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Superfilters are generalizations of ultrafilters, and capture the underlying concept in
Ramsey-theoretic theorems such as van der Waerden’s Theorem. We establish several
properties of superfilters, which generalize both Ramsey’s Theorem and its variants for
ultrafilters on the natural numbers. We use them to confirm a conjecture of Kočinac and
Di Maio, which is a generalization of a Ramsey-theoretic result of Scheepers, concerning
selections from open covers. Following Bergelson and Hindman’s 1989 Theorem, we
present a new simultaneous generalization of the theorems of Ramsey, van der Waerden,
Schur, Folkman–Rado–Sanders, Rado, and others, where the colored sets can be much
smaller than the full set of natural numbers.

© 2009 Elsevier B.V. All rights reserved.

1. A unified Ramsey Theorem

It is a simple observation that when each element of an infinite set is colored by one of finitely many colors, the set must
contain an infinite monochromatic subset. When replacing infinite by containing arithmetic progressions of arbitrary length, we
obtain van der Waerden’s Theorem [28]. Some of the best references for many beautiful theorems of this kind, together
with applications, are the classical [11], the monumental [12], the elegant Protasov [19], and the more recent [17]. These
results lead naturally to the concept of superfilter.

Definition 1.1. For a set S , [S]n = {F ⊆ S: |F | = n}, and [S]∞ is the family of infinite subsets of S .
A nonempty family S ⊆ [N]∞ is a superfilter if for all A, B ⊆ N:

(1) If A ∈ S and B ⊇ A, then B ∈ S .
(2) If A ∪ B ∈ S , then A ∈ S or B ∈ S .

Superfilters were identified at least as early as in Berge’s 1959 monograph [3] (under the name grille). They were also
considered under the name coideal (e.g., [8]). Superfilters are large types of Banakh and Zdomskyy’s semifilters and unsplit
semifilters [1].
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Recall that a nonprincipal ultrafilter is a family as in Definition 1.1 which is also closed under finite intersections.2 For
brevity, by ultrafilter we always mean a nonprincipal one.

Example 1.2.

(1) Every ultrafilter is a superfilter.
(2) Every union of a family of ultrafilters is a superfilter.
(3) [N]∞ is a superfilter which is not an ultrafilter.

In fact, one can show that every superfilter is a union of a family of ultrafilters, but we will not use this here.

Definition 1.3. AP is the family of all subsets of N containing arbitrarily long arithmetic progressions.

Clearly, AP is not an ultrafilter. The finitary version of van der Waerden’s Theorem implies the following.

Theorem 1.4 (van der Waerden). AP is a superfilter.

Definition 1.5. S → (S)n
k is the statement: For each A ∈ S and each coloring c : [A]n → {1,2, . . . ,k}, there is M ⊆ A such

that M ∈ S and c is constant on [M]n . The set M is called monochromatic for the coloring c.

Thus for upwards-closed S ⊆ [N]∞ , the following are equivalent:

(1) S is a superfilter.
(2) S → (S)1

2.
(3) S → (S)1

k for all k.

The assertion S → (S)n
k becomes stronger when n or k is increased.

Definition 1.6. A superfilter S is:

(1) Ramsey if S → (S)n
k holds for all n and k.

(2) Strongly Ramsey if for all pairwise disjoint A1, A2, . . . with
⋃

n�m An ∈ S for all m, there is A ⊆ ⋃
n An such that A ∈ S

and |A ∩ An| � 1 for all n.
(3) Weakly Ramsey if for all pairwise disjoint A1, A2, . . . /∈ S with

⋃
n An ∈ S , there is A ⊆ ⋃

n An such that A ∈ S and
|A ∩ An| � 1 for all n.

Clearly, strongly Ramsey superfilters are weakly Ramsey. We will soon show that Ramsey is sandwiched between strongly
Ramsey and weakly Ramsey. Before doing so, we give examples showing that converse implications cannot be proved.

Example 1.7. Fix a partition N = ⋃
n In with each In infinite. Let S be the upwards closure of

⋃
n[In]∞ . It is easy to see that

S is a superfilter.
S is Ramsey: Let A ∈ S , and c : [A]n → {1, . . . ,k} be a coloring of A. Pick m such that A ∩ Im is infinite, and use Ramsey’s

Theorem 1.14 for the coloring c : [A ∩ Im]2 → {1, . . . ,k} to obtain an infinite M ⊆ A ∩ Im which is monochromatic for c.
S is not strongly Ramsey: For each m,

⋃
n�m In ∈ S , but if |A ∩ In| � 1 for all n, then A /∈ S .

Example 1.8. Following is an example of a weakly Ramsey superfilter which is not Ramsey. Essentially the same example
was, independently, found by Filipów, Mrożek, Recław, and Szuca [9].

