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Abstract

Let E be the elliptic curve given by a Mordell equation y2 = x3 − A where A ∈ Z. Michael Stoll
found a precise formula for the size of a Selmer group of E for certain values of A. For D ∈ Z, let
ED denote the quadratic twist Dy2 = x3 − A. We use Stoll’s formula to show that for a positive
square-free integer A ≡ 1 or 25 mod 36 and for a nonnegative integer k, we can compute a lower
bound for the proportion of square-free integers D up to X such that rankED(Q) � 2k. We also
compute an upper bound for a certain average rank of quadratic twists of E.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let E/Q be the elliptic curve y2 = x3 − A where A is a nonzero integer. Then, let us
denote by ED the quadratic twist y2 = x3 − AD3 for each nonzero square-free integer D.

For a nonnegative integer k, let

δk := 3k+1 − 2

3k+1 − 1
,
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and let T (X) denote the set of all positive square-free integers less than X. In this paper,
we shall prove the following result:

Theorem 2.2. Let A be a positive square-free integer such that A ≡ 1 or 25 mod 36. Then,
for a nonnegative integer k,

lim inf
X

#{D ∈ T (X): rankED(Q) � 2k}
#T (X)

� δk

8
·
∏
p|A

p

(p − 1)(p + 1)
. (1)

In particular,

lim inf
X

#{D ∈ T (X): ED(Q) = {O}}
#T (X)

� 1

16
·
∏
p|A

p

(p − 1)(p + 1)
. (2)

One of the earliest (known) examples of elliptic curves E/Q with a positive proportion
of square-free integers D such that rankED(Q) = 0 is the elliptic curve given by y2 =
x3 − x, proved by the work of Heath-Brown in [5], 1994. Note that a similar result was
already available in the late eighties. There are two results known in 1988 which together
simply imply that the elliptic curve E: y2 = x3 − 1 has positive proportion of quadratic
twists of rank 0. In 1985, Frey proved in [2, Proposition, p. 237] that if D is a square-free
integer such that D ≡ 1 mod 4, then

#Cl
(
Q

(√−D
))[3] = 1 if and only if Sel(3)(ED,Q) = {0},

where Sel(3)(ED,Q) is the 3-Selmer group of ED/Q. In 1988, Nakagawa and Horie proved
in [7] Theorem 1.3 stated in this paper, which is a refined result of the famous theorem
of Davenport and Heilbronn. Their theorem implies that there is a positive proportion of
positive square-free integers D such that D ≡ 1 mod 4 and #Cl(Q(

√−D))[3] = 1. There-
fore, it follows that there is a positive proportion of (positive) square-free integers D such
that

Sel(3)(ED,Q) = {0} and, hence, rankED(Q) = 0.

Let us introduce our second result. For two positive integers m and N , let us de-
note by N+

2 (X,m,N) the set of positive fundamental discriminants Δ < X such that
Δ ≡ m mod N .

Theorem 3.1. Let E/Q be an elliptic curve given by y2 = x3 − A for some A ∈ Z such
that A ≡ 1 or 25 mod 36 is a square-free integer.

If A > 0, then

lim sup

∑
D∈N+

2 (X,1,12A) rank(ED(Q))

#N+(X,1,12A)
� 1.
X→∞ 2
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If A < 0, then

lim sup
X→∞

∑
D∈N+

2 (X,1,12|A|) rank(ED(Q))

#N+
2 (X,1,12|A|) � 4

3
.

Recall that T (X) denotes the set of all positive square-free integers less than X. Assum-
ing the Birch and Swinnerton-Dyer Conjecture (the Modularity Conjecture), and a form of
the Riemann hypothesis, Goldfeld proved in [3] that

lim sup
X→∞

∑
|D|∈T (X) rankED(Q)

2 · #T (X)
� 3.25. (3)

In [4], this upper bound is reduced to 1.5 by Heath-Brown. In [3], Goldfeld conjectured that
the average in (3) should be 1/2, which is known as Goldfeld’s conjecture. In [5], Heath-
Brown (unconditionally) computes an upper bound for the average rank of quadratic twists
y2 = x3 − D2x over odd integers D, and Gang Yu in [11] computes a certain average rank
of quadratic twists of infinitely many elliptic curves with rational 2-torsion points. At the
moment of writing, these two results were the only unconditional results, known to the
author, on the average rank of quadratic twists of an elliptic curve.

