On the Continuation and Boundedness of Solutions of a Nonlinear Differential Equation

JOHN W. BAKER

Department of Mathematics, La Salle College, Philadelphia, Pennsylvania 19141

Submitted by Kenneth L. Cooke

Sufficient conditions are given so that all solutions of the nonlinear differential equation

\[u'' + \phi(t, u, u')u' + p(t)f(u)g(u') = h(t, u, u') \]

are continuable to the right of an initial \(t \)-value \(t_0 > 0 \). These conditions are then extended so that all solutions \(u \) of the equation in question together with their derivative \(u' \) are bounded for \(t > t_0 \).

1. In this paper, we will examine some of the properties of solutions of the damped and forced nonlinear ordinary differential equation

\[u'' + \phi(t, u, u')u' + p(t)f(u)g(u') = h(t, u, u'), \quad (1) \]

where \(\phi: I \times \mathbb{R}^2 \to \mathbb{R}, f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}_+, h: I \times \mathbb{R}^2 \to \mathbb{R} \), and \(p: I \to \mathbb{R}_+ \) are continuous and \(R = (-\infty, \infty), \mathbb{R}_+ = (0, \infty), \) and \(I = [0, \infty) \). In particular, we will give sufficient conditions for all solutions \(u \) of (1) to be continuable to the right of their initial \(t \)-value \(t_0 \in I \) and for all solutions \(u \) of (1) and their derivative \(u' \) to be bounded on \([t_0, \infty)\). Our continuation theorem will generalize an unpublished result of Gollwitzer [7] and will yield a special case of the continuation theorem of Izyumova and Kiguradze [13] when \(\phi = h = 0 \) and \(g = 1 \). As was observed by Gollwitzer, [7] and [8], the technique also provides an alternate proof of the well-known continuation theorem of Coffman and Ullrich [4]. The boundedness theorems extend some of the results found in the papers of Chang [3], DeKleine [6], Gollwitzer [8], Petty and Johnson [15], and the references given therein.

2. In addition to the assumptions given above, we assume in what follows that

(H1) there is a continuous function \(q: I \to I \) such that

\[-q(t) \leq \phi(t, x, y) \quad \text{for all} \quad (t, x, y) \in I \times \mathbb{R}^2. \]
CONTINUATION AND BOUNDEDNESS

(H2) \(F(x) = \int_{0}^{x} f(s) \, ds \geq 0 \) for all \(x \in \mathbb{R} \).

(H3) \(G(y) = \int_{0}^{y} \left[\frac{s}{g(s)} \right] \, ds \), \(\lim_{|y| \to \infty} G(y) = \infty \), and there is a positive constant \(M \) such that \(y^2|g(y)| \leq MG(y) \) for all \(|y| \geq 1 \).

(H4) there are continuous functions \(e_k : I \to I \), \(k = 1, 2 \), such that \(\left| h(t, x, y) \right| \leq e_1(t) + e_2(t) \left| y \right|, \) for all \((t, x, y) \in I \times \mathbb{R}^2 \).

In what follows, we write \(p \in CBV_{10c}(I) \) whenever \(p \) is continuous on \(I \) and of bounded variation on compact subsets of \(I \).

Theorem 2.1. Suppose that (H1)–(H4) hold. If \(p \in CBV_{10c}(I) \), then each solution \(u \) of (1) is continueable to the right of its initial \(t \)-value.

Proof. Let \(u \) be a solution of (1) with initial \(t \)-value at \(t_0 \in I \), and suppose that \(u \) cannot be continued past the (finite) point \(T \). It suffices (see [11, p. 14]) to show that \(u' \) remains bounded as \(t \) approaches \(T \) from the left.

Multiplying (1) by \(g^{-1}u' \), using (H1), and integrating on \([t_0, t] \subset [t_0, T)\), we get

\[
G(u'(t)) - G(u'(t_0)) = \int_{t_0}^{t} \{ q(s) [u'(s)]^2/g(u'(s)) \} \, ds + \int_{t_0}^{t} p(s) f(u(s)) \, ds
\]

\[
\leq \int_{t_0}^{t} \left[| h(s, u(s), u'(s)) u'(s)|/g(u'(s)) \right] \, ds. \tag{2}
\]

By (H3), there are positive constants \(M, N_1, \) and \(N_2 \) such that

\[
y^2/g(y) \leq MG(y) + N_1 \quad \text{for all } y \in \mathbb{R}, \tag{3a}
\]

\[
| y |/g(y) \leq MG(y) + N_2 \quad \text{for all } y \in \mathbb{R}. \tag{3b}
\]

