A-bimodules, i.e. the diNerential d� of  (A ⊗� A; A ⊗� A) is a morphism of
A⊗� A-bimodules.

Denote by ⊗̃ the tensor product of A⊗� A-bimodules (where the tensor product of
two A-bimodules M and N is de4ned by M ⊗A⊗Aop N ).

The map IdM ⊗̃d� endows the vector space M ⊗̃ (A ⊗� A; A ⊗� A) with a structure
of chain complex.

To extend on the left the map  ◦ g, we use the injection:

* :M ⊗ T (A⊗� A) → M ⊗̃ (A⊗� A; A⊗� A);

given by *(+⊗ w) = +⊗ 1�[w]1�.
Now using the precedent bimodule structure, we have:

Lemma 1.1. With the classical structure of Hochschild complex on M ⊗ T (A⊗� A);
the injection * is an isomorphism of complexes.

Remark. This result is not speci4c to A⊗�A. In fact; Mac Lane [12] has shown that for
any algebra A1 and any A1-bimodule M1 the corresponding injection from M1 ⊗ T (A1)
to M1⊗̃ (A1; A1) is an isomorphism of complexes.

On the other hand, the natural A-bimodule structure of  (A; A) can be extended to
a A ⊗� A-bimodule structure on  (A; A) ⊗  (A; A). For all non-negative integers p; q,
the left action ’L and the right action ’R are de4ned by:

’L :A⊗� A⊗  p(A; A) ⊗  q(A; A) →  p(A; A) ⊗  q(A; A)

’L = (� ⊗ Id⊗p+1 ⊗ � ⊗ Id⊗q+1) ◦ �−1
p+3 : : : �

−1
2 ;

’R : p(A; A) ⊗  q(A; A) ⊗ A⊗� A →  p(A; A) ⊗  q(A; A)

’R = (Id⊗p+1 ⊗ � ⊗ Id⊗q+1 ⊗ �) ◦ �−1
p+3 : : : �

−1
p+q+4:
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The graphical representations of these actions are:

Using the graphical technique one can show that with these structures the vector spaces
 (A; A) ⊗  (A; A) and  (A; A) ×  (A; A) are A ⊗� A-bimodules and that the vector
space  (A; A) ⊗  (A; A) is a chain complex of A⊗� A-bimodules. In particular, for all
non-negative integer i, the maps Id⊗di and di⊗Id are morphisms of A⊗�A-bimodules.

So, for d⊗ the diNerential of  (A; A) ⊗  (A; A), the map IdM ⊗̃d⊗ endows
M ⊗̃( (A; A) ⊗  (A; A)) with a structure of chain complex.

Now using these structures, we have:

Lemma 1.2. For all p; q∈N; the injection:

,p;q :M ⊗ A⊗p ⊗ A⊗q → M ⊗̃( p(A; A) ⊗  q(A; A))

given by ,p;q(+ ⊗ w ⊗ w′) = + ⊗ 1A[w]1A ⊗ 1A[w′]1A; induces an isomorphism of
complexes. The di9erential - on M ⊗ T (A) ⊗ T (A) is de5ned; for n¿ 1; by -n =∑

p+q=n -p;q; where

-p;q :M ⊗ A⊗p ⊗ A⊗q → [M ⊗ A⊗p−1 ⊗ A⊗q] ⊕ [M ⊗ A⊗p ⊗ A⊗q−1];

with; for a = a1 ⊗ · · · ⊗ ap ∈A⊗p; b = b1 ⊗ · · · ⊗ bq ∈A⊗q; and
�q : : : �1 : A⊗ A⊗q → A⊗q ⊗ A �1 : : : �p : A⊗p ⊗ A → A⊗ A⊗p

ap ⊗ b 
→
∑

i

bi ⊗ ap
i ; a⊗ b1 
→

∑
j

b1
j ⊗ aj;

we have

-p;q(+⊗ a⊗ b) = +:(a1 ⊗ 1A) ⊗ a2 ⊗ · · · ⊗ ap ⊗ b

+
p−1∑
i=1

(−1)i+⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap ⊗ b

+ (−1)p
∑

i

(ap
i ⊗ 1A):+⊗ a1 ⊗ · · · ⊗ ap−1 ⊗ bi

+ (−1)p
∑
j

+:(1A ⊗ b1
j ) ⊗ bj ⊗ b2 ⊗ · · · ⊗ bq

+
q−1∑
i=1

(−1)i+p+⊗ a⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bq

+ (−1)p+q(1A ⊗ bq):+⊗ a⊗ b1 ⊗ · · · ⊗ bq−1:
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Proof. Let a′[a]a′′ ∈  p(A; A) and b′[b]b′′ ∈  q(A; A). Then with the A ⊗� A-bimodule
structure; we have:

a′[a]a′′ ⊗ b′[b]b′′ =
∑

i

(a′ ⊗ wi) · (1A[wi]1A ⊗ 1A[&i]1A) · (&i ⊗ b′′);

where

�p+q+1 : : : �p+2�1 : : : �p+1 : A⊗p ⊗ A⊗ A⊗ A⊗q → A⊗ A⊗p ⊗ A⊗q ⊗ A

a⊗ a′′ ⊗ b′ ⊗ b 
→
∑

i

wi ⊗ wi ⊗ &i ⊗ &i:

So; the inverse of ,p;q is given by:

,−1
p;q(+⊗ a′[a]a′′ ⊗ b′[b]b′′) =

∑
i

(&i ⊗ b′′):+:(a′ ⊗ wi) ⊗ wi ⊗ &i:

Hence; using , we transport the diNerential IdM ⊗̃d⊗ to the diNerential -.