1.1. Stoll’s formula

Let ζ ∈ Q be a primitive third root of unity, and let λ := 1 − ζ . Let K denote the
cyclotomic field extension Q(ζ ). Let E/K be an elliptic curve given by y2 = x3 − A

where A ∈ Z. We denote simply by ζ the endomorphism on E given by (x, y) �→ (ζx, y)

which is defined over K . Let us denote the endomorphism 1 − ζ on E simply by λ, and let
E[λ] denote the kernel of λ. The endomorphism λ induces the Kummer sequence

0 → E[λ] → E
λ−→ E → 0. (4)

Let MK denote the set of all places of K , and let Kv denote the completion of K with
respect to a place v ∈ MK . Note that (4) induces the following injective homomorphism
into the first cohomology group of the Gal(F/F )-module E[λ] where F is the number
field K or a completion Kv :

δF :E(F)/λE(F) → H1(F,E[λ]). (5)

When F = Kv for some v ∈ MK , let us denote δF also by δv .
Note that for each v ∈ MK , there is the restriction map resv : H1(K,E[λ]) → H1(Kv,

E[λ]) (see [8, Chapter X, Section 4]). The λ-Selmer group of E/K is

Sel(λ)(E,K) := {
ξ ∈ H1(K,E[λ]): resv(ξ) ∈ Im δv for all v ∈ MK

}
, (6)

and it contains the image of E(K)/λE(K).
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Theorem 1.1. (Stoll [9, Corollary 2.1]) Let A be a rational integer. Let E/K be the elliptic
curve given by y2 = x3 − A.

Suppose that the following conditions1 are satisfied:

(a) −A ≡ 2 mod 3.
(b) For all places v 	= λ of K of bad reduction for E/K , the integer −A is nonsquare in

K∗
v , e.g., −A is square-free, and −A ≡ 3 mod 4.

Then, dimF3 Sel(λ)(E,K) =

1 + 2 dimF3 Cl
(
Q

(√−A
))[3] if −A ≡ 2,8 mod 9 and A < 0,

2 dimF3 Cl
(
Q

(√−A
))[3] if −A ≡ 2,8 mod 9 and A > 0,

2 dimF3 Cl
(
Q

(√
3A

))[3] if −A ≡ 5 mod 9 and A < 0,

1 + 2 dimF3 Cl
(
Q

(√
3A

))[3] if −A ≡ 5 mod 9 and A > 0.

In particular, these numbers give a bound on rankE(Q).

Lemma 1.2. If n is a nonzero integer and p is a prime number > 3 such that n ≡ 3 mod 4
and ordp(n) ≡ 1 mod 2, then n /∈ (K∗

p)2 where Kp is the completion at any prime ideal p

of OK lying over p or 2.
Let A be a square-free integer ≡ 1 mod 12. If D is a square-free integer coprime to A

such that D ≡ 1 mod 12, then the elliptic curve y2 = x3 −AD3 satisfies conditions (a) and
(b) in Theorem 1.1.

Proof. Let n be a nonzero integer ≡ 3 mod 4. Note that 2OK is a prime ideal, and that
{a + 2b: a, b ∈ R} where R := {0,1, ζ, ζ 2} forms a complete residue class modulo 4OK .
Since (a + 2b)2 ≡ a2 mod 4OK , the integer n is not a square mod 4OK . In particular, n

is not a square in the completion Kp where p = 2OK . If p is a prime number > 3 such
that ordp(n) ≡ 1 mod 2, then p is unramified in OK and, hence, ordp(n) ≡ 1 mod 2 for all
prime ideals p dividing pOK . Thus, n is not a square in K∗

p .
Let A and D be square-free integers coprime to each other such that A, and D ≡

1 mod 12. Then, the following set is precisely the set of places of bad reduction of ED/K :

{v ∈ MK : E/K has bad reduction at v} ∪ {v ∈ MK : v | D}. (7)

Note that −AD3 ≡ 2 mod 3 and, hence, condition (a) is satisfied. Let p be a prime number
> 3, and let p be a prime ideal of OK lying over p at which ED/K has bad reduction.
Suppose that E/K has bad reduction at p. Since A is square-free, and p > 3, the prime
number p must divide A. Suppose that p divides D. Then, p must divide D. Note also that
−AD3 ≡ 3 mod 4 and that ordp(−AD3) ≡ 1 mod 2 for any prime number p > 3 dividing