Let N
∗ be the set of all finite sequences of natural numbers. For σ ,ρ ∈ N

∗ , write σ ⊇ ρ if the sequence ρ is a prefix
of σ . As N

∗ is countable, we may use it instead of N to define our superfilter. Say that a set D ⊆ N
∗ is somewhere dense if

there is ρ ∈ N
∗ such that for each σ ∈ N

∗ with σ ⊇ ρ , there is η ⊇ σ such that η ∈ D . Let S be the family of all somewhere
dense subsets of N

∗ .
It is not difficult to see that S is a superfilter, and that it is weakly Ramsey. To see that it is not Ramsey, define a coloring

c : [N∗]2 → {1,2} by c(σ ,η) = 1 if one of σ , η is a prefix of the other, and 2 otherwise. If M ⊆ N
∗ is monochromatic of

color 1, then M is a branch in N
∗ , and thus M /∈ S . On the other hand, if M is somewhere dense, then it must contain at

least two elements, one of which a prefix of the other. Thus, M is not monochromatic of color 2, either.

2 Definition 1.1 does not change if we assume that A, B are disjoint in (2). But if, in addition, we replace there or by exclusive or, we obtain a characteri-
zation of ultrafilter. That is, the assumption about intersections need not be stated explicitly.
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Examples 1.7 and 1.8 show that some hypothesis is required to make the Ramseyan notions coincide. We suggest a rather
mild one.

Definition 1.9. A superfilter S is shrinkable if, for all pairwise disjoint A1, A2, . . . with
⋃

n�m An ∈ S for all m, there are
Bn ⊆ An such that Bn /∈ S and

⋃
n Bn ∈ S .

Remark 1.10 (Thuemmel). A superfilter S is shrinkable if, and only if, for each sequence S1 ⊇ S2 ⊇ · · · of element of S , there
is S ∈ S such that for each n, S \ Sn /∈ S . To see this, identify Sm with

⋃
n�m An for each m ∈ N, and S with

⋃
n Bn .

All ultrafilters are shrinkable, for a trivial reason: If a disjoint union
⋃

n An is in the ultrafilter, and some Am is in the
ultrafilter, then

⋃
n>m An is not in the ultrafilter.

The superfilters in Examples 1.7 and 1.8 are not shrinkable. For shrinkable superfilters, we have a complete characteriza-
tion of being Ramsey.

Theorem 1.11. For superfilters S , the following are equivalent:

(1) S is strongly Ramsey.
(2) S is Ramsey and shrinkable.
(3) S → (S)2

2 , and S is shrinkable.
(4) S is weakly Ramsey and shrinkable.

Proof. (1) ⇒ (2) As singletons do not belong to superfilters, strongly Ramsey implies shrinkable. It therefore suffices to
prove the following.

Lemma 1.12. Every strongly Ramsey superfilter is Ramsey.

Proof. Let S be a strongly Ramsey superfilter, A ∈ S , and c : [A]d → {1, . . . ,k}. The proof is by induction on d, with d = 1
following from S being a superfilter.

Induction step: We repeatedly apply the following fact. For each A ∈ S and each n ∈ A, there is M ⊆ A \ {n} such
that M ∈ S , and a color i ∈ {1, . . . ,k}, such that for each F ∈ [M]d−1, c({n} ∪ F ) = i. Indeed, we can define a coloring
cn : [A \ {n}]d−1 → {1, . . . ,k} by cn(F ) = c({n} ∪ F ) and use the induction hypothesis.

Enumerate A = {an: n ∈ N}. Choose Aa1 ⊆ A \ {a1} and a color ia1 such that Aa1 ∈ S and for each F ∈ [Aa1 ]d−1,
c({a1} ∪ F ) = ia1 . In a similar manner, choose inductively for each n > 1, Aan ⊆ Aan−1 \ {an} and a color ian such that Aan ∈ S
and for each F ∈ [Aan ]d−1, c({an} ∪ F ) = ian .

As an /∈ Aan for all n,
⋂

n Aan = ∅. Let B0 = A \ Aa1 and for each n > 0, let Bn = Aan \ Aan+1 . The sets Bn are pairwise
disjoint,

⋃
n Bn = A, and

⋃
n�m Bn = Aam ∈ S for all m. As S is strongly Ramsey, there is B ⊆ A such that B ∈ S and

|B ∩ Bn| � 1 for all n. Fix a color i such that C = {n ∈ B: in = i} ∈ S .
Let c1 = min C . Inductively, for each n > 1 choose cn ∈ C such that cn > cn−1 and C \ [1, cn) ⊆ Acn−1 .3 For each n,

C ∩ [cn, cn+1) is finite and thus not a member of S . As
⋃

n(C ∩ [cn, cn+1)) = C ∈ S and S is weakly Ramsey, there is
D ∈ S such that D ⊆ C and |D ∩ [cn, cn+1)| � 1 for all n. As

D =
(

D ∩
⋃
n∈N

[c2n, c2n+1)

)
∪

(
D ∩

⋃
n∈N

[c2n−1, c2n)

)
,

there is l ∈ {0,1} such that M = D ∩ ⋃
n[c2n−l, c2n+1−l) ∈ S . Let m1 < m2 < · · · < md be members of M . Let n be minimal

such that m1 < cn . Then

m2, . . . ,md ∈ C \ [1, cn+1) ⊆ Acn ⊆ Am1 ,

and thus c({m1, . . . ,md}) = c({m1} ∪ {m2, . . . ,md}) = im1 = i. �
(2) ⇒ (3) Trivial.
(3) ⇒ (4) In fact, the following holds.

Lemma 1.13. If S → (S)2
2 , then S is weakly Ramsey.

