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In this study we assessed the involvement of monoamine oxidase B (MAO-B), a key enzyme implicated

in monoamine metabolism, on postoperative (plantar incision) and neuropathic (partial sciatic nerve

ligation) pain models in mice. Paw incision submitted mice showed a significant decrease in

mechanical threshold compared with the sham-operated mice, characterizing the development of

mechanical allodynia. The selective and irreversible MAO-B inhibitor selegiline, at a dose sufficient to

selectively inhibit MAO-B activity (10 mg/kg), showed an anti-allodynic effect from 0.5 to 6 h after

incision. Likewise, partial sciatic nerve ligation submitted mice also developed mechanical allodynia,

which was reversed by selegiline (10 mg/kg) from 2 to 6 h after treatment. In addition, a significant

increase on striatal MAO-B activity was observed in neuropathic mice compared with the sham-

operated animals, which was reversed by selegiline treatment. Taken together, our results showed that

MAO-B seems to exert a critical role in the development of postoperative and neuropathic pain.

& 2012 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

Monoamine oxidase (MAO; EC 1.4.3.4) catalyses the oxidative
deamination of biogenic amines, such as serotonin, norepinephrine
and dopamine. MAO is a flavin adenine dinucleotide (FAD)-depen-
dent enzyme located at the outer mitochondrial membrane of
neuronal, glial, and other cells. On the basis of pharmacological,
biochemical and genetics studies, two isoforms of MAO were
proposed and designated MAO-A and MAO-B (Bach et al., 1988;
Johnston, 1968). MAO-A preferentially deaminates serotonin and is
inhibited by low concentrations of clorgyline, whereas MAO-B
oxidizes b-phenylethylamine and benzylamine and is inactivated
by low concentrations of selegiline (L-deprenyl). Dopamine, norepi-
nephrine, epinephrine, tryptamine, and tyramine are oxidized by
both isoforms of the enzyme in most species (Youdim et al., 2006).

Monoamines appear to play an important role on specific
central nervous system structures implicated in pain modulation
such as spinal cord, cerebral cortex, and striatum, and are
involved in the antinociceptive mechanism of several drugs
commonly used for the management of pain (Girard et al.,
2006; Millan, 2002; Thor et al., 2007; Wood, 2008). Because of
the key role played by the two MAO isoforms in the metabolism
of monoamine neurotransmitters, MAO inhibitors represent a
useful tool for the treatment of several neurological disorders,
x: þ55 55 3220 8756.
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including depression and Parkinson’s disease (PD) (Youdim et al.,
2006). Interestingly, pain is a common symptom presented by
certain patients with depression or PD pathologies (Bair et al.,
2003; Beiske et al., 2009; Lee et al., 2006; Mongini et al., 2007;
Nicholson and Verma, 2004; Tinazzi et al., 2006).

In this context, there are increasing evidences supporting an
important role for MAO in nociception, as indicated by several
studies showing the antinociceptive action of MAO-A inhibitors
(Apaydin et al., 2001; Bianchi et al., 1992; Dina et al., 2008;
Pirildar et al., 2003; Schreiber et al., 1998). Nonetheless, there are
few studies investigating a possible involvement of MAO-B on
pain and analgesia. For instance, Almay et al. (1987) reported that
patients with neuropathic pain presented low platelet MAO-B
activity, suggesting a possible relationship between this enzyme
and pain sensation. Moreover, it was demonstrated recently an
association of a functional polymorphism of MAO-B with post-
operative pain intensity in humans, indicating a potential role of
MAO-B in the perception of pain (Serý et al., 2006). In this regard,
it is well known that postoperative and neuropathic painful
disorders are conditions with debilitating symptoms such as
allodynia (pain responses to non-noxious stimuli) and of difficult
treatment, constituting still one of the most important health
problems in the world (Gilron, 2006; Woolf and Mannion, 1999).
In addition, studies towards mechanisms underlying these pain
syndromes are decisive to the development of more efficacious
analgesic drugs (Scholz and Woolf, 2002).