Hence, we obtain from (2),

\[
G(u'(t)) - G(u'(t_0)) = \int_{t_0}^{t} p(s) \, dF(u(s))
\]

\[
\leq K(T) + M \int_{t_0}^{t} \{ e_1(s) + e_2(s) + q(s) \} G(u'(s)) \, ds, \tag{4}
\]

where the first integral in (4) is a Riemann–Stieltjes integral and \(K \) is the real number defined by

\[
K(T) = N_1 \int_{t_0}^{T} \{ e_2(s) + q(s) \} \, ds + N_2 \int_{t_0}^{T} e_1(s) \, ds.
\]
Following Gollwitzer, [7] or [8], we integrate the first integral in (4) by parts to obtain, after simplification,

$$E(t) \leq E(t_0) + K(T) + M \int_{t_0}^{t} \{ e_1(s) + e_2(s) + q(s) \} E(s) \, ds$$

$$+ \int_{t_0}^{t} [p(s)]^{-1} E(s) \, dp(s),$$

(5)

where E is the "energy" function defined by

$$E(t) = G(u'(t)) + p(t) F(u(t)).$$

(6)

Writing the Jordan decomposition of p (see [12, Chap. 2]) as

$$p(t) = P^+ - P^-,$$

where p^+ and p^- are the positive and negative variations of p, it follows from (5) that

$$E(t) \leq E(t_0) + K(T) + M \int_{t_0}^{t} \{ e_1(s) + e_2(s) + q(s) \} E(s) \, ds$$

$$+ \int_{t_0}^{t} [p(s)]^{-1} E(s) \, dp^+(s).$$

(7)

Let $Q: [t_0, T) \rightarrow I$ be defined by

$$Q(t) = M \int_{t_0}^{t} \{ e_1(s) + e_2(s) + q(s) \} \, ds + \int_{t_0}^{t} [p(s)]^{-1} \, dp^+(s).$$

(8)

Then $Q \in CBV([t_0, T))$ and is nondecreasing, and (7) can be written as

$$E(t) \leq E(t_0) + K(T) + \int_{t_0}^{t} E(s) \, dQ(s).$$

By a form of the Gronwall–Bellman inequality (see Gollwitzer [8], Györi [10], or Schmaedeke and Sell [16]), there is a constant L, depending on Q but not on E, such that, for all $t \in [t_0, T)$,

$$E(t) \leq [E(t_0) + K(T)]L.$$

Therefore, $G \circ u'$ remains bounded as $t \to T$ from the left and (H3) applies to show that u' remains bounded as $t \to T$ from the left. This completes the proof of the theorem.

Remark 2.2. Another continuation theorem, extending results of Coffman
continuation and boundedness

and Wong [5], has recently been proved by Teufel [17] using techniques different from those presented here.

3. In this section, we will prove a boundedness theorem for solutions u of (1) and their derivative u' by using a modification of the technique of the previous section. In addition to our previous assumptions, we suppose when necessary that

\[(H5) \lim_{|x| \to \infty} F(x) = \infty.\]

Theorem 3.1. Suppose that (H1)–(H4) hold and that e_1, e_2, and q are integrable on I. Let $p(t) = a(t) b(t)$, where a is nondecreasing and bounded above on I and b is nonincreasing on I. Then, for each solution u of (1) with an initial t-value $t_0 \in I$, u' is bounded on $[t_0, \infty)$. If, in addition, (H5) holds and b is bounded below by $b_0 > 0$, then u is bounded on $[t_0, \infty)$.

Proof. Let u be a solution of (1) with initial t-value at $t_0 \in I$. Multiplying (1) by $(a(t) u'(t))^2$, integrating on $[t_0, t]$, and proceeding as in the proof of Theorem 2.1, we obtain

\[
\int_{t_0}^{t} [a(s)]^{-1} \frac{d}{ds} G(u'(s)) \, ds - \int_{t_0}^{t} [a(s) g(u'(s))]^{-1} q(s) [u'(s)]^2 \, ds
\]

\[+ \int_{t_0}^{t} b(s) \frac{d}{ds} F(u(s)) \, ds\]

\[+ \int_{t_0}^{t} h(s, u(s), u'(s)) u'(s) [a(s) g(u'(s))]^{-1} \, ds.\]

Applying the second mean value theorem for integrals (see [12, p. 68]) to the first and third integrals in (9), there are points $\alpha, \beta \in [t_0, t]$ such that

\[
\frac{G(u'(\alpha)) - G(u'(t_0))}{a(t_0)} + \frac{G(u'(t)) - G(u'(\alpha))}{a(t)} + b(t_0) [F(u(\beta)) - F(u(t_0))]
\]

\[+ b(t) [F(u(t)) - F(u(\beta))]\]

\[\leq M \int_{t_0}^{t} \{e_1(s) + e_2(s) + q(s)/a(s)\} G(u'(s)) \, ds\]

\[+ \int_{t_0}^{t} \{N_1 e_2(s) + N_2 e_1(s) + N_1 q(s)/a(s)\} \, ds.\]

