Osteoarthritis (OA) is a prevalent disease of most mammalian species and is a significant cause of welfare and economic morbidity in affected individuals and populations. In vitro models of osteoarthritis are vital to advance research into the causes of the disease, and the subsequent design and testing of potential therapeutics. However, a plethora of in vitro models have been used by researchers but with no consensus on the most appropriate model. Models attempt to mimic factors and conditions which initiate OA, or dissect the pathways active in the disease. Underlying uncertainty as to the cause of OA and the different attributes of isolated cells and tissues used mean that similar models may produce differing results and can differ from the naturally occurring disease.

This review article assesses a selection of the in vitro models currently used in OA research, and considers the merits of each. Particular focus is placed on the more prevalent cytokine stimulation and load-based models. A brief review of the mechanism of these models is given, with their relevance to the naturally occurring disease. Most in vitro models have used supraphysiological loads or cytokine concentrations (compared with the natural disease) in order to impart a timely response from the cells or tissue assessed. Whilst models inducing OA-like pathology with a single stimulus can answer important biological questions about the behaviour of cells and tissues, the development of combinatorial models encompassing different physiological and molecular aspects of the disease should more accurately reflect the pathogenesis of the naturally occurring disease.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
the use of animals in animal science (Madden et al., 2012) makes in vitro modelling of the disease desirable. The observation that spontaneous OA in domestic animals has a similar pathogenesis to that observed in humans (Clements et al., 2006), and the availability of naturally-occurring, early-stage diseased tissue, for example at slaughter in food animal species or following a veterinary surgical intervention in companion animals (Clements et al., 2009) make domestic animals an important source of clinical material for such models.

Additionally, models of OA offer the opportunity to study early features of the development of the disease, prior to the development of a fulminant catabolic process, which have been difficult to dissect because of the lack of available tissue from early disease and the limited molecular changes associated with it (Aigner et al., 2006). No consensus on the most appropriate model for the representation of particular features of OA has been made, as each model has its own mechanisms for the induction of a general catabolic process. Furthermore, the molecular phenotypes of different forms of OA also show distinct differences (Xu et al., 2012), and such subtleties can be considered when designing models of OA rather than ignoring them when using more general in vitro models.

The relevance of in vitro models to clinical disease always needs to be interpreted with caution. For example, numerous publications report the chondroprotective effects of glucosamine and chondroitin sulphate in in vitro models (Dechant et al., 2005; Chan et al., 2007), but clinical trials have failed to show such effects in vivo (Sawitzke et al., 2010; Wandel et al., 2010). Whilst some effects of the differences can be ascribed to delivery, complexity, duration and variation of the phenotype, ultimately in vitro models should be designed to better reflect the natural in vivo disease. This particularly applies to the disease state, where almost all models are designed to replicate the symptoms of end-stage OA, with little or no regard to the early disease, where chondroprotection is likely to yield greater benefits.

This review summarises the two most commonly used in vitro models of OA, namely, cytokine-based models and load-based models, and then discusses their various merits and how they reflect the naturally-occurring processes.

Cytokine induction of OA-like processes

Classic research on OA has focused on cartilage, but other tissues such as bone, synovium, ligament, infrapatellar fat (Maccoux et al., 2007) and periarticular muscles (Geyer et al., 2009) are also involved (Fig. 1). The changes seen in these tissues are attributed to diffusible factors, including proteolytic enzymes, such as matrix metalloproteinases (MMPs) and members of the ‘a disintegrin and metalloproteinase with thrombospondin-motif’ (ADAMTS) family that are present in the joint environment during the disease (Little et al., 2005; Clements et al., 2006).

Cytokines in OA

During OA, synoviocytes, mononuclear cells or chondrocytes may increase their expression of catabolic proteins (Fernandes et al., 2002) following stimuli such as cytokine or chemokine exposure, including interleukin (IL)-1β and tumour necrosis factor (TNF)-α, which are present in the joint following synovial inflammation (Sohn et al., 2012). Pro-inflammatory cytokines make ideal candidates for the induction of OA-like biological changes in articular cells or tissues in culture, in which temporal and concentration effects can be explored.