1 In [10], which is a sequel of [9], Stoll improved the conditions so that more possibilities of values of A can
be considered for Theorem 2.2.
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A or D since A and D are coprime to each other. By the first statement of this lemma,
−AD3 is not a square in K∗

p for any prime ideal p dividing AD or 2. Therefore, if p is a
prime ideal of OK lying over a prime number p 	= 3 at which ED/K has bad reduction,
then p must divide AD or 2 and, hence, −AD3 is not a square in K∗

p . �
In this paper, we will focus on quadratic twists of the elliptic curve given by a Mordell

equation, but the reader might have noticed from the formula in Theorem 1.1 that if A is
replaced with AD2 for an integer D such that D ≡ 1 mod 9, and such that the elliptic curve
ED: y2 = x3 − AD2 satisfies the conditions required for the formula, then the size of the
Selmer group of ED/K equals that of the Selmer group of E/K . Since y2 = x3 − AD2

forms a family of cubic twists, we can use the formula to obtain the following result on the
distribution of Mordell–Weil rank of cubic twists of E: If A is a positive square-free integer
such that A ≡ 1 or 25 mod 36 and dimF3 Cl(Q(

√−A))[3] = 0, then there is a positive real
number ε < 1 such that

#
{
0 < D < X: D cube-free, rankED(Q) = 0

} � X

(logX)ε
. (8)

To compute the lower bound in (8), we construct a set of prime numbers with positive
Dirichlet density, and show that whenever D is a positive integer divisible only by prime
numbers contained in this set, the Mordell–Weil rank of ED is 0. This observation is gener-
alized for superelliptic curves over global fields in [1]. To my knowledge, the only known
example of an elliptic curve with infinitely many cubic twists of Mordell–Weil rank 0 is
x3 + y3 = D proved by D. Lieman [6].

1.2. The refined result of Davenport–Heilbronn

In [7], Nakagawa and Horie proved a refined result of Davenport and Heilbronn. Let N

and m be positive integers. Let N−
2 (X,m,N) be the set of fundamental discriminants Δ

such that −X < Δ < 0, and Δ ≡ m mod N , and let N+
2 (X,m,N) be the set of fundamental

discriminants Δ such that 0 < Δ < X, and Δ ≡ m mod N . Let h3(Δ) denote #Cl(F )[3]
where F is the quadratic extension of Q with discriminant Δ.

Let us describe the property for N and m, which we require for Theorem 1.3.

Condition (∗∗). If an odd prime number p is a common divisor of m and N , then p2 | N

and p2 � m. Further, if N is even, then 4 | N and m ≡ 1 mod 4, or 16 | N and m ≡ 8 or
12 mod 16.

Theorem 1.3. (Nakagawa–Horie [7]) Let N and m be positive integers satisfying Condi-
tion (∗∗). Then,

lim
X→∞

1

#N+
2 (X,m,N)

∑
Δ∈N+(X,m,N)

h3(Δ) = 4

3
, (9)
2
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lim
X→∞

1

#N−
2 (X,m,N)

∑
Δ∈N−

2 (X,m,N)

h3(Δ) = 2. (10)

2. Proof of Theorem 2.2

Let S be a subset of Z, and for a positive integer x, let S(x) denote the set of integers
n contained in S such that |n| < x. Let N be the set of positive integers. Let h be a set-
theoretic function: N → N such that the images of h are powers of 3. For a nonnegative
integer k, let

Sk(x) := {
a ∈ S(x): h(a) � 3k

}
and δk(x) := #Sk(x)

#S(x)
. (11)

Lemma 2.1. If limx→∞ 1
#S(x)

∑
a∈S(x) h(a) = B for some positive real number B , then for

a nonnegative integer k,

lim inf
x→∞ δk(x) � 3k+1 − B

3k+1 − 1
.

Proof. Note that

1

#S(x)

∑
a∈S(x)

h(a) = 1

#S(x)

( ∑
a∈Sk(x)

h(a) +
∑

a /∈Sk(x)

h(a)

)

� 1

#S(x)

( ∑
a∈Sk(x)

1 +
∑

a /∈Sk(x)

3k+1
)

= δk(x) + 3k+1(1 − δk(x)
)
.

Hence, there is ε(x) such that B + ε(x) � δk(x) + 3k+1(1 − δk(x)) and limx→∞ ε(x) = 0.
It follows that

δk(x) � 3k+1 − B − ε(x)

3k+1 − 1
,

which implies the result. �
Recall from Section 1 the constant δk for nonnegative integers k, and that T (X) denotes

the set of positive square-free integers D < X.