In the present study we evaluated the involvement of MAO-B
on postsurgical and neuropathic pain. For this purpose, we
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examined the effects of the selective and irreversible MAO-B
inhibitor selegiline on nociception as well as the MAO activity in
different central nervous system regions of mice submitted to
postoperative (plantar incision) or neuropathic (partial sciatic
nerve ligation) pain models.
2. Materials and methods

2.1. Animals

Experiments were conducted using female Swiss mice (25–
30 g) from our own colony. We have used female mice since sex
did not influence neither incision nor neuropathy-induced pain
behaviors in mice (Banik et al., 2006; Bortalanza et al., 2002; Li
et al., 2009). Mice were maintained in polycarbonate cages with
free access to food and water and on a 12 h alternating light–dark
schedule in a temperature-controlled (2273 1C) room. Animals
were allowed to adapt to the test environment for 2 h before
testing. Mice were kept and used in accordance to the guidelines
of the National Council for Control of Animal Experiments (CON-
CEA) and the National Institutes of Health guide for the care and
use of Laboratory Animals. The number of animals and intensity
of noxious stimuli used were the minimum necessary to demon-
strate consistent effects of drug treatments. For behavioral tests,
selegiline and vehicle were administered in random order and the
behavioral measure was carried out by a blinded investigator.

2.2. Drugs

Selegiline hydrochloride (R-(–)-Deprenyl hydrochloride or
R(–)-N-a-dimethyl-N-2-propynyl-benzeneethanamine hydrochloride;
Sigma Chemical Co., St. Louis, USA) was dissolved in saline
(vehicle) and administered orally by gavage (10 ml/kg) in all
in vivo experiments. Clorgyline hydrochloride, kynuramine dihy-
drobromide (Sigma Chemical Co., St. Louis, USA) and selegiline
hydrochloride were dissolved in incubation buffer when used for
in vitro experiments. All the other reagents used were of analy-
tical grade and were purchased from local suppliers.

2.3. Measurement of mechanical allodynia

In this study we used mechanical allodynia as a parameter of
nociception, which was characterized by a significant decrease in
the mechanical paw withdrawal threshold (PWT). The measure-
ment of mechanical paw withdrawal threshold was carried out
using the up-and-down paradigm as previously described by
Chaplan et al. (1994). Briefly, mice were first acclimatized in
individual clear Plexiglas boxes (9�7�11 cm) on an elevated
wire mesh platform to allow the access to the plantar surface of
the right hind paw. Filaments of von Frey of increasing stiffness
(0.02–10 g) were applied to the mice hind paw plantar surface
with a pressure causing the filament to bend. Absence of a paw
lifting after 5 s led to the use of the next filament with increasing
weight, whereas paw lifting indicated a positive response and led
to the use of next weaker filament. This paradigm continued
until a total of six measurements or until four consecutive
positive or four consecutive negative responses occurred. All
measurements were carried out in the paw ipsilateral to the
surgical or sham procedure. The 50% mechanical paw withdrawal
threshold response was then calculated from the resulting scores
as previously described by Dixon (1980). The 50% paw with-
drawal threshold was expressed in grams (g) and was evaluated
before (baseline) and several times after treatments or surgical
procedures.
2.4. Postoperative pain model

The postoperative pain model was carried out according to the
procedure previously described (Milano et al., 2008; Pogatzki and
Raja, 2003). Mice were anesthetized with 2% halothane using a
nose cone. After anti-septic preparation of the right hind paw
with 10% povidone–iodine solution, a 5-mm longitudinal incision
was made with a number 11 blade through the skin and fascia of
the plantar foot. The incision was started 2 mm from the proximal
edge of the heel and extended towards the toes. The underlying
muscle was elevated with a curved forceps, leaving the muscle
origin and insertion intact. The skin was apposed with a single
mattress suture of 6–0 nylon.

Mice were pretreated with selegiline (3 or 10 mg/kg), clorgy-
line (10 mg/kg) or vehicle 1 h before incision and mechanical
sensitivity was measured 0.5, 1, 2, 4, 6, and 24 h after surgery
procedure. Sham-operated mice were pretreated (1 h before
procedure) with selegiline (10 mg/kg), clorgyline (10 mg/kg) or
vehicle and mechanical sensitivity was verified from 0.5 to 6 h
after procedure (pretreatment protocol). For the dose-response
curve, mice were submitted to a pretreatment with selegiline
(1, 3 or 10 mg/kg) or vehicle 1 h before incision and mechanical
sensitivity measures were carried out 4 h after incision (5 h after
treatment). In the post-treatment protocol, animals were sub-
mitted to the incisional procedure and mechanical sensitivity was
determined 30 min after incision. Afterwards, animals were
treated with selegiline (1, 3 or 10 mg/kg) or vehicle and the
paw withdrawal threshold to mechanical stimuli was measured
4 h after treatment. For time-course curve, responses to mechan-
ical stimuli were verified 0.5, 1, 2, 4, 6, and 24 h after treatment
with selegiline (10 mg/kg) or vehicle.

