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A b s t r a c t - - T h e  Maclaurin series is quite limited in comparison to the (Adomian) series obtained in 
the decomposition method. By adding procedures from the decomposition method and the expanRion 
of nonlinearities using the Adomian polynomials, as well as a recent result of Adomian and R ~ h  on 
transformation of series using the above polynomials, the Maclaurin series can be made much more 
useful in its applicability. However, the convergence is still slower than for Adomian's results using 
decomposition. 

1. I N T R O D U C T I O N  

Power series solutions of linear homogeneous differential equations in initial-value problems yield 
simple recurrence relations for the coefficients, but they are generally not adequate for nonlinear 
equations, although applicable to some simple cases such as the Riccati equation. In order to 
extend the Maclaurin method, we use results from the Adomian decomposition method [1-6] and 
a recent theorem [7] by Adomian and Rach on transformation of series, which we state as 

f cnz" = ~ x n A , ( c o , c l , . . . , c n ) ,  
n=O n=O 

where the An are Adomian polynomials [1-3]. For convenience, we explain this statement as fol- 
lows: Adomian solves general operator equations Fu = g using his decomposition u = ~-~:°=0 un, 
a special case of his expansion of f (u) = ~"~=0 An (u0,ul, . . . .  un), where the An are derived 
by convenient algorithms for f (u). Thus, f (~"]~,~°°=0 un) = ~'~=0 An (u0 . . . .  , un). If u is given 

c o  as a series, u = ~-,n=o cnzn, we identify each component u,  of the decomposition of u with the 
component cnz" of the power series, which leads readily to 

An (uo, . . .  ,un) = z'*An (co . . . .  , c , ) .  

oO It The series ~"~=0 x"An ( c o , . . . ,  ca) is convergent if the series ~-~n=0 cnx is convergent. This is 
simply extended to Taylor series 

/ :c. 0'-*o)" = (x-xo)" .  
n = O  n = O  

To clarify the procedure, before consideration of more general cases, we look at a simple linear 
equation in Adomian's operator form Lu + Ru = O, where L will be chosen as d~/dz  2 and R -- p, 
a constant. We write Lu = - R u  and operate with L -1, a two-fold integral operator. In initial 
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condition problems we can conveniently define it as a two-fold (in this case) definite integration 
from 0 to t. (We can also define it as an indefinite integration leading to ao + a l Z  + Is (.), where 
Is (.) = f f  ( . ) d z  dz . )  Thus a0, a l  are determined by the initial conditions as a0 = u (0) and 
a i  -- u' (0). We now have 

u = Oto -- a l  m-- pI2u 

and can substitute u = ~'~n=o c , z  : 

E CnXn :" OtO -I" OL1 X -- ,012 CnX n = OtO Jr" ~I  X -- p Cn (n  + i) (n + 2 ) '  
n=O \ n = O  / !1=0 

o r  

Equating coefficients, 

and, for n >_ 2, 

co co ,~n 

E cnxn = OtO "q-Otl X - -  P E Cn--2 (.-- 1)n" 
n=O n=2  

CO " -  0~0, C1 : Otl~ 

Cn -- 2 
cn = - p  (n - 1) n" 

I f p  = p(x) ,  we write p (z )  = ~ . = o p n Z  n, and 

E Cn xn = Olo -I- Oil X -- 12 pn zn  CnZ n 
n=O n=O \ n = O  / 

= Oto "~" oLi z - I2 E xn E pvcn-v  
n=O v=O 

Pv Cn - v = 0/0 "~" a l  Z - -  (n + 1 ) ( n +  2) ~ = 0  
n=O 

o r  

so that  

For n > 2 ,  

E cnxn -" OtO "]- 0~I X -- ( n  -- 1) n p ~ , C . - 2 - ~ ,  
n----O n = 2  v=O 

C O = O~ 0 Cl  = O~ 1. 

n - 2  
Cn-- 2--v 

2. T H E  N O N L I N E A R  C A S E  

Lu  + N u  = O. We let L = a~/dx  2 and N is a nonlinear operator which we write N u  = a F  (u). 
Then 

