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Abstract 

The complexity of the National Airspace System (NAS) in the United States presents a number of novel and unique challenges 
for the integration of Unmanned Aircraft Systems (UAS).  In particular, one challenging aspect is the modeling of UAS safety 
risk for civil applications given the scarcity of actual operational data.  With the creation of a probabilistic model, inferences 
about changes to the states of the accident shaping or causal factors can be drawn quantitatively.  These predictive safety 
inferences derive from qualitative reasoning to plausible conclusions based on data, assumptions, and/or premises and enable an 
analyst to identify the most prominent causal factors leading to a risk factor prioritization.  Such an approach also facilitates the 
study of possible mitigation effects. This paper illustrates the development of an Object-Oriented Bayesian Network (OOBN) to 

AS (sUAS) with the mission of aerial 
surveying for a bridge infrastructure inspection.  As a System of Systems (SoS) approach, an OOBN facilitates decomposition at 
the sub-system level yet enables synthesis at a higher-order systems level. In essence, the methodology serves as a predictive 
safety analytics platform to support reasoning to plausible conclusions from assumptions or premises.   
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1. Introduction 

     Due to the novelty of Unmanned Aircraft Systems (UAS) operations compared to manned aviation, non-military 
accident and incident data are extremely rare, so alternative modeling approaches to conventional fault tree and 
event tree logic diagrams are required to logically understand the impact of the introduction of these operations into 
the National Airspace System (NAS).  While alternative real-time and fast-time simulation modeling research for 
UAS in the NAS is a significant focus area of the aerospace industry and government agencies, the rigorous 
development of complementary probabilistic analytical methods and tools needs to similarly advance. This paper 
presents a notional system safety case study inspired from the aerospace literature and 
Federal Aviation Administration (FAA) and National Aeronautics and Space Administration (NASA) projects that 
address UAS hazard and safety risk modeling. The question of system safety associated with the integration of UAS 
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in the NAS arises principally due to the unknowns of potential hazards and associated risks while operating in the 
NAS and interacting with existing NAS users. Formally, UAS is defined as: A device used or intended to be used for 
flight in the air that has no onboard pilot, which is a clarification of the existing Aircraft definition, 14 CFR §1.1, 
which indicates that UAS operations are governed by the existing regulations [1].  A system safety approach 
involves an identify-analyze-control meth -fix-  [2]. Hazard 
identification and analysis is an initial and integral step in any system safety study.  A nascent taxonomy, termed the 
Hazard Analysis and Classification System (HCAS) identifies four main clusters of hazards: UAS, Airmen, 
Operations, and Environment [3].  

2. Safety Risk Management 

     Luxhøj [4] reports on the development of a six-step process for aviation safety risk modeling.  The model is 
termed the Aviation System Risk Model (ASRM) and it can be used to evaluate the causal factors linked to the air 
vehicle and/or the Next Generation (NextGen) systems and procedures that lead to the unsafe state and the 
interactions among these factors that contribute to the safety risk. The ASRM uses the flexible, probabilistic 
approach of Bayesian Belief Networks (BBNs) [5] and influence diagrams to model the complex interactions of 
aviation system risk factors.  Accidents are seldom, if ever, the result of a single hazard.  A shortcoming in the 
typical hazard analysis approach is to focus on a single hazard and risk assessment.  Combining the individual 
hazard assessments inherent in a complex system to arrive at an overall level of system risk is a difficult challenge.  
Safety practitioners need to deal with numerous inherent hazard scenarios that a complex system operation can 
generate. The ASRM approach achieves a better understanding of the dynamics of these scenarios.  It permits robust 
inductive reasoning on the hypothesized accident scenarios, ideal for addressing emergent UAS operations where 
there may be obvious data and experience limitations. T
management (SRM) approach. The initial ASRM has been adapted for UAS safety risk modeling.  The ASRM 
process involves systemically following six steps. These steps include: 

1. Selecting and analyzing a  
2. Identifying the case-based causal factors. 
3. Constructing an influence diagram depicting causal factor interactions. 
4. Building a Bayesian Belief Network (BBN). 
5. Inserting technologies/interventions. 
6. Evaluating the relative risk associated with the insertions. 