2.5. Neuropathic pain model

For induction of chronic mononeuropathy, mice were first
anesthetized by intraperitoneal injection of 90 mg/kg of ketamine
plus 3 mg/kg of xylazine hydrochloride. Then, a partial ligation of
the right sciatic nerve was made by tying one-third to one-half of
the dorsal portion of the sciatic nerve, using a similar procedure
to that previously described (Ferreira et al., 2005; Malmberg and
Basbaum, 1998). In sham-operated mice, the nerve was exposed
without ligation. Seven days after the surgical procedure, the
mechanical sensitivity was measured to confirm the development
of allodynia. Then, mice were treated with selegiline (10 mg/kg)
or vehicle and mechanical sensitivity was measured 1, 2, 4, 6, and
24 h after treatment (time-course curve). For the dose-response
curve, animals received a single injection of selegiline (1, 3 or
10 mg/kg) or vehicle 4 h before the nociceptive test.

2.6. Rota-rod test

Motor coordination was evaluated using the rota-rod test
(Godoy et al., 2004). The apparatus consisted of a bar (3.7 cm in
diameter) divided into three separate compartments, placed at a
25 cm height and rotating at a fixed velocity of 8 rpm. Twenty-
four hours before testing, all animals were submitted to a training
session until they could remain in the apparatus for 60 s without
falling. On the test day, mice received a single injection of
selegiline (10 mg/kg) or vehicle 4 or 5 h before testing. During
the test session, the latency (s) for the first fall and the total
number of fall during a 4 min period were observed.

2.7. Determination of MAO activity

For the postoperative pain model experiment, mice were
pretreated with selegiline (10 mg/kg) or saline 1 h before incision
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or sham procedure. Then, they were killed and different central
nervous system structures (spinal cord, cerebral cortex, and
striatum) were collected 4 h after incision or sham procedure.
For the neuropathic pain model experiment, mice were treated
with selegiline (10 mg/kg) or saline seven days after sham or
partial sciatic nerve ligation procedure, and the central nervous
system structures were collected 4 h after treatment. We also
determined the MAO-B activity in mice treated with selegiline
(1 mg/kg, p.o.) and the MAO-A activity in mice administered with
clorgyline (10 mg/kg, p.o.). Mice were killed and the central
nervous system structures were collected 5 or 3 h after treatment
with selegiline (1 mg/kg, p.o.) or clorgyline (10 mg/kg, p.o.),
respectively.

Spinal cord, cerebral cortex, and striatum were immediately
separated and homogenized in assay buffer (16.8 mM Na2HPO4,
10.6 mM KH2PO4, 3.6 mM KCl, pH 7.4). MAO-A and MAO-B
activities were measured in brain homogenates by a fluorometric
method detecting the formation of the fluorescent product
4-hydroxyquinoline (4-HQ) from kynuramine substrate, as pre-
viously described (Matsumoto et al., 1985; Sant’Anna et al., 2009).
Briefly, assays were performed in duplicate in a final volume of
500 mL containing 0.25 mg of protein and incubated at 37 1C for
30 min. Activities of the A and B isoforms were isolated pharma-
cologically by incorporating 250 nM selegiline (selective MAO-B
inhibitor) or 250 nM clorgyline (selective MAO-A inhibitor) into
the reaction mix. The reaction mixture was preincubated at 37 1C
for 5 min and the reaction was started by the addition of 60 mM
Fig. 1. Effect of selegiline pretreatment on mechanical nociceptive threshold in a mic

(PWT) in sham-operated mice pretreated with selegiline (10 mg/kg, p.o.) or saline (n¼

pretreated with selegiline (10 mg/kg, p.o.) or saline (n¼7 per group). ###Po0.001 comp

Keuls test); **Po0.01 or ***Po0.001 compared with the respective control group (unp

submitted mice pretreated with selegiline (3 mg/kg, p.o.) or saline (n¼7–9 per group).

Student–Newman–Keuls test); *Po0.05, **Po0.01 or ***Po0.001 compared with the

curve of PWT in plantar incision submitted mice pretreated with selegiline (1, 3 or 10 m

the respective baseline PWT (paired t-test); ***Po0.001 compared with the respective s

test). Data are expressed as means7S.E.M.
kynuramine. Results were expressed as nmol of 4-HQ/min/mg of
protein.