L u = - N u ,  L - 1 L u = - L - 1 N u ,  u = a o + a l x - a I 2 E A n z  n, 
n=O 

where we have replaced f (u) by a¢ , f (~'~,=0 cnz ) = ~'~n~=0 An ( c o , . . ,  c , )  z" ,  as discussed in the 
introduction. Now 

oo ~°° x n .i. 2 

= + z'=__oA" (.  + 1)(n+ 2) 
n----0 

¢ ~  X n 

-- oto q-Oil z -- ot E An_2 (n-  I) n' 
n = 2  
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so that  

and for n > 2, 

where Am = A m  (Co, . . .  , cm). 

CO " -  Or07 Cl  = Ot13 

An-2 
Cn = -a ( n  - 1) n '  

Again, if a a (x), we write a (x) = oo = ~-~n=o an xn" Then 

E C n X  n = OtO -I" Otl X - -  12 OtnX n A n x  n 

n=O n=O \ n = O  / 
oo n 

n=O v=O { )" xn+2 Z Otv A n - v  
=ao+a:x-E (.+l)(n+2) v=o 

n=O 

= ~o + ~, ~- ~ (.: i). ~ ~oa._,_.. 
n = 2  v=O 

Hence, 

and, for n > 2, 

CO " -  t~O, Cl  - "  ~1~ 

n-2  A n - 2 - v  
Cn = -- E OeV n ( n _  l)  , 

v=O 

where An = An ( co , . . .  , on) is derived from previously given algorithms [7]. 
Consider now the operator form Lu  + R u  + N u  = 0 where R = p, L = d 2 / d z  2, N u  = a f (u). 

Write 

Lu  = - R u  - N u ,  

L - : L u  = - L - X R u  - L - X N u .  

Now 

E c n z n = O e o + a : x - p I ~  cnx n - oe I2 A n x "  , 
n=O n=O k n = O  / 

(again using f ( ~ = 0  cn xn)  = ~'~=o An ( c o , . . . ,  en) xn) ,  

co x n ar 2 
oo ~¢ zn+2 -- ot E An  
E cnxn = OtO + ~I X- p E Cn (n + 1)(n -[- 2) (n -[- 1)(. + 2) 
n=O n=O n=O 

x n  oo x n  

= ,~0 +=: x - p ~  c._= Cn--bn - ' ~  An-, ( n -  :)n' 
n = 2  n = 2  

leading to 

and, for n >_ 2, 

CO = 0~0~ C l  = Q~I~ 

Cn-~ A n - 2  
"-- Ot en --P (n-- I) n (n-- l) n' 

where An = An (co, . . .  , Cn). 
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I f  p = p (x) = ~'~°=0 p n z "  and N u  = a ( z ) f  (u) = E~=0  a n x " f  (u), we proceed as before to 
obtain 

~-'~ CnX n - -  OtO "}" Otl x - -  

n=O 

= Oto -Jl- Otl z -  

• C n X  n = Oto "l" 0~I X - -  

n = O  

co 

n=O 

n = O  \ n = O  / \ n = O  / 

oo oo oo n 

1, E =" - I, E =n E 
n = O  v = O  n = O  v = O  

n=o (n+ l ) (n+2)  .=oEPVCn-v- (n+ l l (n+2)  v=oZavAn-" 
co n--2 co n--2 

Cn-- 2--v A n -  2 - v  

n = 2  v = O  n = O  v = O  

leading to  

C O : SO, Cl - -  O~ 1, 

n- -2  n- -2 

Cn .... _ E pv Cn--2-v _ v~..O A n - 2 - v  
( n -  1)n a" (n---  ]ff) "n' 

V=0 = 

for n > 2, where An = An(co , . . .  ,cn). 