Therefore, to extend  ◦ g to a morphism of complexes from M ⊗ T (A) ⊗ T (A) to
M ⊗ T (A ⊗� A), we only have to prove that the maps Id ⊗ g and Id ⊗  are well
de4ned. For this, we must show that g and  are morphisms of A⊗� A-bimodules.

This is just a straightforward veri4cation (using the equality (3) and the graphical
technique). In particular, for all non-negative integer i, the maps Id ⊗ si and si ⊗ Id
are morphisms of A⊗� A-bimodules.

Thus, we have:

Theorem 1.2. Let A be an algebra; �∈Aut(A⊗ A) satisfying (2) and (3) and M an
A⊗� A-bimodule.

There exists a map / from T (A) ⊗ T (A) to T (A ⊗� A) such that IdM ⊗ / is the
morphism of complexes which extends  ◦ g.

Proof. We have shown that the map /̃ = *−1 ◦ (IdM ⊗̃ ) ◦ (IdM ⊗̃g) ◦ , from M ⊗
T (A) ⊗ T (A) to M ⊗ T (A⊗� A) is a morphism of complexes.

So we only have to proof that for all non-negative integer n, the map /̃n can be
written as /̃n = IdM ⊗/n, where

/n :
⊕

p+q=n

A⊗p ⊗ A⊗q → (A⊗� A)⊗n:

For this, associate to any non-negative integers p; n; i, such that 06p6 n, 06 i6p,
the maps s′i :A⊗p → A⊗p+1 and g′ :A⊗p ⊗ A⊗n−p → A⊗n ⊗ A⊗n by

s′i(a
1 ⊗ · · · ⊗ ap) = a1 ⊗ · · · ⊗ ai ⊗ 1A ⊗ ai+1 ⊗ · · · ⊗ ap;

g′ =
∑
∈Sp; n

(−1)||s′(n)−1 : : : s
′
(p+1)−1 ⊗ s′(p)−1 : : : s

′
(1)−1:

Then the map / is de4ned for all non-negative integer n by /n =  n−2 ◦ g′. It is easy
to show that /̃ = IdM ⊗/.
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1.4. Factorization of the quantum shu7e product

We give a factorization of the quantum shu&e product by the map /.

Theorem 1.3. Let A be an algebra and let �∈Aut(A⊗A) satisfying (1); (2) and (3).
The quantum shu7e product ’� can be factorized by /:

’� = �⊗ ◦/;

where for all non-negative integer n; �⊗n is the product of A tensorized n times.

The theorem is a consequence of the following proposition:

Proposition 1.3. For all non-negative integers p; n such that n¿ 2; 06p6 n and
∈ Sp;n; we have:

T�() = �⊗n ◦  n−2 ◦ (s′(n)−1 : : : s
′
(p+1)−1 ⊗ s′(p)−1 : : : s

′
(1)−1):

Proof. The proposition is clear if p = 0 or n. Thus assume that p is such that
16p6 n− 1.

Then the proposition is proved by induction on n. For n = 2 it is clear.
Assume that the proposition is true for n− 1. Let p; q∈N be such that p + q = n,

16p6 n− 1 and ∈ Sp;n. We have two possibilities: either (1) = 1 or (p+ 1) = 1.
In the 4rst case we de4ne a new shu&e ′ ∈ Sp−1; n−1 by

′(i) = (i + 1) − 1; 16 i6 n− 1:

For a1 ⊗ · · · ⊗ ap ⊗ b∈A⊗p ⊗ A⊗q we have:

s′(n)−1 : : : s
′
(p+1)−1(a1 ⊗ · · · ⊗ ap) ⊗ s′(p)−1 : : : s

′
(1)−1(b)

= s′(n)−1 : : : s
′
(p+1)−1(a1 ⊗ · · · ⊗ ap) ⊗ s′(p)−1 : : : s

′
(2)−1(1A ⊗ b)

= a1 ⊗ s′(n)−2 : : : s
′
(p+1)−2(a2 ⊗ · · · ⊗ ap) ⊗ 1A ⊗ s′(p)−2 : : : s

′
(2)−2(b)

= a1 ⊗ s′′(n−1)−1 : : : s
′
′(p)−1(a2 ⊗ · · · ⊗ ap) ⊗ 1A ⊗ s′′(p−1)−1 : : : s

′
′(1)−1(b):

Using the induction and (3), we deduce the proposition in the 4rst case.
In the second case, we de4ne a shu&e ′ ∈ Sp;n−1 by

′(i) = (i) − 1 16 i6p;

′(i) = (i + 1) − 1 p + 16 i6 n− 1:

For a⊗ b1 ⊗ · · · ⊗ bq ∈A⊗p ⊗ A⊗q we have

s′(n)−1 : : : s
′
(p+1)−1(a) ⊗ s′(p)−1 : : : s

′
(1)−1(b1 ⊗ · · · ⊗ bq)

= 1A ⊗ s′(n)−2 : : : s
′
(p+2)−2(a) ⊗ b1 ⊗ s′(p)−2 : : : s

′
(1)−2(b2 ⊗ · · · ⊗ bq)

= 1A ⊗ s′′(n−1)−1 : : : s
′
′(p+1)−1(a) ⊗ b1 ⊗ s′′(p)−1 : : : s

′
′(1)−1(b2 ⊗ · · · ⊗ bq):

Using the induction and (3) we deduce the proposition in the second case.
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Remark. If we de4ne the quantum shu&e product by the formula of Theorem 1.3; we
do not need to ask for � to satisfy (1). But this equality is necessary to prove the
associativity.

2. Homological corollaries

We give immediate corollaries of the factorization, which extend some classical
results to braided algebras.