Proof. Let A1, A2, . . . be as in the definition of weakly Ramsey. Let D = ⋃
n An , and define a coloring c : [D]2 → {1,2} by

c(m,k) =
{

1 (∃n) m,k ∈ An,

2 otherwise.

3 For example, let k = |C \ Acn−1 | + 1 and let cn be the kth element of C .
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As S is Ramsey, there is a monochromatic A ⊆ D with A ∈ S . If all elements of [A]2 have color 1, then A ⊆ An for some n,
and thus An ∈ S , a contradiction. Thus, all elements of [A]2 have color 2, which means that |A ∩ An| � 1 for all n. �

(4) ⇒ (1) Let A1, A2, . . . be as in the definition of strongly Ramsey. As S is shrinkable, there are Bn ⊆ An such that
Bn /∈ S and B = ⋃

n Bn ∈ S . As S is weakly Ramsey, there is a subset A of B such that A ∈ S and |A ∩ Bn| � 1 for all n. As
Bn ⊆ An for all n and the sets An are pairwise disjoint, |A ∩ An| � 1 for all n.

This completes the proof of Theorem 1.11. �
Corollary 1.14 (Ramsey [21]). [N]∞ → ([N]∞)n

k for all n and k.

Proof. Clearly, [N]∞ is strongly Ramsey. �
Corollary 1.15 (Booth–Kunen [5]). An ultrafilter is weakly Ramsey if, and only if, it is Ramsey.

Proof. Ultrafilters are shrinkable. �
The following definition and subsequent result will be useful later.

Definition 1.16 (Scheepers [23]). S1(S, S) is the statement: Whenever S1, S2, . . . ∈ S , there are sn ∈ Sn , n ∈ N, such that
{sn: n ∈ N} ∈ S .

Theorem 1.17. For superfilters S :

(1) If S is strongly Ramsey, then S1(S, S) holds.
(2) S1(S, S) implies that S is shrinkable.

Proof. (1) We first observe that, in the definition of strongly Ramsey, there is no need for the sets An to be pairwise disjoint.

Lemma 1.18. If a superfilter S is strongly Ramsey, then for all nonempty A1, A2, . . . with
⋃

n�m An ∈ S for all m, there are an ∈ An,
n ∈ N, such that A = {an: n ∈ N} ∈ S .

Proof. Assume that
⋃

n�m An ∈ S for all m. Let

L =
⋂

m∈N

⋃
n�m

An.

If L ∈ S , enumerate L = {ln: n ∈ N}. Pick m1 such that am1 := l1 ∈ Am1 . For each n > 1, there is mn > mn−1 such that
amn := ln ∈ Amn . For m /∈ {mn}n∈N , pick any am ∈ Am . Then we obtain a sequence as required.

Thus, assume that L /∈ S . Taking Bn = An \ L for all n, we have that

⋃
n�m

Bn =
( ⋃

n�m

An

)
\ L ∈ S

for all m. Now,
⋂

m

⋃
n�m Bn = ∅, that is, each k ∈ ⋃

n Bn belongs to only finitely many Bn . For each n, let

Cn = Bn \
⋃

m>n

Bm.

The sets Cn are pairwise disjoint, and for each m,
⋃

n�m Cn = ⋃
n�m Bn ∈ S . As S is strongly Ramsey, we obtain A ⊆ ⋃

n Cn

such that A ∈ S and |A ∩ Cn| � 1 for all n. For each n, let an ∈ A ∩ Cn if |A ∩ Cn| = 1, and an arbitrary element of An
otherwise. Then the sequence {an}n∈N is as required. �

Thus, assume that A1, A2, . . . ∈ S . Clearly, they are all nonempty, and
⋃

n�m An ∈ S for all m. By Lemma 1.18, there are
an ∈ An , n ∈ N, such that {an: n ∈ N} ∈ S .

(2) Apply S1(S, S) to the sequence
⋃

n�m An , m ∈ N, and recall that finite sets do not belong to superfilters. �
As Ramsey does not imply strongly Ramsey (Example 1.7), but does for shrinkable superfilters (Theorem 1.11(4)), we have

that the converse of Theorem 1.17(2) is false. Unfortunately, we do not have a concrete example for the following.

Conjecture 1.19. There is a superfilter S such that S1(S, S) holds, but S is not strongly (equivalently, by Theorem 1.17(2), weakly)
Ramsey.
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2. An application to topological selection principles

Our initial motivation for studying superfilters came from an attempt to provide a (mainly) combinatorial proof of a major
Ramsey-theoretic result of Scheepers, concerning selections from open covers. The general theory has connections and
applications far beyond Ramsey theory, and the interested reader is referred to the survey papers [24,14,27]. The Ramsey-
theoretic aspect of this theory is surveyed in [15]. Here, we present only the concepts which are necessary for the present
paper.

Fix a topological space X . A family U of subsets of X is a cover of X if X /∈ U but X = ⋃
U . A cover U of X is an

ω-cover if for each finite F ⊆ X , there is U ∈ U such that F ⊆ U . Let Ω = Ω(X) denote the family of all open ω-covers of X .
According to Definition 1.5, the statement Ω → (Ω)2

2 makes sense, and it is natural to ask what is required from X for this
statement to be true. Say that X is Ω-Lindelöf if each element of Ω contains a countable element of Ω . The following result
is essentially proved in [23], using an auxiliary result from [13]. In the general form stated here, it is proved in [16].