     The first two steps are fundamental to accident/incident analyses, but it is in step 3 that the process departs from 
traditional approaches.  Fig. 1 displays the general structure of a Bayesian Belief Network (BBN) with chance nodes 
or random 
rectangles. A decision variable can be related to one or multiple chance variables or multiple decision variables can 
be related to one particular chance variable. In this research, the decision nodes represent the mitigations, such as 
new technologies and/or procedures. After the UAS scenario causal factors are identified and grouped into the 
hazard  using the HCAS, then the interactions among the factors as qualitatively discussed in the scenario 
description are drawn using an influence diagram.  Each link in the influence diagram possesses an underlying 

r the degree of belief in the depicted causation. 
Such an influence diagram approach enables the depiction of multiple causalities and facilitates more complex, 
conditional reasoning. After the completion of this step, the basic causal structure is created.    
   
 
 
 
 
 
 
 
 
 
 
Fig. 1.  General structure of a Bayesian Belief Network (BBN). (Source: [6]) 
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     The development of the UAS risk model follows an object-oriented approach.  In general, a number of sub-nets 
of causal factors are created that model the Vehicle (i.e., UAS), Operations, Airmen and the Environment-related 
hazards at the sub-system level. Causal factors emanate from hazards.  These sub-nets of causal factors are then 
linked using the instance node capability in the Hugin BBN software (http://www.hugin.dk; [5]).  By explicitly 
labeling the output node in a sub- the Hugin 

 node provides interfacing functionality.  Thus, the UAS risk model prototype 
demonstrates the features of an Object-Oriented Bayesian Network (OOBN).  The OOBN approach facilitates 
decomposition at the sub-system level yet enables synthesis at a higher-order systems level [7].  With its hierarchical 
structure, the OOBN approach is inherently a System of Systems (SoS) approach [6,7; 
http://en.wikipedia.org/wiki/System_of_systems; http://www.odu.edu/ncsose]. 

3. UAS Notional Application Scenario 

     The UAS application scenario is inspired from a technical report by Gebre-Egziabher and Xing [8] from the 
Intelligent Transportation Systems Institute in the Center of Transportation Studies at the University of Minnesota.  
Luxhøj [9] provides additional details of the UAS notional application scenario. The Concept of Operations 
(CONOPS) involves a small UAS (sUAS) (< 55 lbs.) operating close to a bridge that is equipped with a camera 
capable of capturing video or still images for bridge infrastructure inspection [8].  The scenario involves a tactical 
sUAS operation and the major safety risks are possible collisions with the bridge infrastructure or secondary 
collisions with objects below. Gebre-Egziabher [10] provides engineering details for the UAS. This sUAS operation 
initiates by the crew setting up the ground station that is comprised of a laptop with a data link radio.  As part of 
their normal safety procedures, the ground crew inspects the air vehicle (airframe, power plant and avionics) to 
ensure that the sUAS is airworthy. The crew also performs an operational check of the data link between the ground 
and air vehicle.  Since the bridge inspection is in response to a scheduled infrastructure inspection, an operation plan 
is provided in advance that is consistent with the local weather and any constraints.  Once the sUAS is launched, it 
begins operating per the operation plan and procedures unless an emergency arises.  For example, the operational 
plan . The operational plan specifies how close 
distance that the sUAS must be from the structure it is inspecting and these specifications are based on the mission 
payload requirements (camera resolution) and control system.  Some possible safety risks include, but are not 
limited to, data link failure, engine failure, control system lack of authority, and navigation system stochastic errors 
[8].  Much of the UAS bridge infrastructure inspection scenario corresponds closely with the overall BBN structure 
of two previously presented hypothetical sUAS scenarios by the author.  To extend the sUAS bridge inspection 
operational scenario, a causal narrative, 