Models of OA where cytokines are the primary method of induction are very common and are generally well understood. The model is usually inexpensive and is very easily manipulated. The ability to expand cells in vitro also means that many replicates are possible, allowing multiple hypotheses to be tested from single sources of tissue. Nevertheless, cells in culture (particularly chondrocytes) are prone to dedifferentiate to fibroblasts after only a small number of passages (Caron et al., 2012; Minegishi et al., 2013), and isolating cells from their matrix removes possible matrix-effects. Additionally, inter-tissue crosstalk is difficult to characterise in vitro and both time- and concentration-dependent effects are not well understood (Table 1).

Evidence for a role of IL-1β in OA is well established, and it has been used as a potential therapeutic target, for example through the design of vectors activated by IL-1 that protect against its catabolic effect (Campbell et al., 2005) or through the antagonism of the IL-1 receptor (IL-1R) (Chevalier et al., 2009). Exposure to IL-1β stimulates chondrocytes and synovial cells to produce catabolic proteases (Maccoux et al., 2007), with apocrine signalling further enhancing MMP release and the resulting degradative cascade. The catabolic response can be blocked by the inhibition of IL-1β through antagonism with the IL-1-R antagonist (IL-1Ra) (Bujak and Frangogiannis, 2009).

Inflammatory molecules produced by chondrocytes in response to IL-1β include prostaglandin (PG)E2, cyclooxygenase (COX)-2, IL-6, IL-8 and leukaemia inhibitory factor (LIF). IL-1β also leads to the accumulation of reactive oxygen species, through expression of inducible nitric oxide synthase (iNOS) by the transcription factor
nuclear factor kappa B (NF-κB), ultimately leading to apoptosis (Fig. 2a). This mechanism can also be accelerated by IL-1β-mediated damage to mitochondrial DNA, leading to a further release of reactive oxygen species and enhancing apoptosis (Loeser, 2011).

IL-1 plays a role in bone pathophysiology relevant to OA, particularly IL-1α which is also known as osteoclast activating factor (Lee et al., 2010). In bone, there is an increase in the activity of PGE₂ in osteoblasts and stromal cells, as well as an increase in the expression of receptor activator of NF-κB Ligand (RANKL). RANKL is critically involved in the activation, maturation and survival of osteoclasts (Tanaka et al., 2005). IL-1 has also been shown to induce multinucleation of osteoclasts, thus potentiating the function of the cells. In vivo, when adult rats were injected with a moderate amount of IL-1β (1 μg/kg bodyweight), an increase in serum and urinary Ca²⁺...
concentration was noted, as well as an increase in osteoclast number, implying an increase in bone resorption (Nguyen et al., 1991).

TNF-α has also been used to induce OA-like changes in in vitro experiments, because it is found in diseased synovial fluid (Horiuchi et al., 1999; Fujita et al., 2005), and is able to induce catabolism and inhibit anabolic pathways in joint tissues and cartilage cells (Liacini et al., 2003). While IL-1β and TNF-α are the most commonly used cytokines in modelling OA, other cytokines may also play important roles. Concentrations of IL-6, IL-8, vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) are all increased in the synovial fluid of OA joints (Sohn et al., 2012). Osteocytes are recruited by IL-6 and thus this cytokine may be an important modulator of the bone remodelling observed in OA (Silfverswärd et al., 2004). However, in model designs, these cytokines are rarely considered, possibly because they are characterised as chondrocyte-derived and thus they can be induced by other cytokines, such as IL-1β or TNF-α (Bunning et al., 1990). Using cytokines in combination may allow for the induction of OA-like cell and tissue responses that more closely replicate the natural disease, particularly in lieu of synovial effects in the model design.