2.1. The quantum shu7e product as a morphism of complexes

Let M be an A-bimodule; if � satis4es

� ◦ � = �; (4)

then M is an A ⊗� A-bimodule with the structure de4ned, for all a; b∈A and w∈M ,
by

(a⊗ b):w = ab:w; w:(a⊗ b) = w:ab:

With this structure and Theorem 1.3, we deduce immediately the following:

Corollary 2.1. Let A be an algebra; �∈Aut(A ⊗ A) satisfying (2); (3); (4) and M
an A-bimodule. The morphism IdM ⊗ ’� is a morphism of complexes; between the
chain complex (M ⊗ T (A) ⊗ T (A); -) and the Hochschild chain complex of A with
coe>cients in M .

Remark. Such a pair (A; �) is called a braided �-commutative algebra. All Hopf
algebras with invertible antipode (in particular all 4nite dimensional Hopf algebras)
are braided �-commutative algebras; with � given by the Woronowicz braiding. This
braiding; de4ned in [20]; is given for a; b∈A by �(a ⊗ b) =

∑
b(1) ⊗ adb(2)a; with

ada(b) =
∑

S(a(1))ba(2) the adjoint action.
The inverse is given for a; b∈A by �−1(a⊗ b) =

∑
a(3)bS−1(a(2)) ⊗ a(1).

We have the same result for the normalized chain complexes.
Let I be the sub-space of T (A) generated by the elements a1 ⊗· · ·⊗an ∈A⊗n where

n∈N∗ and one of the ai is equal to 1A.
It is well know that the Hochschild diNerential induces a diNerential on the quotients.
Using property (3) of �, it is easy to show that the diNerential - and the product

IdM ⊗ ’� induce, respectively, a diNerential and a product on M ⊗ T (A)=I ⊗ T (A)=I .
So we have:

Corollary 2.2. Let A be an algebra; �∈Aut(A⊗A) satisfying (2); (3); (4) and M an
A-bimodule. The morphism IdM ⊗’� is a morphism of complexes; between the chain
complex (M ⊗ T (A)=I ⊗ T (A)=I; -) and the normalized Hochschild chain complex of
A with coe>cients in M .
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2.2. Braided square tensor product of a Hochschild complex with coe>cients in K

Let A be a braided �-commutative algebra augmented with 2 :A → K. Then K is an
A-bimodule via the augmentation. Using Corollary 2.1, the product ’� is a morphism of
complexes between (T (A)⊗T (A); -) and the Hochschild complex of A with coeQcients
in K. The diNerential - is de4ned for all non-negative integers p; q and a= a1 ⊗ · · ·⊗
ap ∈A⊗p, b = b1 ⊗ · · · ⊗ bq ∈A⊗q by

-p;q(a⊗ b) = 2(a1)a2 ⊗ · · · ⊗ ap ⊗ b

+
p−1∑
i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap ⊗ b

+ (−1)p
∑

i

2(ap
i )a1 ⊗ · · · ⊗ ap−1 ⊗ bi

+ (−1)p
∑
j

2(bj
j)aj ⊗ b2 ⊗ · · · ⊗ bq

+
q−1∑
i=1

(−1)i+pa⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bq

+ (−1)p+q2(bq)a⊗ b1 ⊗ · · · ⊗ bq−1;

where �q : : : �1(ap ⊗ b) =
∑

i bi ⊗ ap
i , and for all i; bi ∈A⊗q, �1 : : : �p(a⊗ b1) =∑

j b
1
j ⊗ aj, and for all j; aj ∈A⊗p.

Example. Let � be the Mip &; and dH the diNerential of the Hochschild complex of
A with coeQcients in K. Then a braided &-commutative algebra is just a commutative
algebra; the quantum shu&e product is the shu&e product; and

-p;q = dH ⊗ Id⊗q + (−1)pId⊗p ⊗ dH :

Thus; we 4nd the classical result:

Theorem 2.1. Let A be a commutative algebra. Then the Hochschild homology of A
with coe>cients in K is a commutative graded algebra.

As above, we can also consider normalized versions of the statements.

2.3. A new proof of the Hochschild–Serre identity

Let G be a group, H a normal subgroup. If N is a G-module we denote by C∗(G;N )
the chain complex of normalized cochains from G to N . To determine a relation
between the cohomology of H and the one of G, Hochschild and Serre [7] have de4ned
a map, later called Hochschild–Serre identity, between C∗(G;N ) and C∗(G;C∗(H;N )).
They have shown, using combinatorial tricks, that this map is a morphism of complexes.
This morphism was interpreted in terms of shu&es by Habegger et al. [6]. Using
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this framework, we extend this identity to Hopf algebras with invertible antipode. In
particular, we show that the Hochschild–Serre identity is a dual statement of Corollary
2.1.

Let A be a braided �-commutative algebra and M an A-bimodule. We have for all
non-negative integers p; q a natural isomorphism:

5p;q : HomK(A⊗p ⊗ A⊗q;M) � HomK(A⊗q;HomK(A⊗p;M)):

From this, we deduce the following identity of Hochschild–Serre type:

Theorem 2.2. There exists a di9erential - on HomK(T (A); HomK(T (A); M)) such that
5 ◦ t’� is a morphism of complexes from the Hochschild chain complex
HomK(T (A); M) to (HomK(T (A);HomK(T (A); M)); -).

Proof. The idea of the proof is the same as for the homological case. Instead of
considering the tensor product ⊗̃ we use the set; denoted by Hom�; of the morphisms
of A⊗� A-bimodules.

In this framework the isomorphism *n (de4ned for all positive integer n) between
Hom�( n(A ⊗� A; A ⊗� A); M) and HomK((A ⊗� A)⊗n;M) arises naturally from the
A⊗� A-bimodule structure of  n(A⊗� A; A⊗� A).