Theorem 2.1 (Scheepers [23,13,16]). For Ω-Lindelöf spaces, the following are equivalent:

(1) S1(Ω,Ω).
(2) Ω → (Ω)2

2 .
(3) Ω → (Ω)n

k for all n, k.

We proceed in a general manner that will prove, in addition to Scheepers’s Theorem, a conjecture of Di Maio, Kočinac,
and Meccariello from [6], and a subsequent one of Di Maio and Kočinac from [7].

Let C(X) denote the space of continuous real-valued functions of X . ω-covers arise when considering the closure opera-
tor in C(X), with the topology of pointwise convergence [10]. When considering the compact-open topology, k-covers arise,
which are covers such that each compact set is contained in a member of the cover (e.g., [6] and references therein). In [6]
it is conjectured that Scheepers’s Theorem also holds when ω-covers are replaced by k-covers.

A natural generalization of these topologies on C(X) gives rise to the following notion. An abstract boundedness is a fam-
ily B of nonempty closed subsets of X which is closed under taking finite unions and closed subsets, and contains all
singletons [7]. A cover U is a B-cover if each B ∈ B is contained in some member of U . In [7] it is conjectured that Scheep-
ers’s Theorem holds in general, when ω-covers are replaced by B-covers for any abstract boundedness notion B.

Closing an abstract boundedness notion B downwards will not change the notion of B-covers. Thus, for simplicity we
use a more familiar notion. A nonempty family I of subsets of X is an ideal on X if X /∈ I , {x} ∈ I for all x ∈ X , and for all
A, B ∈ I , A ∪ B ∈ I .

Definition 2.2. Fix an ideal I on X . U is an I -cover of X if X /∈ U , and for each B ∈ I there is U ∈ U such that B ⊆ U .
O I is the family of all open I -covers of X .

Lemma 2.3.

(1) If U1 ∪ U2 ∈ O I , then U1 ∈ O I or U2 ∈ O I .
(2) Each U ∈ O I is infinite.

Proof. (1) Assume that B1, B2 ∈ I witness that U1, U2 /∈ O I , respectively. Then no element of U1 ∪ U2 contains B1 ∪ B2.
(2) O I ⊆ Ω . �
Let U ∈ O I . If U is countable, we may use it as an index set instead of N, and consider superfilters on U .

Definition 2.4. U I = {V ⊆ U : V ∈ O I } = P (U ) ∩ O I .

Lemma 2.3 implies the following.

Corollary 2.5. For each countable U ∈ O I , UI is a superfilter.

UI cannot be assumed to be an ultrafilter when proving Scheepers’s Theorem 2.1: If S1(Ω,Ω) holds, then each U ∈ Ω

can be split into two disjoint elements of Ω [23].
We are now ready to prove the general statement. Say that X is O I -Lindelöf if each element of O I contains a countable

element of O I .

Theorem 2.6. Let I be an ideal on X. For O I -Lindelöf spaces, the following are equivalent:

(1) S1(O I , O I ).
(2) For all disjoint U1, U2, . . . /∈ O I with

⋃
n Un ∈ O I , there is V ⊆ ⋃

n Un such that V ∈ O I and |V ∩ Un| � 1 for all n.
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(3) O I → (O I )2
2 .

(4) O I → (O I )n
k for all n, k.

Proof. Using O I -Lindelöfness, we may restrict attention to countable I -covers in all of our arguments. More precisely, we
prove the stronger assertion, where O I is replaced with the family of countable open I -covers, and no assumption is posed
on the space X .

(4) ⇒ (3) Trivial.
(3) ⇒ (2) Let U1, U2, . . . be as in (2). Set U = ⋃

n Un . Then U ∈ O I , and by Corollary 2.5, U I is a superfilter. By (3),
we have in particular U I → (UI )2

2. By Lemma 1.13, U I is weakly Ramsey. As U1, U2, . . . /∈ UI and
⋃

n Un = U ∈ UI , there is
V ∈ UI ⊆ O I as required.

(2) ⇒ (1) Assume that U1, U2, . . . ∈ O I . Fix {Un: n ∈ N} ∈ O I . For each n, let

Vn = {Un ∩ U : U ∈ Un}.
Then

U =
⋃
n∈N

Vn ∈ O I .

By Corollary 2.5, U I is a superfilter. By (2), U I is weakly Ramsey. Now,
⋃

n Vn = U ∈ UI , and for each n, Vn /∈ UI . By
thinning out the sets Vn if necessary, we may assume that they are disjoint. Thus, there is V ⊆ U such that V ∈ U I and
|V ∩ Vn| � 1 for all n.

For each n, if |V ∩ Vn| = 1, take the U ∈ Un such that Un ∩ U ∈ V , and otherwise take an arbitrary U ∈ Un . We obtain an
I -cover of X with one element from each Un .