2.8. Statistical analysis

Results were expressed as means7S.E.M. Statistical analysis
were carried out using GraphPad Prism 4.0 software. Significance
of differences among groups was evaluated with unpaired t-test,
one-way analysis of variance (ANOVA) followed by the Student–
Newman–Keuls test or two-way ANOVA followed by Bonferroni’s
test when appropriate. F values demonstrated in the text were
obtained from two-way ANOVA with repeated measures and
indicate the interaction between time and treatment factors.
Significance was considered to be when Po0.05.
3. Results

3.1. Effects of selegiline and clorgyline on postoperative pain model

Paw withdrawal threshold of sham-operated animals pre-
treated with selegiline (10 mg/kg) did not differ significantly from
saline pretreated mice (Fig. 1A; F(5, 60)¼0.12, P¼0.987). The
incisional procedure caused a significant decrease in paw with-
drawal threshold at all time points measured (0.5–24 h) in saline
treated mice compared with the baseline paw withdrawal thresh-
old, characterizing the development of allodynia. The pretreatment
e postoperative pain model. (A) Time-course curve of paw withdrawal threshold

7 per group). (B) Time-course curve of PWT in plantar incision submitted mice

ared with the baseline PWT (one-way ANOVA followed by the Student–Newman–

aired t-test for each time point). (C) Time-course curve of PWT in plantar incision
###Po0.001 compared with the baseline PWT (one-way ANOVA followed by the

respective control group (unpaired t-test for each time point). (D) Dose-response

g/kg, p.o.) or saline (n¼6–8 per group). #Po0.05 or ###Po0.001 compared with

aline pretreated group (one-way ANOVA followed by the Student–Newman–Keuls
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of mice with selegiline (10 mg/kg) prevented allodynia develop-
ment, showing an antinociceptive effect from 0.5 to 6 h after
incision (Fig. 1B; F(6, 72)¼7.63, Po0.001). Furthermore, selegiline
(3 mg/kg) also presented an anti-allodynic effect from 1 to 6 h after
incision when administered 1 h before incision (Fig. 1C; F(6,
84)¼2.75, Po0.05). However, selegiline at 1 mg/kg did present
neither antinociceptive action (Fig. 1D) nor inhibitory effect on
MAO-B activity (Table 2).

We also tested the effect of the irreversible and selective MAO-A
inhibitor clorgyline on postoperative pain model. In sham-operated
mice, clorgyline (10 mg/kg) did not alter the mechanical sensitivity
compared with saline pretreated mice (Fig. 2A; F(5, 70)¼0.27,
P¼0.930). In plantar incision-submitted mice, the pretreatment
with clorgyline at 10 mg/kg, a dose that almost abolished MAO-A
activity (Table 3), presented a modest antinociceptive effect at
0.5 and 2 h after incision (Fig. 2B). Since the antinociceptive effect
of the MAO-B inhibitor was more pronounced and long-lasting than
the effect produced by the MAO-A inhibitor, selegiline was chosen to
carry out the following experiments.

Selegiline (10 mg/kg) was also able to reverse mechanical
allodynia induced by incision when administered after the inci-
sional procedure. This antinociceptive effect was observed from
0.5 to 6 h after treatment (Fig. 3A; F(7, 91)¼5.33, Po0.001). Also,
Fig. 2. Effect of clorgyline pretreatment on mechanical nociceptive threshold in a

mice postoperative pain model. (A) Time-course curve of paw withdrawal thresh-

old (PWT) in sham-operated mice pretreated with clorgyline (10 mg/kg, p.o.) or

saline (n¼7–9 per group). (B) Time-course curve of PWT in plantar incision

submitted mice pretreated with clorgyline (10 mg/kg, p.o.) or saline (n¼7 per

group). ###Po0.001 compared with the baseline PWT (one-way ANOVA followed

by the Student–Newman–Keuls test); *Po0.05 or **Po0.01 compared with the

respective control group (unpaired t-test for each time point). Data are expressed

as means7S.E.M.
an anti-allodynic effect was observed 4 h after the administration
of selegiline at 3 mg/kg, but not at 1 mg/kg (Fig. 3B; F(6,
40)¼5.82, Po0.001).