In vivo determination of cytokine concentrations

Cytokine-based models use a wide variety of concentrations and durations of cytokine stimulation, namely those which produce a measurable downstream effect, rather than a concentration that reflects that in naturally occurring disease. Furthermore, OA is a slowly-progressing disease and relatively small increases in cytokine concentrations have been identified in naturally-affected joints. When OA synovial fluid is assayed, the quantities of IL-1β (<2 ng/mL) and TNF (3 ng/mL) are highly variable between experiments, but are low in comparison with those used to exert an effect in vitro (Table 2). The variation in physiological concentrations is evident and may be the result of several factors, including the method used to quantify the cytokines, or the phenotype of the disease. In contrast, the concentrations used in models are typically much higher at up to 1000 ng/mL of IL-1β (Macrophy et al., 2009), and up to 50 ng/mL of TNF-α (Gabriel et al., 2010).

Explant-based models of cytokine stimulation

Explant-based models are simple and easy to produce, and have the major advantage that they can be used to examine the response of cells in their natural extracellular matrix; once removed from their extracellular matrix, the cell phenotype is altered (Zien et al., 2001). Using explanted tissue also allows features such as matrix degradation to be observed. However, the use of tissue explants creates new problems; for example, cells at the explant edge (Hunziker and Quinn, 2003; Gilbert et al., 2009), there are limitations to the number of samples which can be obtained from the same source and more than one tissue might be required to maintain viability (Amin et al., 2009).

Cartilage is highly sensitive to TNF-α and physiologically relevant concentrations as low as 0.25 ng/mL (Westacott et al., 1999) are sufficient to increase the release of glycosaminoglycans (GAGs) from OA cartilage (human) when compared with healthy cartilage in a 14 day period (Westacott et al., 2000). Species-specific differences may exist in the stimulation required to elicit a particular response (such as GAG release); thus, GAG release from feline cartilage explants requires stimulation with both recombinant human IL-1β and oncostatin-M (OSM) in combination (Gabriel et al., 2010), although a feline-specific stimulus may have elicited a different response.

A possible autocrine network has been suggested because both IL-β and TNF-α show strong positive protein staining in the superficial zone of cartilage, as well as in the synovial fluid in late-stage OA. Meanwhile, deep zone cells only demonstrate marginal staining in the most severe cases (Tetlow et al., 2001), illustrating the differential responses of chondrocytes in disease. Notably, the early stages of disease rarely demonstrate any chondrocyte expression of cytokines, implying that any inflammatory cytokines present in the joint at the early stage of the disease are most likely to be synovial in origin (Tetlow et al., 2001).

Chondrocyte culture-based cytokine models

The choice of whether to use a monolayer, a cell scaffold or intact tissue will influence the cells’ response to the cytokine stimulus applied. The sensitivity of chondrocytes to their molecular and loading environment dictates that, ideally, they should not be isolated from their matrix or, if they are, the matrix in which they are embedded should closely match the behaviour of normal, healthy tissue. However, the low cellularity of cartilage necessitates the demand for large explants, thereby reducing the number of replicates which can be obtained from a single tissue source. Monolayer cultures allow the expansion of the cellular resource, although this is finite for tissues such as cartilage (Nicholson et al., 2007), since the cell phenotype changes in monolayer culture (Zien et al., 2001).

The ease of using chondrocytes in monolayer, combined with their rapid response to cytokine stimulation, has resulted in this being the most widely used model. Numerous models that use cytokines added to cell or tissue culture medium have been shown to produce OA-like responses in chondrocytes in monolayer cultures, such as a decrease in the expression of type 2 collagen and aggrecan, and an increase in the expression of MMP-13, across multiple species (Miyaki et al., 2009; Novakofski et al., 2012; Yang et al., 2014).

Alternatively, stimulating chondrocytes with the synovial fluid from OA patients (Hoff et al., 2013), a more physiologically-relevant stimulus, produces similar results, including the expression of the pro-inflammatory cytokines IL-6, IL-8, IFN-γ, MCP-1, granulocyte-colony stimulating factor (G-CSF) and VEGF. However, this method of stimulation is also limited by the imprecise understanding of the relative contribution of different mediators which are driving catabolism in this model, and the lack of repeatability because of the limited synovial fluid volume that can be obtained from a single source.