Define a "modified energy" function E on $[t_0, \infty)$ by

\[E(t) = [a(t)]^{-1} G(u'(t)) + b(t) F(u(t)).\]

(11)
Since \(a^{-1} \) and \(b \) are nonincreasing on \(I \), then we obtain from (10), after simplifying,
\[
E(t) \leq E(t_0) + m(t) + M \int_{t_0}^{t} \{ a(s) [e_1(s) + e_2(s)] + q(s) \} E(s) \, ds,
\]
(12)
where
\[
m(t) = \int_{t_0}^{t} \{ N_1 e_2(s) + N_2 e_1(s) + N_4 q(s)/a(s) \} \, ds.
\]
Furthermore,
\[
m(t) \leq \int_{t_0}^{\infty} \{ N_1 e_2(s) + N_2 e_1(s) + N_4 q(s)/a(t_0) \} \, ds = m_0 < \infty.
\]
Since \(a \) is bounded above, say by \(a_0 \), then (12) gives
\[
E(t) \leq E(t_0) + m_0 + M \int_{t_0}^{t} \{ q(s) + a_0 [e_1(s) + e_2(s)] \} E(s) \, ds.
\]
(13)
The Gronwall–Bellman inequality then applies to show that there is a constant \(L \), depending on \(e_1, e_2, \) and \(q \), but not \(E \), such that
\[
E(t) \leq (E(t_0) + m_0)L.
\]
In view of (11) and (H3) and (H5), the desired conclusion follows.

Remark 3.2. The use of the second mean value theorem for integrals in proving boundedness theorems dates back to a paper of Kamenev [14]. Its use was independently suggested by Gollwitzer and was explored by the author in [1].

Remark 3.3. The integrability of \(q \) is necessary for all solutions \(u \) of (1) to have a bounded derivative \(u' \), given that the remaining assumptions of Theorem 3.1 hold. This is easily seen from the fact that the equation
\[
 u'' + \{ [4(t+1)^{-\beta/3}] |uu'|-8(t+1)^{-1} u' + 6(t+1)^{1-3\beta} u^\alpha = 0,
\]
with \(\alpha \) the quotient of odd, positive integers, has \(u(t) = (t+1)^3 \) as a solution.

The following two theorems are corollaries to Theorem 3.1. In the first, we use the notation
\[
p'(t)_+ = \operatorname{Max}(p'(t), 0), \ p'(t)_- = \operatorname{Min}(-p'(t), 0)
\]
whenever \(p \in C'((R_+); thus, \ p'(t) = p'(t)_+ - p'(t)_- \). In the second, we use the notation for the Jordan decomposition of \(p \in CBV_{loc}(I) \) that was used in Section 2.
Theorem 3.4. Suppose that (H1)–(H4) hold. If $p \in C'(R_+)$ and $e_1, e_2, q,$ and $p' \ln p$ are integrable on I, then, for each solution u of (1) with initial t-value at $t_0 \in I$, u' is bounded on $[t_0, \infty)$. If, in addition, (H5) holds and $p' \ln p$ is integrable on $[t_0, \infty)$, then u is bounded on $[t_0, \infty)$.

Proof. Let a and b be defined by

$$a(t) = p(t_0) \exp \left(\int_{t_0}^{t} \left[\frac{p'(s)}{p(s)} \right] ds \right),$$

$$b(t) = \exp \left(- \int_{t_0}^{t} \left[\frac{p'(s)}{p(s)} \right] ds \right),$$

and use Theorem 3.1.

Theorem 3.5. Suppose that (H1)–(H4) hold, and let $p \in CBV_{\text{loc}}(I)$. If $e_1, e_2,$ and q are integrable on I, then, for each solution u of (1) with initial t-value at $t_0 \in I$, u' is bounded on $[t_0, \infty)$, provided that $\int_{t_0}^{\infty} [p(s)]^{-1} dp_{+}(s) < \infty$. If, in addition, (H5) holds and $\int_{t_0}^{\infty} [p(s)]^{-1} dp_{-}(s) < \infty$, then u is bounded on $[t_0, \infty)$.

Proof. Using the fact that $\ln[p(t)/p(t_0)] = \int_{t_0}^{t} [p(s)]^{-1} dp(s)$ (see Gollwitzer [8]), let a and b be defined by

$$a(t) = p(t_0) \exp \left(\int_{t_0}^{t} [p(s)]^{-1} dp_{+}(s) \right),$$

$$b(t) = \exp \left(- \int_{t_0}^{t} [p(s)]^{-1} dp_{-}(s) \right),$$

and use Theorem 3.1.