As expected, the pretreatment of mice with selegiline (10 mg/kg)
did not alter the MAO-A activity in striatum, cerebral cortex or
spinal cord compared with the saline pretreated animals in both
sham and incision groups (Fig. 4A). Moreover, selegiline (10 mg/kg)
caused a pronounced inhibition of the MAO-B activity in both sham
and incision groups compared with the respective saline pretreated
mice in any analyzed structure (Fig. 4B). However, there was no
difference in MAO-A and MAO-B activities between sham and
incision groups in animals pretreated with saline (Fig. 4A and B).

3.2. Effects of selegiline on neuropathic pain model

Mechanical nociceptive thresholds were stable before and
after the sham procedure in both saline and selegiline treated
Fig. 3. Effect of selegiline post-treatment on mechanical nociceptive threshold in a

mice postoperative pain model. (A) Time-course curve of paw withdrawal thresh-

old (PWT) in plantar incision submitted mice post-treated with selegiline (10 mg/

kg, p.o.) or saline (n¼7–8 per group). ###Po0.001 compared with the respective

baseline PWT (one-way ANOVA followed by the Student–Newman–Keuls test);

*Po0.05, **Po0.01 or ***Po0.001 compared with respective control group

(unpaired t-test for each time point). The point 0 on the x-axis represents the

PWT measured immediately before drug treatment. (B) Dose-response curve of

PWT for selegiline (1, 3 or 10 mg/kg, p.o.) or saline post-treatment in plantar

incision submitted mice (n¼6 per group). ###Po0.001 compared with the PWT of

respective baseline before incision and ***Po0.001 compared with the PWT of

respective baseline after incision (one-way ANOVA with repeated measures

followed by the Student–Newman–Keuls test). Data are expressed as

means7S.E.M.



Fig. 4. Effect of pretreatment with selegiline (10 mg/kg, p.o.) or saline on

monoamine oxidase (MAO) activity in spinal cord, cerebral cortex and striatum

of sham-operated or plantar incision submitted mice. (A) MAO-A activity.

(B) MAO-B activity. Data are expressed as means7S.E.M. of six to seven animals

per group. ***Po0.001 compared with SalineþSham or SalineþIncision group

(one-way ANOVA followed by the Student–Newman–Keuls test).

Fig. 5. Effect of selegiline treatment on mechanical nociceptive threshold in a mice

neuropathic pain model. (A) Time-course curve of paw withdrawal threshold (PWT) in
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mice (Fig. 5A; F(5, 60)¼0.76, P¼0.584). Partial ligation of sciatic
nerve produced a profound decrease in the mean paw withdrawal
threshold seven days after surgery compared with the mean
baseline paw withdrawal threshold (Fig. 5B). The mechanical
allodynia produced by nerve injury was maintained throughout
the experiment period in saline treated mice, but it was reversed
by selegiline (10 mg/kg) from 1 to 6 h after treatment (Fig. 5B;
F(6, 84)¼8.74, Po0.001). An anti-allodynic effect was also
observed 4 h after treatment with the dose of 3 mg/kg, but not
with 1 mg/kg of selegiline (Fig. 5C; F(6, 54)¼6.39, Po0.001).

As in the postoperative pain model, no difference was
observed between groups on the MAO-A activity in striatum,
cerebral cortex or spinal cord (Fig. 6A). Partial sciatic nerve
ligation caused an increase in the MAO-B activity in striatum,
but not in cerebral cortex or spinal cord of saline pretreated mice
compared with the sham-operated animals (Fig. 6B). Likewise,
selegiline (10 mg/kg) caused a pronounced inhibition of the MAO-
B activity in both sham and partial sciatic nerve ligation groups
compared with the respective saline pretreated mice in all
examined structures (Fig. 6B).
sham-operated mice treated with selegiline (10 mg/kg, p.o.) or saline (n¼7 per group).

(B) Time-course curve of PWT in partial sciatic nerve ligation submitted mice treated

with selegiline (10 mg/kg, p.o.) or saline (n¼8 per group). ###PoPo0.001 compared

with baseline PWT (one-way ANOVA followed by the Student–Newman–Keuls test);

**Po0.01 or ***Po0.001 compared with respective control group (unpaired t-test for

each time point). (C) Dose-response curve of PWT in partial sciatic nerve ligation

submitted mice treated with selegiline (1, 3 or 10 mg/kg, p.o.) or saline (n¼4–6 per

group). ###Po0.001 compared with respective PWT before partial sciatic nerve

ligation; **Po0.01 or ***Po0.001 compared with respective PWT after partial sciatic

nerve ligation (one-way ANOVA with repeated measures followed by the Student–

Newman–Keuls test). Data are expressed as means7S.E.M.
3.3. Effects of selegiline in the rota-rod test