(1) ⇒ (4) Let U ∈ O I . Let V be the closure of U under finite intersections. V is countable, and U ∈ V I ⊆ O I .
Consider the superfilter V I . By S1(O I , O I ), we have S1(VI , VI ). By Theorem 1.17, V I is shrinkable. By Theorem 1.11, it

remains to prove that V I is weakly Ramsey.
Let V1, V2, . . . /∈ VI be pairwise disjoint with

⋃
n�m Vn ∈ VI for all m. For each n, let

Un =
{ ⋂

m∈I

Vm: I ⊆ N, |I| = n (∀m ∈ I) Vm ∈ Vm

}
.

Claim 2.7. Un ∈ VI .

Proof. As V is closed under finite intersections, Un ⊆ V . Assume that there is B ∈ I not contained in any member of Un .
Let I = {m: (∃U ∈ Vm) B ⊆ U }. Then |I| < n. For each m ∈ I choose Bm ∈ I witnessing that Vm /∈ O I . Then B ∪ ⋃

m∈I Bm is
not covered by any U ∈ ⋃

n Vn , a contradiction. �
Apply S1(VI , VI ) to the sequence Un , n ∈ N, to obtain elements Un ∈ Un with {Un: n ∈ N} ∈ VI . Let m1 be such that

Vm1 := U1 ∈ Vm1 . Inductively, for each n > 1, Un is an intersection of elements from n many Vm ’s, and thus there are mn

distinct from m1, . . . ,mn−1, and an element Vmn ∈ Vmn , such that Un ⊆ Vmn . Then A = {Vmn : n ∈ N} ∈ VI . A ⊆ ⋃
n Vn , and

|A ∩ Vn| � 1 for all n. �
At the price of a slightly less combinatorial proof, we can weaken the restriction of O I -Lindelöfness substantially.

Theorem 2.8. Assume that X has a countable open I -cover. Then the four items of Theorem 2.6 are equivalent.

Proof. The proof is the same as that of Lemma 1.13, but we argue directly in some of its steps. We do this briefly.
(1) ⇒ (4) By (1), X is O I -Lindelöf, and the argument in the proof of Theorem 2.6 applies.
(3) ⇒ (2) Let U1, U2, . . . /∈ O I be disjoint with

⋃
n Un ∈ O I . Set U = ⋃

n Un . Define a coloring c : [U ]2 → {1,2} by

c(U , V ) =
{

1 (∃n) U , V ∈ Un,

2 otherwise.

By (3), there is a monochromatic V ⊆ U with V ∈ O I . It is easy to see that V is as required in (2).
(2) ⇒ (1) Use the premised {Un: n ∈ N} ∈ O I : Assume that U1, U2, . . . ∈ O I . For each n, let

Vn = {Un ∩ U : U ∈ Un}.
Now,

⋃
n Vn = U ∈ UI , and for each n, Vn /∈ UI . By thinning out the sets Vn if necessary, we may assume that they are

disjoint. By (2), there is V ⊆ U such that V ∈ O I and |V ∩ Vn| � 1 for all n. �
For T1 topological spaces, the assumption that X has a countable open I -cover can be simplified.
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Lemma 2.9. Let I be an ideal on a T1 space X. There is a countable I -cover of X if, and only if, there is a countable D ⊆ X such that
D /∈ I .

Proof. (⇒) Let U be a countable I -cover of X . For each U ∈ U , pick xU ∈ X \ U . Take D = {xU : U ∈ U }.
(⇐) U = {X \ {x}: x ∈ D} is a countable I -cover of X . �
In particular, Scheepers’s Theorem 2.1 is true for all T1 spaces: It is trivially true for finite spaces, and in the remaining

case there is a countably infinite subset.
In the case of k-covers, it suffices to assume that X has a countable subset with noncompact closure.

3. Back to van der Waerden’s Theorem

We reconsider van der Waerden’s superfilter AP of all sets containing arbitrarily long arithmetic progressions.

Example 3.1. Furstenberg and Weiss (unpublished) proved that AP � (AP)2
2. Using Lemma 1.13, we can reproduce their

observation by showing that AP is not even weakly Ramsey: Let A1 = {1}, and for each n > 1, let mn = 2 max An−1, and
An = {mn + 1,mn + 2, . . . ,mn + n}. For each n, An /∈ AP, and

⋃
n An ∈ AP. But there is no arithmetic progression of length 3

with at most one element in each An .

Example 3.1 motivates us to look for a property which is weaker than being Ramsey but still implies Ramsey’s Theorem,
and which is satisfied by AP. A natural candidate is available in the literature.

Definition 3.2 (Baumgartner and Taylor [2]). S → �S�n
k is the statement: For each A ∈ S and each coloring c : [A]n →

{1,2, . . . ,k}, there is M ⊆ A such that M ∈ S , and a partition of M into finite pieces, such that c is constant on elements
of [M]n containing at most one element from each piece.

Any provable assertion of the form S → �S�n
k with ∅ �= S ⊆ [N]∞ and n,k � 2 is an improvement of Ramsey’s Theorem:

Given a coloring of N, take M ∈ S and a partition of M into finite sets as promised by S → �S�n
k . Then any choice of one

element from each piece gives an infinite monochromatic set. S → �S�n
k also implies that S is a superfilter.

Lemma 3.3. For each upwards-closed ∅ �= S ⊆ [N]∞:

(1) If S → �S�n
k , l � n, and m � k, then S → �S�l

m.

(2) For each k, S → �S�1
k is equivalent to S → (S)1

k .