For all positive integers p; q the isomorphism ,p;q between Hom�( p(A; A) ⊗
 q(A; A); M) and HomK(A⊗p ⊗ A⊗q;M) is de4ned for a∈A⊗p; b∈A⊗q by

,(f)(a⊗ b) = f(1A[a]1A ⊗ 1A[b]1A):

The inverse is de4ned for a[a]a′ ∈  p(A; A); b[b]b′ ∈  q(A; A) by

,−1(f)(a′[a]a′′ ⊗ b′[b]b′′) =
∑

i

a′wi · f(wi ⊗ &i) · &ib′′;

with �p+q+1 : : : �p+2�1 : : : �p+1(a⊗ a′′ ⊗ b′ ⊗ b) =
∑

i wi ⊗ wi ⊗ &i ⊗ &i.
With these isomorphisms one can show that the map t’� is a morphism of com-

plexes. Using the isomorphism 5 we obtain the result.
For all positive integers p; q, the diNerential - is given on f∈ HomK(A⊗p;

HomK(A⊗q;M)) by
(i) for a1 ⊗ · · · ⊗ ap+1 ∈A⊗p+1 and b∈A⊗q:

-(f)(a1 ⊗ · · · ⊗ ap+1)(b)

= (−1)q
∑
j

a1
j :f(a2 ⊗ · · · ⊗ ap+1)(bj)

+
p∑

i=1

(−1)i+qf(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap+1)(b)

+ (−1)p+q+1f(a1 ⊗ · · · ⊗ ap)(b):ap+1;

with �1 : : : �q(b⊗ a1) =
∑

j a
1
j ⊗ bj, and for all j; bj ∈A⊗q.

(ii) for a∈A⊗p and b1 ⊗ · · · ⊗ bq+1 ∈A⊗q+1:

-(f)(a)(b1 ⊗ · · · ⊗ bq+1)
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= b1:f(a)(b2 ⊗ · · · ⊗ bq+1)

+
q∑

i=1

(−1)if(a)(b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bq+1)

+ (−1)q+1
∑

i

f(ai)(b
1 ⊗ · · · ⊗ bq):bq+1

i ;

with �p : : : �1(bq+1 ⊗ a) =
∑

i ai ⊗ bq+1
i , and for all i, ai ∈A⊗p.

As for Corollary 2.1, we show a normalized version of this result. For all
non-negative integer p, we denote by HomN (A⊗p;M) the vector space of normal-
ized maps of HomK(A⊗p;M), i.e. such that f(a1 ⊗ · · · ⊗ ap) = 0 whenever one of the
ai is equal to 1A. We have:

Theorem 2.3. There exists a di9erential - on HomN (T (A); HomN (T (A); M)) such that
5 ◦ t’� induces a morphism of complexes between the normalized Hochschild chain
complex HomN (T (A); M) and (HomN (T (A);HomN (T (A); M)); -).

Example. In particular; this theorem can be applied to the braided �-commutative alge-
bra associated to a Hopf algebra with invertible antipode. Thus; we have a Hochschild–
Serre identity for Hopf algebras with invertible antipode:

Corollary 2.3. Let A be a Hopf algebra with invertible antipode and H a sub-Hopf al-
gebra stable for the adjoint action. The map 5◦ t’� induces a morphism of complexes
between the normalized Hochschild chain complex and(HomN (T (A);
HomN (T (H); M)); -).

In particular, for a group G, a normal subgroup H and a left K[G]-module H , the
last corollary applied to K[G], K[H ] and M (which is a K[G]-bimodule with the
right action given by the counit of K[G]) shows that the Hochschild–Serre identity
is a statement dual to the result that the quantum shu&e product is a morphism of
complexes.

3. The Hochschild–Serre identity in the multiplicative case

In order to study the deformation by multiplicative coeQcients of a class of Drinfeld
doubles, we prove a multiplicative version of the Hochschild–Serre identity. For this, we
consider the abelian groups de4ned by Sweedler [17], Reg(C;M), of invertible maps of
HomK(C;M) for the convolution product, where C is a cocommutative coalgebra and
M a commutative algebra. The convolution product is de4ned, for f; g∈HomK(C;M)
by:

f ∗ g = �M (f ⊗ g)�C:
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We 4rst give a multiplicative shu&e map for such abelian groups. As a consequence,
we prove a multiplicative Hochschild–Serre identity for cocommutative Hopf algebras.

3.1. The multiplicative shu7e map

In the additive case, we have considered A ⊗� A-bimodules. So we will work with
invertible morphisms of A⊗� A-bimodules. For this, we need complementary structures
on C and M .

De,nition 3.1. Let H be a bialgebra.
A coalgebra C, which is an H -bimodule, is called an H -bimodule coalgebra if �C

and 2C are H -bimodule morphisms.
An algebra M , which is an H -bimodule, is called an H -bimodule algebra if �M and

8M are H -bimodule morphisms.

If C is an H -bimodule coalgebra, then for a∈H and c∈C:

�C(a · c) =
∑

a(1) · c(1) ⊗ a(2) · c(2); and 2C(a · c) = 2H (a)2C(c):

If M is an H -bimodule algebra, then for a∈H and +;  ∈M :

a · (+ ) =
∑

(a(1) · +)(a(2) ·  ); and a · 1M = 2(a)1M :

Thus, for C a cocommutative H -bimodule coalgebra and M a commutative H -bimodule
algebra we can consider the subgroup RegB(C;M) of the invertible H -bimodule mor-
phisms from C to M .

Remark. For M 4xed; RegB(:; M) is a contravariant functor between the category of
cocommutative H -bimodule coalgebras and the category of abelian groups.

Let A be a cocommutative Hopf algebra and � be the Woronowicz braiding. In
Proposition 1.1 we have shown that A⊗� A is an algebra. The following lemma proves
that it is a bialgebra.