Treatment of mice with selegiline (10 mg/kg, 4 or 5 h before
testing that corresponds to the time for the peak antinociceptive
effect on neuropathic or postoperative pain models, respectively)
caused no change in the motor coordination activity compared
with the vehicle treated animals, as evaluated by both the latency



Fig. 6. Effect of selegiline (10 mg/kg, p.o.) or saline treatment on monoamine

oxidase (MAO) activity in spinal cord, cerebral cortex and striatum of sham-

operated or partial sciatic nerve ligation submitted mice. (A) MAO-A activity.

(B) MAO-B activity. Data are expressed as means7S.E.M. of seven to eight animals

per group. #Po0.05 compared with ShamþSaline; ***Po0.001 compared with

ShamþSaline or partial sciatic nerve ligationþsaline group (one-way ANOVA

followed by the Student–Newman–Keuls test).

Table 1
Effects of selegiline (10 mg/kg, p.o.) or saline treatment on latency for the first fall

(s) and total number of falls in the rota-rod test in mice.

4 h before test 5 h before test

Saline Selegiline Saline Selegiline

Latency (s) 192 (15–240) 99 (17–240) 89 (43–240) 145 (12–240)

Fall number 1 (0–2) 1 (0–2) 2 (0–3) 1 (0–4)

Data are expressed as medians (interquartile ranges) of six animals per group.

Table 2
Effect of selegiline (3 mg/kg, p.o.) or saline treatment on

monoamine oxidase-B activity in spinal cord, cerebral

cortex and striatum of mice.

Saline Selegiline

Spinal cord 0.5270.04 0.5770.02

Cerebral cortex 0.6370.04 0.6570.03

Striatum 0.6770.05 0.6870.03

Data are expressed as mean7S.E.M. of six to seven

animals per group.

Table 3
Effect of clorgyline (10 mg/kg, p.o.) or saline treatment on

monoamine oxidase-A activity in spinal cord, cerebral

cortex and striatum of mice.

Saline Clorgyline

Spinal cord 0.3070.03 0.0370.01nnn

Cerebral cortex 0.2570.03 0.0770.01nnn

Striatum 0.2570.04 0.0470.01nnn

Data are expressed as mean7S.E.M. of seven to eight

animals per group. nnnPo0.001 compared with saline

treated mice (unpaired t-test).
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(s) for the first fall and the total fall number in the rota-rod test
(Table 1).
4. Discussion

Postsurgical pain is a common form of acute pain and several
evidences indicate that an effective postoperative analgesia
reduces morbidity following surgery, improves patient outcome,
and reduces clinical expenses. However, surveys demonstrated
that about 50–70% of patients experience moderate to severe pain
after surgery indicating that, despite the development of new
drugs and improved analgesic techniques, postsurgical pain
remains still underestimated and poorly treated (Pogatzki-Zahn
et al., 2007). This occurs because few studies are driven toward
the mechanisms of acute postoperative pain (Zahn et al., 2002). In
the present study, we evaluated the possible involvement of MAO
inhibition in a mouse model of postsurgical pain. The selective
and irreversible MAO-B inhibitor selegiline (10 mg/kg) prevented
the development of mechanical allodynia induced by plantar
incision, showing an anti-allodynic effect from 0.5 to 6 h after
incision. Selegiline was also able to reverse the decrease in paw
withdrawal threshold produced by incision, showing a similar
time-course profile as observed in the pretreatment experiments.
Conversely, the selective and irreversible MAO-A inhibitor clorgy-
line, at a dose effective to largely inhibit MAO-A activity, pre-
sented a modest antinociceptive effect only at 0.5 and 2 h after
incision. Although our study indicates that both MAO isoforms
participates of the postoperative nociception, inhibitors of MAO-B
seem to be better than MAO-A inhibitors as candidates to
clinically treat painful conditions due to their better efficacy
and long-lasting antinociceptive effect.