 
 What if there are local Radio frequencies (RF)/power levels that interfere with the continuous connectivity 

required of the communication and control links?  
 What if there is a loss of data link from the Ground Control Station (GCS) to the sUAS?   
 What if there are strong wind gusts (> 40 knots) suddenly present that contribute to loss of 

distance between the sUAS and the bridge? 
     By exploring some possible impacts of t
follows.   Suppose that a hypothesized sUAS mishap scenario derived from the operational scenario involves a loss 

hat leads to a potential collision with bridge.  

data from the ground control station (GCS). Suppose further that the sUAS conflict avoidance subsystem fails at a 
critical time in this scenario due to an inadvertent shutdown of the sUAS ground control station.  There could a 
number of different causes for the GCS shutdown, but further suppose that electro-magnetic activity of local RF 
equipment frequencies/power levels in the vicinity of the bridge interfere with the continuous connectivity of the 
sUAS equipment.  These power levels are sufficient to trigger an adverse reaction by critical GCS equipment and 
lead to a software malfunction of the firmware in the ground control station.  The RF interference (usually from non-
regulated equipment, such as microwaves, garage door openers, electronic research equipment, etc.) could 

.  A strong wind gust is present near the bridge that 
causes the sUAS to deviate from its planned   The system fault of a lost link caused by the 
inadvertent shutdown of the sUAS ground control station by a software malfunction triggered by electro-magnetic 
interference (EMI) from local RF equipment frequencies/power levels potentially leads to a loss of control of the 
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sUAS.  It is reasonable to surmise that this system fault of loss of communications between the sUAS pilot and the 
UAS creates a safety risk. Continuing with the hypothetical sUAS causal narrative, suppose that it was subsequently 
discovered that during maintenance to the sUAS ground control station, the new version of the firmware was not 
properly installed by the support personnel 
of certain local RF equipment frequencies/power levels leading to GCS shutdown, thus there was a continued 
airworthiness issue. A lockup is any malfunction that causes the GCS screen to 
Further investigation revealed that the GCS software support personnel were not properly trained in installing the 
latest version of the software with the proper settings and the installation error led to the inadvertent shutdown of the 
ground control station, thus leading to the failure of the conflict avoidance system.  The next step in the system 
safety analysis is to delineate the hazards in the causal narrative using the HCAS and to create an influence diagram 
depicting the interactions of the causal factors deriving from hazards.  It is through the Hugin functionality of an 

-nets may be linked [5].  The top-level or 
infrastructure scenario is presented in Fig. 2.  Fig. 3 presents the primary sub-net of causal factors associated with 

output node linked to the top level model via the instance node in Fig. 2.  Fig. 3 also includes two other sub-nets  
Maintenance Preconditions and Flight Crew Performance Deficiency.  Additional details and influence diagrams for 
these sub-nets are provided in Luxhøj et al. [6]. 
 
 
 
 
 
 
 
Fig. 2. OOBN top level model for sUAS bridge inspection scenario with sUAS flight failure sub-net. (Source: [9]) 
 
     For the sUAS collision with the bridge consequence node and UAS flight failure sub-net, engineering flight test 
data [8] and sUAS accident rate data from the Joint Authorities for Rulemaking on Unmanned System or JARUS 
[11] are used to populate the CPTs.  Based on numerical bounding analyses [8], one second into the upwind leg the 
P(UAS collision with bridge) is 3 x 10-5 and increases to 1 x 10-3 four seconds later.  At the end of the upwind leg or 
five seconds later, a collision risk of 2.5 x 10-2 is reported [8].  These probabilities are inserted into the CPT for the 
sUAS collision with the bridge consequence node.  The JARUS report noted a sUAS equivalent accident rate of 1 x 
10-4 so this rate is used to benchmark the probability of a sUAS flight failure conditioned on the premise that the 