Co-culture-based cytokine models

Recognising that OA is a disease that affects and involves the interaction between multiple tissues are co-culture experiments that permit the study of these interactions in vitro. Cytokine or osmotic pressure stimuli can be easily applied to co-culture models, although the tissues might require different culture conditions, necessitating some compromise on the culture conditions used when cultured together. The co-culture of synovial membrane with chondrocytes is one method by which the complexity of the pro-

Table 2

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cytokine</th>
<th>IL-1β</th>
<th>TNF-α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (human) (Kahle et al., 1992)</td>
<td><20 pg/mL</td>
<td>2890 pg/mL</td>
<td></td>
</tr>
<tr>
<td>Control (canine) (Fujita et al., 2005)</td>
<td>490 pg/mL</td>
<td>105.3 pg/mL</td>
<td></td>
</tr>
<tr>
<td>OA (human) (Kahle et al., 1992)</td>
<td>21 pg/mL</td>
<td>80 pg/mL</td>
<td></td>
</tr>
<tr>
<td>OA – Hip dysplasia (canine) (Fujita et al., 2005)</td>
<td>2010 pg/mL</td>
<td>600 pg/mL</td>
<td></td>
</tr>
<tr>
<td>OA – Mild (porcine) (McNulty et al., 2013)</td>
<td>109 pg/mL</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>OA – Moderate (porcine) (McNulty et al., 2013)</td>
<td>122 pg/mL</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>
inflammatory cascade can be reproduced in vitro, because synovium is the primary source of these mediators (Ushiyama et al., 2003).

Co-culturing synovium from OA patients with healthy cartilage explants produces an increase in the expression of IL-1, IL-4, IL-7, IL-8, IL-10, IL-13 and osteoprotegerin (OPG), similar to synovial fluid from OA joints, as well as reducing GAG production in the cartilage (Beekhuizen et al., 2011). Whilst it may be desirable to use synovium to model OA in vitro, this tissue is composed of two different, but interacting, cell types and shows highly variable lesion patterns both across different OA joints, and within a single joint with clinical OA (Rhodes et al., 2005; Goldhammer et al., 2010; Smith, 2011). Consequently, deconstructing the effects within the synovial co-culture model is complex, although characterisation of the factors responsible for the response will help to standardise across experiments. The use of bone in co-culture experiments is also important, because it appears to have a role in maintaining the long-term viability of chondrocytes in the superficial zone of articular cartilage (Amin et al., 2009).

Bone cytokine models

Evaluation of the response of bone to cytokine stimulation in models of OA is scarce, which is unsurprising because it is difficult to ascertain the precise cytokine environment to which bone cells are exposed to in OA. Most data on cytokine roles in bone focus on the specific roles of TNF-α, IL-6 and IL-1 release during osteocytic injury (Komori, 2013). Furthermore, generation of RANKL is induced by IL-6 and IL-1, and mice lacking RANKL completely lack osteoclasts (Kong et al., 1999). Osteoclasts driven to apoptosis release soluble RANKL and conditioned media from these cells further induce osteoclastogenesis (Al-Dujaili et al., 2011). Notably, bone plays a larger role than previously considered in cartilage health and removal of cartilage explants from the underlying bone tissue leads to a higher percentage of cell death in chondrocytes than if chondrocytes were left attached to the bone (Amin et al., 2009).

Mouse calvarial cultures incubated with IL-1 showed bone resorption, demonstrating that cytokines act on cultured bone (Gowen et al., 1983), and cultured osteoblasts actively synthesised NO in response to IL-1α in a dose-dependent fashion, although IL-1β, TNF-α and IFN-γ failed to elicit a response (Ake et al., 1994). Evidently, cytokines play a role in bone turnover, and bone is responsive to inflammatory stimuli. IL-1β has been shown to induce the release of PGE₂, MMP-3 and MMP-13 from osteoblasts (Pecchi et al., 2012), although this can be inhibited with chondroitin sulphate.