3. I N H O M O G E N E O U S  C A S E  

Consider Lu -{- R u  = g. Let R = p and L = d2 / d x  2. Let g = ~-']~=0 gn xn- From Lu  = g - R u  
and L - f L u  = L - t g  - L - 1 R u ,  we have 

oo 

u = so + a t z  - I 2  Y ' ~ , g n z "  - p I ~ u ,  
n-----O 

o r  

~ xn+2 ~ X n + 2  

)-~cnz" = ao +at z+ Eg.(n+ 1)(n + 21 -PZen (n+  1) (n + 2)' 
n=O n=O n=O 

~ Xn ~ Xn  

Zcn=n=ao+azz+Zgn-'(n_l) n PZCn-2(n_l) n" 
n=O n = 2  n = 2  

Thus, co = so, ci = az, and for n _> 2, 

g n - 2  - -  ,0 Cn_ 2 
cn = ( n -  1) n 

If we let p = O ( z ) =  ~,~=opnX n and g = ~'_,~=ognX n, we have 

E c n = n ' -  O t o - l - o t l x - l - Z 2 Z g n X n - ] "  2 pnx n cnx n 
n = O  n = O  n = O  \ n = O  / 

oo co 1% 

- - ' O l o d r O t l X ' | - Z g Z g n x n  - - I 2 Z X n Z p v C n _ v ,  
n = O  n = O  v = O  

o r  

n ( . + 1 ) ( . + 2 )  - .=o ( .+Z) (n+2)  
n=O n=O 

= a ° + ° q z + E g n - 2 ( n - 1 )  n n - - i )  n o v e n - , - , , ,  
n = 2  n----2 v=O 
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C 1 = al, and for n > 2, 

11--2 

Cn -- 

4. 

fin-2 -- E p v C n - 2 - v  
~ = 0  

( n  -- I) n 
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o r  

co 

Lu + Nu = 9 = E gn xn, 
n=O 

co co co 

n=O n=O n=O 

/ co where f (u) = (Y~.--o enzn) has been replaced by E~_-o .4,, (co,.. . ,  e.)  z n, 

~_~ co x n + 2  co Xn+2 

cnz n -- ao q- ~i  x-l- E g .  (n-l- l ) ( n +  2 ) - a E A n  (n-l- I) (n + 2 )  
n = 0  n = 0  n = 0  

oo 
co Zn o t E A n _ 2 (  n xn 

= a ° + a l z + E g n - 2 ( n - - i )  n - 1 )  n" 
n=2 n = 2  

Thus, co = so, fil = O¢I , and for n > 2, 

g n - 2  - -  Ot A n - 2  
cn - ( n  - 1 )  n ' 

where An = An (Co,. . .  , cn). 
Now consider Lu + Nu = g, with Nu = ~, (z)  f (z)  = En~=o a n z  n and g = E ~ = o  g- xn. 

L d2/dx 2 and substitute co . ,  co n = ~n=O An (co, . .  cn) z n for f (Y']n=o enz ) as before. Then, 

E CnXn = OtO "}- Or1 X dl- I 2 E ~nxn -- I2 Otnxn Anxn  " 
n = 0  n = 0  \ n = 0  / \ n = 0  / 

Sinee (Enco=o °tn xn) ( E ~ = o  A ,  xn) = E~=o xn Evn=o oevA,-, ,  

oo co oo n 

E e n x n - - o L O q - O t l X - . l - I 2 E g n x n - - I 2 E z n E O t v A n _  v 
n = 0  n = 0  n = 0  v = 0  

= so  + ~1 x + n=O ~ gn (n + 1) (n + 2) = (n + 1) (n + 2 ) .  ~-o- 

E -- ctvAn-2-v, C n X  n "-- OtO dl- Or1 X + gn--2 In "~1) : i )  
n = 0  n = 2  r i m 2  -- 

so that Co = s0,  cl = Oil and, for n > 2, 

n-2 

g n - 2  - -  E o t v A n - 2 - v  
~ = 0  

c ,  -" (n - 1) n ' 

where An - An (co , . . .  ,cn). 

Let 
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Now consider the general inhomogeneous 

Lu+ 

Let R = p, Nu = a f (u ) ,  g = E~=ognX n, 

Lu = g -  R u  - N u ,  

nonlinear form 

R u  + N u  = g. 