Proof. (1) Given c : [A]l → {1, . . . ,m}, define f : [A]n → {1, . . . ,k} by letting f (F ) be the c-color of the l smallest elements
of F . Use S → �S�n

k to obtain M ⊆ A such that M ∈ S , and a partition of M into finite sets, such that sets with elements
coming from distinct pieces of M all have the same f -color i.

For each F ∈ [A]l with elements coming from distinct pieces of M , take arbitrary n − l elements from other pieces of M ,
which are greater than all elements of F (this can be done since M is infinite, and the pieces are finite). Add these elements
to F , to obtain F ′ . Then c(F ) = f (F ′) = i.

(2) Immediate from the definition. �
Definition 3.4. A superfilter S is a P -point if for all members A1 ⊇ A2 ⊇ · · · of S , there is A ∈ S such that A \ An is finite
for all n.

Definition 3.5 (Scheepers [23]). Sfin(S, S) is the statement: Whenever S1, S2, . . . ∈ S , there are finite Fn ⊆ Sn , n ∈ N, such
that

⋃
n Fn ∈ S .

Theorem 3.6. The following are equivalent for superfilters S :

(1) S is a P -point.
(2) Sfin(S, S).
(3) For all disjoint A1, A2, . . . with

⋃
n�m An ∈ S for all m, there is A ⊆ ⋃

n An such that A ∈ S and A ∩ An is finite for all n.
(4) For each partition N = ⋃

n An with
⋃

n�m An ∈ S for all m, there is A ∈ S such that A ∩ An is finite for all n.

(5) S → �S�2
2 and S is shrinkable.

(6) S → �S�n
k for all n, k, and S is shrinkable.



2666 N. Samet, B. Tsaban / Topology and its Applications 156 (2009) 2659–2669
Proof. (1) ⇒ (2) Assume that S1, S2, . . . ∈ S . For each n, let An = ⋃
m�n Sm . By (1), there is A ∈ S such that A \ An is finite

for all n. For each n, let Fn = (A ∩ Sn) \ An+1. Let B = A ∩ ⋂
n An . For each n, add at most finitely many elements of B to Fn ,

in a way that Fn remains finite, Fn ⊆ Sn , and
⋃

n Fn ⊇ B . Then A \ ⋃
n Fn is finite, and thus

⋃
n Fn ∈ S .

(2) ⇒ (3) Apply Sfin(S, S) to the sequence
⋃

n�m An , m ∈ N.
(3) ⇒ (4) Trivial.
(4) ⇒ (1) Assume that B1 ⊇ B2 ⊇ · · · are members of S . We may assume that B1 = N. Let A0 = ⋂

n Bn . If A0 ∈ S we are
done, so assume that A0 /∈ S .

For each n, let An = Bn \ Bn+1. N = A0 ∪ ⋃
n An is a partition of N as required in (3):

⋃
n An ∈ S as A0 /∈ S . For each n,⋃

m�n Am = Bn \ A0 ∈ S , since Bn ∈ S . Take A ∈ S such that A ∩ An is finite for all n. Then A \ Bn is finite for all n.
(5) ⇒ (3) Consider disjoint A1, A2, . . . with

⋃
n�m An ∈ S for all m. As S is shrinkable, we may assume that An /∈ S for

all n. Let D = ⋃
n An , and define a coloring c : [D]2 → {1,2} by

c(m,k) =
{

1 (∃n) m,k ∈ An,

2 otherwise.

By S → �S�2
2, there is a partition M = ⋃

n Fn ⊆ D into finite sets, such that M ∈ S and c is constant on pairs of elements
coming from different Fn ’s.

Assume that these pairs have color 1. Fix k ∈ F1, and n such that k ∈ An . For each m �= 1 and each i ∈ Fm , c(k, i) = 1 and
thus i ∈ An , too. But then each l ∈ F1 has c(i, l) = 1, and thus l ∈ An , too. Thus, M ⊆ An . As M ∈ S , we have that An ∈ S ;
a contradiction. Thus, all pairs coming from different Fn ’s, must come from different An ’s. Take A = ⋃

n Fn .
(1), (3) ⇒ (6) Clearly, (3) implies that S is shrinkable. We prove that S → �S�d

k for all d,k, by induction on d.
Let S be a P -point superfilter, A ∈ S , and c : [A]d → {1, . . . ,k}. The case d = 1 follows from S being a superfilter.
Induction step: Enumerate A = {an: n ∈ N}. Choose Aa1 ⊆ A \ {a1} and a color ia1 such that Aa1 ∈ S , and a partition

of Aa1 into finite sets, such that for each F ∈ [Aa1 ]d−1 with at most one element in each piece, c({a1} ∪ F ) = ia1 . In a similar
manner, choose inductively for each n > 1, Aan ⊆ Aan−1 \ {an} and a color ian such that Aan ∈ S , and a partition of Aan into
finite sets, such that for each F ∈ [Aan ]d−1 with at most one element in each piece, c({an} ∪ F ) = ian .

As S is a P -point, there is B ∈ S such that B \ Aan is finite for all n. Fix a color i such that C = {n ∈ B: in = i} ∈ S .
Let c1 = min C . Inductively, for each n > 1 choose cn ∈ C such that:

(1) cn > cn−1;
(2) For each piece from the partitions of Aa1 , . . . , Aan which intersects [1, cn−1), cn is greater than all elements of that

piece; and
(3) C \ [1, cn) ⊆ Acn−1 .