In accordance with our results, Serý et al. (2006) reported a
relationship between a functional polymorphism of MAO-B and
average intensity of postoperative pain. The authors observed that
patients presenting the G genotype in intron 13 of MAO-B gene
reported higher average intensity of postoperative pain than
patients with the A genotype, suggesting that MAO-B could be
involved in the perception of pain intensity. In this study, we
determined the ex vivo MAO activity in mice pretreated with
saline or selegiline (10 mg/kg) and submitted to incision or sham
procedure. The plantar incision caused no alterations in the MAO-
A or MAO-B activities compared with the sham submitted
animals. As expected, selegiline pretreatment was able to cause
a pronounced inhibition of the MAO-B activity, without affecting
the MAO-A activity in sham and incision groups.

Moreover, in order to eliminate a possible false positive
antinociceptive effect of selegiline owing to a motor impairment
(Negus et al., 2006), mice were evaluated in the rota-rod test.
Selegiline (10 mg/kg) caused no alterations on the latency for the
first fall or the total number of falls, indicating that the anti-
nociceptive effect was not mediated by an unspecific alteration on
motor coordination activity.

The effects of selegiline on a neuropathic pain model in mice
were also evaluated. Neuropathic pain is a debilitating condition
that frequently results from partial injury to a peripheral nerve
and is often resistant to common therapeutic interventions
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(Woolf and Mannion, 1999). Here, we observed that the animals
submitted to partial sciatic nerve ligation presented a significant
decrease in mechanical threshold seven days after surgery, which
was reversed by selegiline (10 mg/kg) from 1 to 6 h after treat-
ment. Selegiline decreased the MAO-B activity in sham and partial
sciatic nerve ligation submitted mice in all analyzed structures. As
expected, the MAO-A activity was not altered by selegiline
treatment. Differently from what occurred on postoperative acute
pain model, partial sciatic nerve ligation submitted mice pre-
sented an enhanced MAO-B activity in striatum compared with
the sham-operated mice, which was abolished by the selegiline
treatment. In this context, brain imaging studies frequently show
increased regional cerebral blood flow in the striatum during
various types of painful stimulation (Coghill et al., 1999; Iadarola
et al., 1998). Furthermore, it has been proposed that striatal
dopamine may have an important role in pain regulation
(Hagelberg et al., 2004). Because neural plasticity clearly under-
lies the pain hypersensitivity characteristic of chronic pain (Woolf
and Salter, 2000), it is possible that this increase on striatal MAO-
B activity could be due to an augment in the enzyme expression
and may be relevant to the production of neuropathic pain.

MAO-B is an important enzyme for the metabolism of biogenic
and trace amines, such as dopamine and phenylethylamine,
respectively. Several studies indicate that dopamine plays an
important role on pain and analgesia and dopaminergic agonists
have antinociceptive effect in different animal models of pain
(Altier and Stewart, 1999; Wood, 2008). Moreover, it has been
demonstrated that phenylethylamine and its derivatives possess
antinociceptive action in mice (Giardina, 1974; Matsuoka et al.,
1988, 1993). For instance, Ukponmwan et al. (1986) demon-
strated that the antinociceptive action of an enkephalinase
inhibitor was potentiated by both the MAO-B inhibitor selegiline
and the MAO-B substrate phenylethylamine in rats, suggesting
that this amine could mediate the analgesic activity of endogen-
ously released enkephalins. Therefore, the antinociceptive action
of selegiline could be mediated by an increase in the levels of
dopamine and phenylethylamine in the central nervous system.
Nevertheless, further studies are required to investigate the
participation of specific monoamines in the antinociceptive
mechanism of selegiline.

With the purpose of investigate if a dose of selegiline without
antinociceptive action could inhibit the MAO-B activity, we tested
the effect of 1 mg/kg of selegiline on this enzyme activity. We
observed that this dose, which was ineffective in producing
antinociception, caused no inhibition on the MAO-B activity,
suggesting that the MAO-B inhibition appears to be required for
the antinociceptive action of selegiline. However, besides MAO-B
inhibitory properties, selegiline is known to have other effects
such as antioxidant and neuroprotective activities (Le et al., 1997;
Maruyama and Naoi, 1999; Youdim and Bakhle, 2006; Zhu et al.,
2008). Despite our results suggest that the antinociceptive effect
of selegiline is related to its MAO-B inhibitory property, we
cannot exclude the possibility that selegiline could be acting via
a MAO-B independent mechanism.

Taken together, our results showed that selegiline presented
antinociceptive effect on mice models of acute postoperative pain
and chronic neuropathic pain, suggesting a possible involvement
of MAO-B in the mechanism of these pain conditions and a
potential utility of its inhibitors for the development of new
therapeutic approaches.
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