Load-based models of inducing OA

Chondrocytes are sensitive to load, and must always be under sufficient force to maintain extracellular matrix homeostasis, yet below that which induces apoptosis or stimulates an inflammatory cascade within the tissue (Henrotin et al., 2012). Subchondral bone is also mechanosensing and responds in vivo by changing its thickness and reducing its resorption when loading is increased (Murray et al., 2001). Identifying the load thresholds that alter the balance from maintenance of homeostasis to injury is important to our understanding of the magnitude of a beneficial or deleterious load.

Load models are easily manipulated and, as a result, high throughput experiments can be performed. Signalling pathways associated with mechanotransduction are becoming well understood (Millward-Sadler and Salter, 2004; Mobasher et al., 2005), allowing better appreciation of the processes associated with this model. Removing cells from their native matrix and embedding them into an artificial scaffold alters, at least theoretically, the native signalling network, and the force used in the experiment is inherently dependent on the ability of the scaffold to withstand that force.

Cell loading models require high cell numbers that might not be available from some sources. Using entire tissues overcomes this problem and allows cells to use natural cell-matrix interactions and cross-tissue communication, as well as much greater forces. Conversely, native tissue experiments are limited to larger species and lower numbers of replicates. Additionally, cells have been shown to undergo substantial cell death at the cut edge (Huntley et al., 2005a, 2005b), so distorting observations at these sites (Table 1).

In vivo determination of cartilage load

Several in vivo studies have attempted to determine the physiological pressures experienced by articular cartilage during loading. The pressure passing through the load-bearing region of a human acetabular prosthesis has been determined to be approximately 3.5 MPa during locomotion (Hodge et al., 1989) and the articular contact pressure of the human knee does not exceed 8 MPa, even when the menisci have been removed (Fukubayashi and Kuwosawa, 1980). Loads of a similar magnitude have been reported in both the medial and lateral compartments of canine elbow joints, with mean contact pressures between 3.0 and 4.0 MPa and peak pressures between 6.6 and 9.1 MPa (Cuddy et al., 2012). These data suggest that the articular loading experienced by different joints in different species are physiologically comparable and concurs with estimates of the articular cartilage compressive stress in different mammalian species, which only vary within one order of magnitude from mice to cows (Simon, 1970).

Chondrocytes sense the loading of their environment through integrin receptors (Bader et al., 2011). When activated, the integrins stimulate stress pathways leading to cytokine release and suppression of inflammatory cytokines, such as IL-1β and TNF-α (Valhmu et al., 1998; Durrant et al., 1999; Bader et al., 2011). Cytokine-induced proteolytic enzyme release is mediated by nitric oxide, PGE₂, and reactive oxygen species. The extracellular proteins cleaved by the activated proteases are then capable of further induction of both proinflammatory cytokines and matrix proteases, although the receptors activated by collagen fragments remain elusive (Klatt et al., 2009).

The signalling pathways induced by static loading and cytokine induction are similar and the mechanism that governs both is similar in both models (Fig. 2b). However, the compression pathway appears to be reliant on the magnitude and duration of the stress (Fanning et al., 2003).

Explant based models of cartilage loading

The use of tissue explants, assessing the response of cells embedded in the natural matrix, is the simplest method for assessing the effects of load. Load is applied to tissue explants through various methods, based on the variable in question. Most typically, ‘drop towers’, in which a free weight is released from a predetermined height onto the tissue, are used to impart a single impact load. This is believed to replicate the development of ‘post-traumatic’ OA, which occurs following an injurious articular load. Load can also be applied in a cyclical manner with devices such as pneumatic or hydraulic loading chambers.

Static loading can induce similar deleterious changes in cartilage explants when applied at an appropriate magnitude. For example, a compressive strain of 50% applied to a cartilage explant results in a decrease in the synthesis of collagen type II and proteoglycans (Chen et al., 2001). Static compression of calf patellofemoral cartilage to 25% or 50% strain for 24 h produces deleterious changes in cartilage metabolism, resulting in an increase in expression of MMP-9 and 13 mRNA and decrease in COL2A1 and aggrecan (ACAN) within 1–2 h post loading (Fitzgerald et al., 2004). IL-1 receptor activation and activation of the extracellular-signal
related kinase 1/2 (ERK1/2), p38, mitogen-associated protein kinase (MAPK) family member pathways in a time-dependent manner mediate these changes (Fanning et al., 2003).