Lemma 3.1. The Woronowicz braiding and its inverse are morphisms of coalgebras.

Using the precedent lemma one can check that for all non-negative integers p; q, the
A⊗� A-bimodule  p(A; A) ⊗  q(A; A) is a cocommutative A⊗� A-bimodule coalgebra,
with the coproduct given by the tensor product of coalgebras.

Thus, if M is a commutative A⊗� A-bimodule algebra, we can consider the graded
abelian groups:

RegB( (A; A) ⊗  (A; A); M) =
⊕
n¿0

⊕
p+q=n

RegB( p(A; A) ⊗  q(A; A); M)
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and

RegB( (A; A) ×  (A; A); M) =
⊕
n¿0

RegB( n(A; A) ⊗  n(A; A); M):

In Section 1.3, we have shown that the morphisms Id ⊗ si, si ⊗ Id, Id ⊗ di and di ⊗ Id
are A ⊗� A-bimodule morphisms. Lemma 3.1 shows that they are coalgebra maps, so
we can apply the functor RegB(:; M) to de4ne:

s̃ [1]
i = RegB(:; M)(si ⊗ Id); s̃ [2]

i = RegB(:; M)(Id ⊗ si);

d̃
[1]
i = RegB(:; M)(di ⊗ Id); d̃

[2]
i = RegB(:; M)(Id ⊗ di):

The simplicial properties of si and di give analogue cosimplicial properties for s̃ [l]
i , and

d̃
[l]
i , with l∈{1; 2}. So we have the dual multiplicative notion of tensor and cartesian

product of simplicial chain complexes:

Proposition 3.1. The graded group RegB( (A; A) ⊗  (A; A); M) is a chain complex.
For all non-negative integers p; q, the di9erential D̃p;q from RegB( p(A; A) ⊗

 q(A; A); M) to RegB( p+1(A; A) ⊗  q(A; A); M) ⊕ RegB( p(A; A) ⊗  q+1(A; A); M), is
de5ned by

D̃p;q(f) =

(
p+1

*i=0
d̃

[1]
i (f(−1)i);

q+1

*i=0
d̃

[2]
i (f(−1)p+i

)

)
:

The graded group RegB( (A; A) ×  (A; A); M) is a chain complex with, for all non-
negative integer n, the di9erential:

D̃n : RegB( n(A; A) ⊗  n(A; A); M) → RegB( n+1(A; A) ⊗  n+1(A; A); M);

de5ned by

D̃n(f) =
n+1

*i=0
d̃

[1]
i ◦ d̃

[2]
i (f(−1)i):

The multiplicative dual shu&e map is de4ned for all positive integers p; q by

g̃p;q : RegB( p+q(A; A) ⊗  p+q(A; A); M) → RegB( p(A; A) ⊗  q(A; A); M);

and

g̃p;q(f) = *∈Sp;p+q

(s̃ [1]
(p+q)−1 ◦ · · · ◦ s̃ [1]

(p+1)−1) ◦ (s̃ [2]
(p)−1 ◦ · · · ◦ s̃ [2]

(1)−1)(f(−1)||):

In the additive case, the proof of Theorem 1.1 arises from the properties of the sim-
plicial objects and of the (p; q)-shu&e. In the multiplicative dual case the (p; q)-shu&e
properties hold, and we have the analogue properties for the simplicial objects,
thus:
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Theorem 3.1. The multiplicative dual shu7e map is a morphism of complexes.

3.2. The multiplicative Hochschild–Serre identity

Let M be a commutative A-bimodule algebra. It is clear that M is a commutative
A⊗� A-bimodule algebra.

Using Lemma 3.1, we can apply the functor RegB(:; M) to the maps �i. So for all
non-negative integer n we de4ne the dual of ;n, and for p¿ 2 and all w∈
p the
dual of T�(w):

;̃n : RegB( n(A⊗� A; A⊗� A); M) → RegB( n(A; A) ⊗  n(A; A); M);

T̃ �(w) : Reg(A⊗p;M) → Reg(A⊗p;M):

As in the additive case, ;̃ is a morphism of complexes. So we have a morphism of
complexes from RegB( (A⊗� A; A⊗� A); M) to RegB( (A; A) ⊗  (A; A); M).

Furthermore, the isomorphisms of Section 2.3, can be written multiplicatively i.e.
for all positive integers p; q:

RegB( p(A⊗� A; A⊗� A); M) � Reg((A⊗� A)⊗p;M);

RegB( p(A; A) ⊗  q(A; A); M) � Reg(A⊗p ⊗ A⊗q;M);

Reg(A⊗p ⊗ A⊗q;M)
5̃�Reg(A⊗q;HomK(A⊗p;M)):

As in the additive case, one can prove:

Theorem 3.2. The multiplicative dual quantum shu7e product map:

’̃� :
⊕
n¿0

Reg(A⊗n;M) →
⊕
n¿0

⊕
p+q=n

Reg(A⊗p ⊗ A⊗q;M);

de5ned for f∈Reg(A⊗n;M); a∈A⊗p and b∈A⊗n−p by

’̃�(f)(a⊗ b) = *w∈Sp; n

]T�(w)(f(−1)|w|)(a⊗ b);

is a morphism of complexes.