As

C =
(

C ∩
⋃
n∈N

[c2n, c2n+1)

)
∪

(
C ∩

⋃
n∈N

[c2n−1, c2n)

)
,

there is l ∈ {0,1} such that M = C ∩ ⋃
n[c2n−l, c2n+1−l) ∈ S .

Let m1 < m2 < · · · < md be members of M coming from distinct intervals [c2n−l, c2n+1−l). Let n be minimal with m1 < cn .
Then

m2, . . . ,md ∈ C \ [1, cn+1) ⊆ Acn ⊆ Am1 ,

and m2, . . . ,md come from distinct pieces of the partition of Am1 . Thus, c({m1, . . . ,md}) = c({m1} ∪ {m2, . . . ,md}) = im1 = i.
(6) ⇒ (5) Trivial. �
The equivalence of (1) and (3) in the following corollary can be shown, using a well-known argument, to be the same as

the equivalence of (i) and (iii) in Theorem 2.3 of Baumgartner and Taylor [2].

Corollary 3.7. For ultrafilters U , the following are equivalent:

(1) U is a P -point.
(2) Sfin(U , U ).
(3) U → �U �2

2 .
(4) U → �U �n

k for all n, k.

Proof. Recall that ultrafilters are shrinkable. �
Definition 3.8. A family F of subsets of N generates an upwards-closed family S if F ⊆ S and each element of S con-
tains an element of F . An upwards-closed family S ⊆ [N]∞ is compactly generated if there are upwards-closed families
F1, F2, . . . ⊆ P (N), each generated by finite subsets of N, such that S = ⋂

n Fn .
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Example 3.9. [N]∞ is compactly generated: Take Fn = [N]�n , n ∈ N.
AP is compactly generated: Let Fn be the family of all sets containing arithmetic progressions of length n.
Similarly, the Folkman–Rado–Sanders superfilter [22] of sets containing arbitrarily large finite subsets together with all of

their subset sums is compactly generated.

Schur’s Theorem [26] states that if the natural numbers are colored in finitely many colors, then there is a monochro-
matic solution to the equation x + y = z. Rado’s Theorem [20] extends Schur’s Theorem to arbitrary regular homogeneous
systems of equations. A homogeneous system of equations Ax = 0 with integer coefficients is regular if the columns of A
can be partitioned into sets P1, . . . , Pk such that

∑
v∈P1

v = 0, and for each i > 1, each element of Pi is a linear combination
of elements of P1 ∪ · · · ∪ Pi−1.

The family of all sets containing a solution to a regular homogeneous system of equations is not a superfilter. This
problem can be solved by using the following operation on upwards-closed families (see Proposition 3.12 below).

Definition 3.10. For an upwards-closed family F of subsets of N and k ∈ N, Park(F ) is the family of all A ⊆ N such that for
each partition of A into k pieces, one of the pieces belongs to F . Par(F ) = ⋂

k Park(F ).

For upwards-closed families F , Par(F ) ⊆ F , and F is a superfilter if, and only if, Par(F ) = F .

Lemma 3.11. Assume that F ⊆ P (N) is upwards-closed and generated by finite subsets of N. Then the same is true for Park(F ), for
all k.

Proof. This is a reformulation of the compactness theorem for partitions, see Theorem 2.5 in [19]. �
Note that N ∈ Par(F ) if, and only if, Par(F ) is nonempty.

Proposition 3.12. Let F be an upwards-closed family of subsets of N. Assume that F does not contain any singleton, and N ∈ Par(F ).
Then:

(1) Par(F ) is the maximal superfilter contained in F .
(2) If F is compactly generated, then so is Par(F ).

Proof. (1) It is easy to see that Par(F ) is closed upwards.
Assume that A ∪ B ∈ Par(F ), and A ∩ B = ∅. If A, B /∈ Par(F ), then there are a partition of A into n pieces and a partition

of B into m pieces, such that none of the pieces belong to F . But this yields a partition of A ∪ B into n + m pieces, none of
which from F , that is, A ∪ B /∈ Parn+m(F ). A contradiction.

As Par(F ) ⊆ F , there are no singletons in Par(F ), and consequently no finite sets.
If S is any superfilter contained in F , then S = Par(S) ⊆ Par(F ).
(2) Assume that F = ⋂

n Fn , with each Fn upwards-closed and generated by finite subsets. Replacing each Fn by⋂
m�n Fm , we may assume that F1 ⊇ F2 ⊇ · · · . It follows that for each k, Park(

⋂
n Fn) = ⋂

n Park(Fn), and thus

Par(F ) =
⋂
k∈N

Park(F ) =
⋂
k∈N

Park

( ⋂
n∈N

Fn

)
=

⋂
k,n∈N

Park(Fn).

By Lemma 3.11, each Park(Fn) is upwards-closed and generated by finite sets. �
Example 3.13. Let F be the family of all subsets of N containing a solution to the equation x + y = z. Let Par(x + y =
z) = Par(F ). Schur’s Theorem tells that N ∈ Par(x + y = z). By Proposition 3.12, Par(x + y = z) is a compactly-generated
superfilter. We can define similarly Par(Ax = 0) for an arbitrary regular system of homogeneous equations, and by Rado’s
Theorem have that Par(Ax = 0) is a compactly-generated superfilter.