A load equivalent to 1.5× bodyweight placed on a human knee joint caused only 10% strain in the patellofemoral cartilage following 10 min of static loading (Wong and Sah, 2010). Similarly, intact human femoral head cartilage loaded to the equivalent of a single leg stance (less than 2.3× bodyweight) is subject to a strain of 33% (Greaves et al., 2010). Consequently, the use of higher strains in in vitro models exaggerates the maximal normal physiological load experienced by a joint in vivo, although this reflects the requirement to induce an effect within a shorter time frame. Furthermore, the elastic (Young's) modulus varies across cartilage within a joint (Shepherd and Seedhom, 1999), and thus the load required to induce a specific strain, or strain produced from a specific load will also differ across samples from the same joint.

In vitro studies have been used to determine the critical stress thresholds of cartilage explants, in which apoptosis, collagen degradation and nitrite accumulation are observed. Values range from 4.5 MPa for cyclic loading (six compressions to a final strain of 30–50%, held for 5 min rested for 25 min, Loening et al., 2000) to 15 MPa for a single impact load (Torzilli et al., 1999) for bovine cartilage, although the results between experiments are highly variable. Notably, bovine cartilage explants subjected to a 0.5 MPa cyclic loading increase proteoglycan synthesis across various cycle lengths (Parkkinen et al., 1992), supporting the hypothesis that moderate loading is beneficial to cartilage health.

Chondrocyte culture-based loading models

The response of cells to load can be dissected further by isolating cells in culture, embedding them in an artificial matrix and compressing them using a bioreactor. This has the advantage of permitting very precise changes in loading parameters, as it is highly reproducible, as well as looking at the effects of different matrices on the cellular response. However, a large caveat to such experiments is that the cell response observed in vitro may not represent that observed in vivo, where the interaction of the matrix is critical to the effect produced.

In vitro loading of isolated chondrocytes seeded in a 3-dimensional (3-D) culture (typically agarose) results in both an increase in cell proliferation and proteoglycan synthesis when cyclically loaded at a physiological strain of 15% (Lee and Bader, 1997). 3-D culture also allows for the application of bi-axial cyclic loading (direct compression or tension, and shear) (Pingguan-Murphy and Nawi, 2012), and addresses the observation that, in vivo, several loads may simultaneously impact on a joint during normal activity. When subjected to biaxial loading (10% compressive strain with 1% sheer strain) for 24 h, the cells stop dividing after 6–12 h, probably due to the mechanical stress on the cell (De Croos et al., 2006).

Co-culture based loading models

Co-culture methods have been used to explore the effect of loading on articular tissues in parallel, although they are challenged by the necessity to use different culture conditions for each tissue, or to compromise the culture conditions. For example, alginate-embedded chondrocytes cultured on a porous filter above mechanically stretched osteoblasts become more hypertrophic during stimulation of the osteoblasts. This change was most pronounced when the osteoblasts were subjected to tensile loads, suggesting that molecular ‘cross-talk’ occurs between the two cell types in response to mechanical stress in bone (Lin et al., 2010).

Co-culture of OA osteoblasts with healthy alginate bead-embedded chondrocytes results in a phenotypic shift to chondrocyte hypertrophy and matrix mineralisation, which does not occur with healthy osteoblasts stimulated with IL-1, IL-6 or OSM (Sanchez et al., 2005). This demonstrates the limits of artificially stimulating cells and the phenotypic differences of naturally-diseased cells, and highlights the need for better characterisation of the soluble factors released by these cells, as well as better definition of the molecular stimulation required to induce the OA phenotype in healthy cells.