Using the isomorphism 5̃, we have a morphism of complexes:

5̃ ◦ ’̃� :

(⊕
n¿0

Reg(A⊗n;M); �̃

)
→
(⊕

n¿0

⊕
p+q=n

Reg(A⊗q;HomK(A⊗p;M)); -̃

)
:

The 4rst chain complex is the multiplicative Hochschild chain complex. The second
chain complex can be understood as the total chain complex of the following chain
bicomplex:

for all positive integers p; q, put Cp;q(A;M) = Reg(A⊗p;HomK(A⊗q;M)),
the vertical diNerential is given by the map D̃

(q)
p :Cp;q(A;M) → Cp+1; q(A;M),
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de4ned for f∈Cp;q(A;M), a = a1 ⊗ · · · ⊗ ap+1 ∈A⊗p+1 and x∈A⊗q by

D̃
(q)
p (f)(a)(x) =

∑
a1

(1) · f(−1)q(a2
(1) ⊗ · · · ⊗ ap+1

(1) )(ada1
(2)
x(1))

p∏
i=1

f(−1)q+i
(a1

(i+2) ⊗ · · · ⊗ ai
(i+1)a

i+1
(i+1) ⊗ · · · ⊗ ap+1

(i+1))(x(i+1))

f(−1)q+p+1
(a1

(p+3) ⊗ · · · ⊗ ap
(p+2))(x(p+2)) · ap+1

(p+2);

where ada1x =
∑

ada1
(1)
x1 ⊗ · · · ⊗ ada1

(q)
xq.

The horizontal diNerential is given by the map d̃
(p)
q :Cp;q(A;M) → Cp;q+1(A;M),

de4ned for f∈Cp;q(A;M), a∈A⊗p and x = x1 ⊗ · · · ⊗ xq+1 ∈A⊗q+1 by

d̃
(p)
q (f)(a)(x) =

∑
x1

(1) · f(a(1))(x
2
(1) ⊗ · · · ⊗ xq+1

(1) )

q∏
i=1

f(−1)i(a(i+1))(x
1
(i+1) ⊗ · · · ⊗ xi(i+1)x

i+1
(i+1) ⊗ · · · ⊗ xq+1

(i+1))

f(−1)q+1
(a(q+2))(x

1
(q+2) ⊗ · · · ⊗ xq(q+2)) · ada(q+3)

xq+1;

where adaxq+1 = ada1···apxq+1.
With this de4nition the diNerential -̃ is given, for f∈Cp;q(A;M), by

-̃(f) = (D̃
(q)
p (f); d̃

(p)
q (f)):

From the construction of the diNerential -̃, for all non-negative integer n we have that

(C:;n(A;M); D̃
(n)
: ) and (Cn; :(A;M); d̃

(n)
: ) are chain complexes. Moreover, the diNerentials

are compatible in the chain bicomplex sense, i.e. for f∈Cp;q(A;M):

(D̃
(q+1)
p ◦ d̃

(p)
q )(f) ∗ (d̃

(p+1)
q ◦ D̃

(q)
p )(f) = 8M ◦ 2A:

Remark. As in the additive case; we have a normalized version of this result.
For all non-negative integer n, denote by HomN (A⊗n;M) the set of all normalized

maps, i.e. the maps f∈HomK(A⊗n;M) such that f(a1 ⊗ · · · ⊗ an) = 2(a1 ⊗ · · · ⊗ an)
whenever one of the ai is equal to 1A.

For all non-negative integers p; q, put Cp;q
N (A;M)=RegN (A⊗p;HomN (A⊗q;M)). With

this notation, we have:

Corollary 3.1. Let A be a cocommutative Hopf algebra.
The map:

5̃ ◦ ’̃� :

(⊕
n¿0

RegN (A⊗n;M); �̃

)
→
(⊕

n¿0

⊕
p+q=n

Cp;q
N (A;M); -̃

)
;

is a morphism of complexes.
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3.3. Example in degree 3

Let f∈RegN (A⊗3; M) and x ⊗ y ⊗ z ⊗ t ∈A⊗4. Then:

�̃3(f)(x ⊗ y ⊗ z ⊗ t) =
∑

(x(1) · f(y(1) ⊗ z(1) ⊗ t(1)))f−1(x(2)y(2) ⊗ z(2) ⊗ t(2))

f(x(3) ⊗ y(3)z(3) ⊗ t(3))f−1(x(4) ⊗ y(4) ⊗ z(4)t(4))

(f(x(5) ⊗ y(5) ⊗ z(5)) · t(5)):

The map 5̃ ◦ ’̃� sends f to (f0; f1; f2; f3), where for l∈{1; 2; 3}:

fl ∈RegN (A⊗l;HomN (A⊗3−l; M)):

We have f0 = f3 = f, and for all elements x; y; a; b of A:

f1(x)(a⊗ b) =
∑

f(a(1) ⊗ b(1) ⊗ x(1))f−1(a(2) ⊗ x(2) ⊗ adx(3)b(2))

f(x(4) ⊗ adx(5)a(3) ⊗ adx(6)b(3));

f2(x ⊗ y)(a) =
∑

f(a(1) ⊗ x(1) ⊗ y(1))f−1(x(2) ⊗ adx(3)a(2) ⊗ y(2))

f(x(4) ⊗ y(3) ⊗ adx(5)y(4)a(3)):

Let (f0; f1; f2; f3)∈⊕p+q=3 C
p;q
N (A;M). Then:

-̃(f0; f1; f2; f3) = (�̃3(f0); D̃
(3)
0 (f0) ∗ d̃

(1)
2 (f1); D̃

(2)
1 (f1) ∗ d̃

(2)
1 (f2); D̃

(1)
2 (f2)

∗d̃(3)
0 (f3); �̃3(f3)):

4. Quasi-Hopf algebras obtained from Drinfeld doubles

In order to explain a construction of quasi-Hopf algebras, associated to 4nite dimen-
sional cocommutative Hopf algebras, we will use the multiplicative Hochschild–Serre
identity. This type of construction was 4rst considered by Dijkgraaf et al. [3] for the
Hopf algebra of a 4nite group and by Bulacu and Panaite [2] for 4nite dimensional
cocommutative Hopf algebras.