Remark 3.6. In [8] and [9], Gollwitzer gives conditions on p under which the assumed integral conditions in Theorem 3.5 are satisfied.

Remark 3.7. If $h = 0$, then an inspection of the proof of Theorem 3.1 shows that the assumption that a is bounded above is not necessary to conclude that u is bounded on $[t_0, \infty)$. Thus, for example, (11) implies that all solutions u of (1) are bounded on $[t_0, \infty)$ when $h = 0$ provided that q is integrable on $[t_0, \infty)$ and

$$\int_{t_0}^{s} [p(s)]^{-1} dp_{-}(s) < \infty.$$

However, it does not follow from (11) that u' is bounded on $[t_0, \infty)$.
4. We now consider the differential equation

\[u'' + \phi(t, u, u')u' + p(t)f(u) = h(t, u, u') \]

(1*)

which is a special case of (1) with \(g = 1 \). This equation was studied by the author in [1] and [2] under the assumptions that \(e_1 = 0 \) and \(\phi(t, x, y) = -q(t) + \phi_1(t, x, y) \) with \(q(t) \geq 0 \) for all \(t \in I \), \(\phi_1(t, x, y) \geq 0 \) for all \((t, x, y) \in I \times R^2 \), and \(\int_0^\infty q(s) \, ds < \infty \). We will prove a boundedness theorem in this section which eliminates the last assumption mentioned above on \(q \). We first observe that if \(r \) is defined by \(r(t) = \exp(-\int_0^t q(s) \, ds) \), then (1*) can be written as

\[(r(t)u')' + r(t)(q(t) + \phi(t, u, u'))u' + p(t)r(t)f(u) = r(t)h(t, u, u'). \]

(14)

Theorem 4.1. Suppose that (H1)-(H5) hold and that \(e_1 \) and \(e_2 \) are integrable on \(I \). If \(p(t) \exp(-2\int q(x) \, dx) \) is nondecreasing on \(I \), then all solutions \(u \) of (1*) with initial \(t \)-value at \(t_0 \in I \) are bounded on \([t_0, \infty)\).

Proof. Let \(u \) be a solution of (1*) with initial \(t \)-value \(t_0 \in I \). Then, with \(r \) defined as above, \(u \) is a solution of (14). Multiplying (14) by \((rp)^{-1}u'\) and integrating on \([t_0, t]\) gives, after a simplification,

\[
\int_{t_0}^{t} \left(r(s)u'(s) \right) \left(r(s)u'(s) \right)' \, ds + \int_{t_0}^{t} f(u(s))u'(s) \, ds
\]

\[
\leq \int_{t_0}^{t} \left[p(s) \right]^{-1} \left[e_1(s) + e_2(s) \right] \left[u'(s) \right] \left[u'(s) \right] \, ds.
\]

(15)

Applying the second mean value theorem to the first integral in (15), using the fact that the function \(pr^2 \) is nondecreasing on \(I \), defining the function \(E \) by

\[
E(t) = \frac{[u'(t)]^2}{2p(t)} + F(u(t)),
\]

(16)

and using the inequality \(2|y| \leq y^2 + 1 \), we obtain from (15),

\[
E(t) \leq E(t_0) + \int_{t_0}^{t} e_1(s) \, ds + \int_{t_0}^{t} (2e_2(s) + e_1(s)) \frac{[u'(s)]^2}{2p(s)} \, ds
\]

\[
\leq E(t_0) + \left\{ 2p(t_0) \left[r(t_0) \right]^{2} \right\}^{-1} \int_{t_0}^{\infty} e_1(s) \, ds + \int_{t_0}^{t} \left\{ 2e_2(s) + e_1(s) \right\} E(s) \, ds.
\]

(17)

Therefore, an application of the Gronwall–Bellman inequality shows that \(E \) is bounded on \([t_0, \infty)\). Clearly, this implies that \(u \) is bounded on \([t_0, \infty)\).
Remark 4.2. It should be noted that u' is not necessarily bounded on $[t_0, \infty)$; this follows from the fact that the equation
\[u'' - u' + e^{2t}u = 0 \]
has the bounded solution $u(t) = \sin(e^t)$ with an unbounded derivative while $p \rho^2 = 1$.

ACKNOWLEDGMENT

The author is deeply indebted to Professor H. E. Gollwitzer of Drexel University for his advice, suggestions, and encouragement in helping to prepare this paper. Theorem 2.1 was presented to the American Mathematical Society on November 17, 1973 under the title "A Continuation Theorem for a Damped and Forced Nonlinear Differential Equation."

REFERENCES

13. D. V. Izyumova and I. T. Kiguradze, Some remarks on the equation $u'' + a(t)f(u) = 0$, Differencial'nye Uravnenija 4 (1968), 589–605.