Bone loading models

Osteocytes are the major mechanosensors of bone, although they are rarely included in models of OA, because they are notoriously difficult to culture in vitro. Analysis of the osteocyte (in contrast to osteoblast) response to compression has been hindered due to this challenge (Kato et al., 1997). Osteocyte cell lines seeded into type I collagen gels layered with osteoblasts on their surface respond to mechanical loading, with co-cultured constructs increasing type I collagen expression with loading, and osteocyte embedded gels expressing PGE2 after mechanical stimulation (Vazquez et al., 2014).

Relevance of load: From in vivo to in vitro models

The validity of a loading model depends, at least to some extent, on its relationship with the natural environment of the joint and its loading in vivo. The loading parameters of a selection of cell and tissue loading models are presented in Table 3. The use of scaffolds can impart some structure to the cells for culture-based models, and permit cyclic loading of isolated cells, albeit within ranges that are governed by the strength of the matrix in which they are embedded.

The heterogeneity of the cartilage structure means that precise reconstruction of the tissue in vitro may not be possible, and so compromises must be made when constructing a load based model (Gannon et al., 2012). The individual phenotype of each chondrocyte is related to their location in the tissue (Fujikawa et al., 2013; Schuurman et al., 2015) and therefore, in homogeneous tissue models, chondrocytes may not behave in the same manner.

Future directions

The multifactorial nature of OA should be considered when designing a model to reproduce this disease, even if it is only testing a single parameter, such as the response to a load or catabolic stimulus. A deeper understanding of the pathways evoked in vitro models, and their relevance to the changes seen in naturally-occurring OA phenotypes, is important in order to improve the translational relevance of the conclusions drawn. To date, the vast majority of explant- and culture-based models have assessed cartilage in isolation. Whilst this might reflect the ease of manipulating cartilage and the resilience of chondrocytes in cell culture, progress in tissue engineering and cell culture techniques will allow for the development of more advanced models including other cell types. The responsiveness of bone to stimuli and the cross talk that occurs between the different tissues in OA joints dictate that models should consider the role of multiple tissues when...
assessing the response to a given stimulus, so as to enable more meaningful translation to the anticipated response in vivo.

There is no all-encompassing model that is suitable for all studies of OA, and no single model can be used to perfectly simulate naturally-occurring events. Whilst models seek to answer specific biological questions, more standardised end-points for the molecular and physiological parameters assessed are necessary, since at present it is impossible to directly compare the outcomes of the many in vitro OA models published in the scientific literature.

Other areas of articular health research, such as those looking at histological assessments of cartilage repair and damage (Glasson et al., 2010), have developed guidelines upon which assessments should be made through the consensus of experts and the publication of their recommendations. In molecular biology, similar guidelines have been developed for performing microarray and quantitative PCR studies (Brazma et al., 2001; Bustin et al., 2009). Whilst the in vitro models of OA have many different functions and outcomes, guidelines could still be developed to determine the endpoints which are matrix- and chondro-protective, and the minimum number of features of a model (such as measures of matrix release and turnover, transcription changes and/or cellular morphometric changes) which are agreed to represent an ‘OA-like’ scenario. Similarly, models seeking to investigate the pathogenesis of OA must justify the nature of stimulatory conditions, relative to the in vivo disease, beyond simply that required to produce a response. At the very least, in vitro models should be standardised to a particular disease phenotype, with reasoning for the source of the cells and/or tissues used and the outcomes to be measured, as there is no single OA phenotype which can be encompassed by all models.

Conclusions

The molecular pathways underpinning cytokine-stimulation and load-based in vitro models of disease are similar. The combination of different model types may permit the use of stimuli which are physiologically relevant and which allow us to understand the development and progression of the disease, particularly the early phase, rather than simply the catastrophic downstream events after it has begun. Standardisation of approaches, both within and between different species will allow the wider applicability of results between studies, which in turn will enhance our understanding of the disease.

Conflict of interest statement

None of the authors of this paper has a financial or personal relationship with other people or organisations that could inappropriately influence or bias the content of the paper.

Acknowledgements

The Roslin Institute is supported by an Institute Strategic Programme Grant from the BBSRC and CIJ is funded by both the BBSRC (BB/J500781/1) and Zoetics Ltd.

References

References