They deform the product and the coproduct of the Drinfeld double by two particular
maps obtained from a normalized 3-cocycle of the multiplicative Hochschild chain
complex. Then they prove that the deformed Drinfeld double is a quasi-Hopf algebra.
The choice of these two maps was only motivated by the fact that they verify the
conditions allowing to build a quasi-Hopf algebra.

We will 4rst extend the construction to a more general deformation and explain
the link between the deformation and the normalized 3-cocycle of the total complex.
At last, using the multiplicative Hochschild–Serre identity, we clarify the choice of
Dijkgraaf et al. [3] and Bulacu and Panaite [2].
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4.1. De5nition of the quasi-Hopf algebras

In the representation theory of Hopf algebras, it is well known that the coproduct
induces a tensor product of representations which is strictly associative. This is a
consequence of the coproduct coassociativity.

A way to have a theory with a non associative tensor product of representations
is to use representations of a quasi-Hopf algebra. These objects were 4rst de4ned by
Drinfeld [4]:

De,nition 4.1. An algebra A is a quasi-Hopf algebra if there exist morphisms of
algebras � :A → A ⊗ A and 2 :A → K; an anti-automorphism of algebras S :A → A;
an invertible element ?∈A⊗ A⊗ A and elements +;  ∈A such that:
(i) � is quasi-coassociative; i.e. for all a∈A:

(Id ⊗ �)�(a) = ?(�⊗ Id)�(a)?−1;

(ii) the associator ? satis4es the pentagonal equality:

(Id ⊗ Id ⊗ �)(?) · (�⊗ Id ⊗ Id)(?)

= (1A ⊗ ?) · (Id ⊗ �⊗ Id)(?) · (?⊗ 1A);

(iii) the counit 2 satis4es:

(2⊗ Id)� = Id = (Id ⊗ 2)�; (Id ⊗ 2⊗ Id)(?) = 1A ⊗ 1A; (5)

(iv) for all a∈A:∑
S(a(1))+a(2) = 2(a)+;

∑
a(1) S(a(2)) = 2(a) ; (6)

(v) if ? =
∑

i Xi ⊗ Yi ⊗ Zi and ?−1 =
∑

i Pi ⊗ Qi ⊗ Ri then:∑
i

Xi S(Yi)+Zi = 1A;
∑

i

S(Pi)+Qi S(Ri) = 1A: (7)

4.2. Deformation of the Drinfeld double into a Hopf algebra

Let A be a 4nite dimensional cocommutative Hopf algebra.
The space A∗ is an A-bimodule with the actions de4ned for f∈A∗ and x; a∈A by

(xf)(a) = f(ax); (fx)(a) = f(xa):

The Drinfeld double of A, denoted by D(A), is the Hopf algebra de4ned as a vector
space by A∗ ⊗ A. For f; g∈A∗ and x; y∈A, the structure is given by

(f ⊗ x) · (g⊗ y) =
∑

f(x(1)gS(x(2))) ⊗ x(3)y;

�(f ⊗ x) =
∑

(f(1) ⊗ x(1)) ⊗ (f(2) ⊗ x(2));

S(g⊗ x) =
∑

S(x(1))S(g)x(2) ⊗ S(x(3)):

The unit and counit are those given by the tensor product of bialgebras.
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Let E∈C2;1
N (A;K), and F∈C1;2

N (A;K). As A is a 4nite dimensional vector space, we
have (A ⊗ A)∗ � A∗ ⊗ A∗. So for x∈A, we have F(x)∈A∗ ⊗ A∗, and we denote by
F(x) =

∑
F(x)(1) ⊗ F(x)(2).

The product and the coproduct are deformed by:

(f ⊗ x) · (g⊗ y) =
∑

f(x(1)gS(x(2)))E(x(3) ⊗ y(1)) ⊗ x(4)y(2); (8)

�F(f ⊗ x) =
∑

(f(1)F(x(1))(1) ⊗ x(2)) ⊗ (f(2)F(x(1))(2) ⊗ x(3)): (9)

Remark. Dijkgraaf et al. [3]; Bulacu and Panaite [2] have studied such deformations
associated to a particular choice of E and F.

More generally, Hofstetter [8] has studied Hopf algebras obtained by tensor product
of an abelian matched pair of Hopf algebras. Our deformation is a particular case of
this work in the following sense: the precedent braided structures are those obtained
from the Hofstetter theory applied to the abelian matched pair (A; A∗).

Thus, we have:

Theorem 4.1 (Hofstetter). Let A be a 5nite dimensional cocommutative Hopf algebra.
The space D(A) is a Hopf algebra with the crossed product and coproduct if and

only if (2; F; E; 2) is a normalized 3-cocycle of the total chain complex associated to
(C:; :(A;K); -̃).
The unit and the counit are those given by the tensor product of bialgebras. The

antipode is given, for f∈A∗ and x∈A, by:

S(f⊗x) =
∑

(2⊗S(x(1))) · (E −1(x(2)⊗S(x(3)))S(fF−1(x(4))(1))F−1(x(4))(2)⊗1A):

We denote this Hopf algebra by DE;F(A).

Proof. In her article Hofstetter proves the equivalent condition: (F; E) is a 2-cocycle
of the subcomplex (

⊕
n¿1

⊕
p+q=n C

p;q
N (A;K); -̃).

In our case, the associativity is equivalent to D̃
(1)
2 (E) = 2.

The coassociativity is equivalent to d̃
(1)
2 (F) = 2.

The coproduct �F is a morphism of algebras if and only if D̃
(2)
1 (F) ∗ d̃

(2)
1 (E) = 2.

4.3. Deformation of the Drinfeld double into a quasi-Hopf algebra

Instead of considering normalized 3-cocycle of the type (2; F; E; 2), we consider nor-
malized 3-cocycle of the type (w; F; E; 2). We will show that DE;F(A) is a quasi-Hopf
algebra and that w corresponds to the associator.