-conducive to the sUAS flight failure. 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
Fig. 3. sUAS flight failure sub-net with flight crew performance deficiency and maintenance preconditions sub-nets. (Source: [9]) 

Output 
Node 
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The Hugin Expert BBN software tool [5] with its embedded Bayesian propagation and inferencing algorithms is
used to construct and analyze the model.  With the creation of a probabilistic model, inferences about changes to the
states of the mishap shaping or causal factor clusters can be drawn quantitatively.  These predictive safety inferences
derive from qualitative reasoning to conclusions based on data, assumptions, and/or premises and enable an analyst
to identify the most prominent causal factor clusters leading to a prioritization. Luxhøj [9] explores the analytical
impact of the sub-nets on the overall risk assessment.  The inclusion of the sub-nets leads to an approximate 55% 
reduction in the P(UAS flight failure) and an approximate 26% reduction in the P(UAS collision with bridge).  
Intuitively, it is reasoned that the inclusion of the refined probabilities for human variability on maintenance and
flight crew performance leads to more refined safety risk estimates for these sub-nets and improves the level of 
granularity in the integrated risk model. However, the safety risk is reapportioned between the hazard causal factor 
clusters.  In this paper, we further analyze the relative ranking of the risk factors for the UAS bridge infrastructure 
inspection scenario using the Hugin BBN software.  Fig. 4 displays the relative ranking of the casual factors
inclusive to the Flight Crew Performance Deficiency sub-net.  For example, the interpretation is that if there is
evidence to suggest that Personal Readiness is deficient (i.e., the probability of this causal factor changes to 1.0), 
then the likelihood of Flight Crew Performance Deficiency is increased by a factor of 1.97 or approximately 2.0. 
The next most influential casual factors contributing to Flight Crew Performance Deficiency are CRM and
Inappropriate Operations. Similar results are obtained for the Maintenance Preconditions sub-net. Space limitations
preclude the elaboration of the mathematical details of the Hugin BBN algorithm for the sUAS bridge inspection
scenario in this paper; however, Jensen [5] provides a full treatment of the algorithm.

Fig. 5 displays the relative risk prioritization for the P(UAS flight failure).  Note that in this case, the risk factor ff
inates the other risk factors.  If there is 

evidence to suggest that this risk factor is present (i.e., the probability changes to 1.0), the likelihood of an UAS
flight failure increases by a factor or multiplier of approximately 20.6.  The next two most influential risk factors
that contribute to the UAS flight failure

A similar analysis was performed for the P(UAS collision with
bridge).

Fig. 4. Baseline P(flight crew performance deficiency) = 0.3906.

Fig. 5. Baseline P(UAS flight failure = 4.9 x 10ff -4).
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Finally, if we are interested in ascertaining the most influential grouping of risk factors or hazard clusters for the
bridge infrastructure inspection collision scenario we obtain the results in Fig 6. To obtain these results, the 
probabilities of all risk factors in that grouping are changed to 1.0 and the likelihood impact on the P(UAS collision
with bridge) computed. Note that the risk factors associated with the Vehicle or UAS hazard cluster dominate the
other two hazard clusters.  Such an analysis suggests the next step the development and impact assessment of 
potential mitigations.

Fig. 6. Rank ordering of hazard clusters: Baseline P(UAS collision with bridge = 4.2 x 10-5).

4. Conclusions

With the creation of a probabilistic safety risk model, inferences about changes to the states of the causal factors 
or the presence or absence of mitigations can be made. These inferences may be built on either quantitative or 
qualitative reasoning, or both, and enable an analyst to identify the most prominent causal factor groupings (i.e.,
Vehicle or UAS, Operations, Environment or Human) leading to a prioritization of the most influential causal
factors.  A systematic approach to risk factor sensitivity may lead to vulnerability discovery of emerging hazard
causal factors for which mitigations do not yet exist that then informs possible future R&D efforts.
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