We now state the main application of Theorem 3.6.

Theorem π . Assume that S is a compactly-generated superfilter. Then S → �S�n
k for all n, k.

Proof. By Theorem 3.6, it suffices to show that Sfin(S, S) holds. Let F1, F2, . . . ⊆ P (N) be upwards-closed and generated
by finite sets, such that S = ⋂

n Fn . Assume that A1, A2, . . . ∈ S . For each n, pick a finite Fn ∈ Fn such that Fn ⊆ An . Then⋃
n Fn ∈ S . �
Theorem π is a simultaneous improvement of the theorems of Ramsey, van der Waerden, Schur, Rado, Folkman–Rado–

Sanders, and many more. In particular, we have the following.
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Corollary 3.15. AP → �AP�n
k , for all n, k.

Theorem π can be restated as follows.

Corollary 3.16. Assume that S is a superfilter compactly generated by F1, F2, . . . . Then for all r,k, A ∈ S , c : [A]r → {1, . . . ,k}, and
m1 < m2 < · · · , there are disjoint Fn ∈ Fmn , n ∈ N, such that

⋃
n Fn ∈ S , and c is constant on sets with at most one element from

each Fn.

Proof. We may assume that F1 ⊇ F2 ⊇ · · · . Assume that A ∈ S and c : [A]n → {1,2, . . . ,k}. Using Theorem π , take M ⊆ A
such that M ∈ S , and a partition of M into finite pieces, such that c is constant on sets containing at most one element
from each piece. M contains some finite element of Fm1 . Let F1 be the union of as many pieces of M as required so that F1
contains this element of Fm1 . M \ F1 ∈ S , and is partitioned by the remaining pieces, thus we can take a union of finitely
many of the remaining pieces, F2, containing some element of Fm2 , etc.⋃

n Fn contains an element of each Fn , and thus belongs to S . �
Example 3.17. Consider Corollary 3.16 with S = AP. Fix an arbitrarily quickly increasing sequence mn , and assume that we
color an arbitrarily sparse A ∈ AP. Then each Fn contains, and thus may be assumed to be, an arithmetic progression of
length mn . The special case A = N is the main corollary in Bergelson and Hindman’s 1989 paper [4].

Bergelson and Hindman’s proof in [4] shows that it suffices to assume that the colored set A is an element of a combi-
natorially large ultrafilter (see [4]). Elements of AP need not lie in a combinatorially large ultrafilter, and we do not know
a simple way to deduce Corollary 3.15 (or 3.16) from Bergelson and Hindman’s Corollary, and not even from their much
stronger Theorem 2.5 of [4].

4. An additional application to topological selection principles

Using Theorem 3.6 and arguments similar to those in the proof of Theorem 2.6, we also obtain the following Theorem 4.1.
In the case that I is the ideal of finite sets (O I = Ω), the equivalence of (2) and (4) was proved by Just, Miller, Scheepers,
and Szeptycki in [13]. In the case that I is the ideal of subsets of compact sets, the equivalence of (2) and (4) was proved
by Di Maio, Kočinac, and Meccariello in [6].

Theorem 4.1. Let I be an ideal on X. If X is O I -Lindelöf, then the following are equivalent:

(1) For all U1 ⊇ U2 ⊇ · · · from O I , there is U ∈ O I such that U \ Un is finite for all n.
(2) Sfin(O I , O I ).
(3) For all disjoint U1, U2, . . . with

⋃
n�m Un ∈ O I for all m, there is U ⊆ ⋃

n Un such that U ∈ O I and U ∩ Un is finite for all n.

(4) O I → �O I �2
2 .

(5) O I → �O I �n
k for all n, k.

Here too, by using direct arguments as in the proof of Theorem 2.8, “X is O I -Lindelöf ” can be weakened to “X has
a countable open I -cover”, or equivalently for T1 spaces, to “there is a countable D ⊆ X such that D /∈ I ”.

5. Final comments

Mathias defines in [18] happy families, certain types of superfilters which were later named selective by Farah [8]. Farah
points out in [8] that every selective superfilter is Ramsey. It is immediate that every selective superfilter is strongly Ramsey,
and arguments similar to those in the proof of Lemma 1.12 show that every strongly Ramsey superfilter is selective. Given
Farah’s observation, one can obtain a simpler proof of Lemma 1.12.

Recław has informed us of his independent work with Filipów, Mrożek, and Szuca [9], which contains related results,
mainly of a descriptive set theoretic flavor.

In the topological results, considering from the start only countable covers removes any restriction from the considered
topological spaces. For example, our results immediately apply to the corresponding families of countable Borel covers,
since the Borel sets form a base for a topology on X . A general study of countable Borel covers in the context of selection
principles is available in [25].

Theorem π and its Corollary 3.16 should be viewed as a simple way to lift one-dimensional Ramsey-theoretic results to
higher dimensions. It does not generalize the Bergelson–Hindman Theorem from [4], but it extends it to cover additional
classes of superfilters, and assumes less on the colored set.
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