Let (w; F; E; 2) be a normalized 3-cocycle. Using the properties of the cocycle and
Theorem 4.1, it is easy to see that with the braided product (8) the space DE;F(A) is an
algebra, and that the braided coproduct (9) and the counit are morphisms of algebras.

But the coproduct is not coassociative. This non-coassociativity is described by w.
In fact, the map w is an element of RegN (A⊗3;K), so it can be viewed as an

element of (A∗)⊗3. We denote it by w =
∑

w(1) ⊗ w(2) ⊗ w(3), and its inverse by
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w−1 =
∑

w−1
(1) ⊗w−1

(2) ⊗w−1
(3) . Thus, we can de4ne an invertible element ?∈DE;F(A)⊗3

by

? =
∑

(w−1
(1) ⊗ 1A) ⊗ (w−1

(2) ⊗ 1A) ⊗ (w−1
(3) ⊗ 1A):

The inverse is given by ?−1 =
∑

(w(1) ⊗ 1A) ⊗ (w(2) ⊗ 1A) ⊗ (w(3) ⊗ 1A).

With these notations, the cocycle condition D̃
(3)
0 (w) ∗ d̃

(1)
2 (F) = 2 is equivalent, for

all f∈A∗ and x∈A, to:

(Id ⊗ �F)�F(f ⊗ x) = ?(�F ⊗ Id)�F(f ⊗ x)?−1:

The cocycle condition d̃
(0)
3 (w) = 2 is equivalent to:

(Id ⊗ Id ⊗ �F)(?) · (�F ⊗ Id ⊗ Id)(?)

= ((2⊗ 1A) ⊗ ?) · (Id ⊗ �F ⊗ Id)(?) · (?⊗ (2⊗ 1A)):

Thus, as suggested by Remark 3.2 of [2]:

Theorem 4.2. Let A be a 5nite dimensional cocommutative Hopf algebra. Let
(w; F; E; 2)∈⊕p+q=3 C

p;q
N (A;K); ?=

∑
(w−1

(1) ⊗1A)⊗(w−1
(2) ⊗1A)⊗(w−1

(3) ⊗1A); +=2⊗1A

and  =
∑

(w(1)S(w(2))w(3))⊗1A. The space D(A) is a quasi-Hopf algebra (denoted by
Dw;E;F(A)) with the braided product (8); the coproduct (9); the unit; counit; and an-
tipode of Theorem 4.1; the associator ? and the elements +;  if and only if (w; F; E; 2)
is a normalized 3-cocycle of the total chain complex associated to (C:; :(A;K); -̃).

Proof. Using Theorem 4.1 and the above discussion; we only have to prove the equal-
ities (5); (6) and (7) of quasi-Hopf algebras.

Eqs. (5) arise from the normalization of the cocycle.
Eqs. (6) follow from:

D̃
(1)
2 (E)

(∑
S(x(1)) ⊗ x(2) ⊗ S(x(3))

)
= 2(x)2;

d̃
(1)
2 (F) ∗ D(3)

0 (w)(x)
(∑

S(z(1)) ⊗ z(2) ⊗ S(z(3))
)

= 2(x)2(z);

where z; x∈A.
Eqs. (7) are a consequence of the de4nitions of ?, +,  and of the equality, given

for z ∈A by:

�̃3(w)
(∑

S(z(1)) ⊗ z(2) ⊗ S(z(3)) ⊗ z(4)

)
= 2(z):

4.4. A class of examples explained by the Hochschild–Serre identity

In the papers of Dijkgraaf et al. [3] and Bulacu and Panaite [2], the authors make the
precedent construction for a normalized 3-cocycle w of the multiplicative Hochschild
chain complex and the following particular maps, de4ned for x; y; z ∈A by

E(x ⊗ y)(z) =
∑

w(z(1) ⊗ x(1) ⊗⊗y(1))w−1(x(2) ⊗ adx(3)z(2) ⊗ y(2))

w(x(4) ⊗ y(3) ⊗ adx(5)y(4)z(3));
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F(z)(x ⊗ y) =
∑

w(x(1) ⊗ y(1) ⊗ z(1))w−1(x(2) ⊗ z(2) ⊗ adz(3)y(2))

w(z(4) ⊗ adz(5)x(3) ⊗ adz(6)y(3)):

This non-trivial choice is explained by:

Theorem 4.3. Let w be a normalized 3-cocycle of the multiplicative Hochschild chain
complex. The constructions of Dijkgraaf et al. and Bulacu and Panaite are those ob-
tained by deforming the Drinfeld double with the image of w under the multiplicative
Hochschild–Serre identity.

Proof. First; remark that using the results of Section 3.3 the maps F and E are exactly
the maps; of C1;2

N (A;K) and C2;1
N (A;K); obtained by the Hochschild–Serre identity

applied to w:

5̃ ◦ ’̃�(w) = (w; F; E; w):

By Corollary 3.1; (w; F; E; w) is a normalized 3-cocycle of the total complex associated
to (C:; :(A;K); -̃).

Furthermore:

Lemma 4.1. Let w1 be a normalized 3-cocycle for the multiplicative Hochschild chain
complex. Then:

(w; F; E; 2) is a normalized 3-cocycle ⇔ (w; F; E; w1) is a normalized 3-cocycle:

Proof. Let f∈RegN (A⊗p;K). Then d̃
(p)
0 (f) = 2 and D̃

(0)
p (f) = d̃

(0)
p (f) = �̃p(f). From

this; we deduce immediately the result.

In particular, for w1 = w, we can apply Theorem 4.2 to the normalized 3-cocycle
(w; F; E; w).
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