L = d 2 / d x  2, 

L-1Lu -_ L-lg _ L-1Ru _ L-1Nu, 
co oo 

,, : .o  +,~1 • + i2 ~ g,,~n -- p I~,,-- o, I~ ~ A.=,", 
11.=0 n = O  

where we have replaced f (u) = f ()-']n~__0 CnZ n) by ~"~n~__0 An (co , . . . ,  Cn) Z n. Thus, 
CO OO CO OO 

n--O n = O  n----O n----O 

oo x n + 2  co ; r n +  2 

= ,~0 + ~ x  + ~ g. (,, + ~ +  2 ) - " ~  an ( .+  1) (n+ 2) 
n----0 

-'~An(. ~"+~ 
n=o + l ) ( n +  2 / ' 

¢o i11~ n P~en-'(._ 1). 
n = 2  

oo e~ ,l~n 

n = O  n = 2  

from which eo = a0, el = ax and, for n > 2, 

g n - 2  - p e n - 2  - ot A n - 2  
e ,  = ( n -  1) n 

where An = An  ( c o , . . .  , an).  
Finally, consider L u  + R u  + N u  = g with 

oo oo 

OO ,1fin 

" ~ A n - = ( . - ) . )  n, 
n_--'). 

co 

R = p(=,) = ~ p.=n, g = ~ gn='", N,, = ~(=)S(")= ~ '~n="S(")  
n----0 n = 0  n----0 

oo co ~ co 

= Z ~ n x n f ( Z c n x n ) = Z ~ n x n Z A n ( c o , . . . , c n ) z  ". 
n = 0  n = 0  n = 0  n----0 

Then,  

CngC n --" O~ 0 + Ot I Z "]- Tl 2 g n Z  n - -  I 2  p n X  n e n Z  n - -  I 2  OtnZ n A n z n ) .  

n = 0  n = 0  \ n = 0  / n = 0  n = 0  

Since 
O0 O0 CO n 

E p n x n Z e n x n = Z x n Z p v c n _ v  and 
n = 0  n----0 n----0 v = O  
oo ~ co n 

E " n x " Z A n x n = Z x " Z a v A n - v ,  
n = 0  n = 0  n = 0  v = 0  

we have 
CO O0 O0 n O0 n 

r im0 n = 0  n = 0  v = 0  n----0 u----0 

: °'° + °" =' + ~ g " ( n  + Z)(" + 2) - .=o n=o ( " + i 5 ) N + 2 )  P~n-~ 

n = 0  (n + l ) ( n +  2 / ~vAn-v, 
v----0 
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or 

co oo ~gn 

E cn~n "- Or0 q- OtlX "~- Egn--2 ( n - - i )  n 
n=O n=2 

co n - 2  oo n--2 

n ~ 2 v ~ o C n - - 2 - v  A n - 2 - v  
: -  n - - - - 2  ~----0 

Thus Co = ao, el -- O~1 and, for n _> 2, 

C n = 

n--2 n--2 

- A n - ' - o  

v=O v=O 

( n -  1) n 

where An = An (c0,...  , cn). 
Thus the Adomian series is not the Maclaurin series. It is actually (as stated by Adomian [1,2]) 

a generalized Taylor series about a function rather than a point, and can reduce, in a linear case, 
to the well-known series. Further, by combining Adomian polynomials and decomposition with 
Maclanrin series, we can make a Maclaurin series more useful. Finally, we state and will show 
in Part II and Part III (to appear) that the extended Maelaurin series can be used for coupled 
differential equations and partial differential equations and that, despite the improved power of 
the Maclaurin series with the use of the Adomian polynomials and decomposition techniques, 
the Adomian series resulting from the decomposition method is still superior in convergence 
properties. In the (extended) Maclaurin solution, the u0 term only incorporates the first term 
of the g expansion while the decomposition series uses all of it. Also, it is evident that in 
collecting terms, the power series solution becomes complicated, while the decomposition series 
is always simple in this respect. Of course, to get convergent solution series, the series assumed 
for R or for g must also be convergent. Further work to appear will show applicability also to 
linear or nonlinear partial differential equations and coupled equations, and also show that the 
convergence is faster using (Adomian) decomposition series than the extended or improved power 
series results. 
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