Theorem 2.2. Let A be a positive square-free integer such that A ≡ 1 or 25 mod 36. Then,
for a nonnegative integer k,

lim inf
X

#{D ∈ T (X): rankED(Q) � 2k}
#T (X)

� δk

8
·
∏ p

(p − 1)(p + 1)
. (12)
p|A
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In particular,

lim inf
X

#{D ∈ T (X): ED(Q) = {O}}
#T (X)

� 1

16
·
∏
p|A

p

(p − 1)(p + 1)
. (13)

Proof. Let D ∈ N+
2 (X/4A,1,12A). Then, D is a square-free integer coprime to A such

that D ≡ 1 mod 12. By Lemma 1.2, −AD3 satisfies conditions (a) and (b) in Theorem 1.1.
Recall that ED is given by y2 = x3 −AD3. Note that if D ≡ 1 mod 12, then D3 ≡ 1 mod 9.
Since −AD3 ≡ −A ≡ 2 or 8 mod 9, by Theorem 1.1,

rankED(Q) � dimF3 Sel(λ)(ED,K) = 2 dimF3 Cl
(
Q

(√−AD3
))[3] = 2 log3 h3(−4AD).

Let m := 48A2 − 4A, and note that there is a one-to-one correspondence between
N+

2 (X/4A,1,12A) and N−
2 (X,m,48A2) given by D �→ −4AD. Then it follows that for

a nonnegative integer k,

{
Δ ∈ N−

2

(
X,m,48A2): h3(Δ) � 3k

}
↪→ {

D : −4AD ∈ N−
2

(
X,m,48A2), rankED(Q) � 2k

}
. (14)

Let h := h3, and B := 2. Then, by Lemma 2.1 and Theorem 1.3, given ε > 0,

1

#N−
2 (X,m,48A2)

#
{
Δ ∈ N−

2

(
X,m,48A2): h3(Δ) � 3k

}
� δk − ε (15)

for all sufficiently large X. Note that {D: −4AD ∈ N−
2 (X,m,48A2)} is contained in

T (X/4A). Then, it follows that given ε > 0, for all sufficiently large X,

1

#T (X/4A)
#
{
D ∈ T (X/4A): rankED(Q) � 2k

}

� 1

#T (X/4A)
#
{
D: −4AD ∈ N−

2

(
X,m,48A2), rankED(Q) � 2k

}

� 1

#T (X/4A)
#
{
Δ ∈ N−

2

(
X,m,48A2): h3(Δ) � 3k

}
by (14)

�
#N−

2 (X,m,48A2)

#T (X/4A)
· (δk − ε) by (15). (16)

By [7, Proposition 2], we find

lim
X→∞

#N−
2 (X,m,48A2)

#T (X/4A)
= 1

8

∏
p|A

p

(p − 1)(p + 1)
, (17)

and this proves (12).
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Let E′/Q be an elliptic curve given by y2 = x3 + B such that B is an integer not equal
to −432, 1, a cube, or a square. Then, it is well known that the torsion subgroup of E′(Q)

is trivial and, hence, for all but finitely many square-free integers D, the torsion subgroup
of ED(Q) is trivial. Therefore, (13) follows from (12) with k = 0. �

3. Proof of Theorem 3.1

Let A be a square-free integer such that A ≡ 1 or 25 mod 36. Let m := 48A2 − 4A if
A > 0, and m := −4A if A < 0. Note that A ≡ 1 or 7 mod 9, and that −AD3 ≡ −A ≡ 2
or 8 mod 9 for D ∈ N+

2 (X/4|A|,1,12|A|) since D ≡ 1 mod 12 implies D3 ≡ 1 mod 9.
Recall that ED is given by y2 = x3 − AD3. By Lemma 1.2, if D ∈ N+

2 (X/4|A|,1,12|A|),
then ED satisfies conditions (a) and (b) in Theorem 1.1 and, hence,

dimF3 Sel(λ)(ED,K) =
{

2 log3 h3(−4AD) if A > 0;
1 + 2 log3 h3(−4AD) if A < 0.

If A > 0, then there is a one-to-one correspondence between N+
2 (X/4A,1,12A) and

N−
2 (X,m,48A2) given by D �→ −4AD. If A < 0, then there is a one-to-one correspon-

dence between N+
2 (X/4|A|,1,12|A|) and N+

2 (X,m,48A2) given by D �→ −4AD. Note
that if n is a positive integer which is a power of 3, then log3 n � 1

2 (n−1). Then, it follows
that if A > 0, then

∑
D∈N+

2 (X/4A,1,12A) dimF3 Sel(λ)(ED,K)

#N+
2 (X/4A,1,12A)

=
∑

−4AD∈N−
2 (X,m,48A2) dimF3 Sel(λ)(ED,K)

#N−
2 (X,m,48A2)

=
∑

Δ∈N−
2 (X,m,48A2) 2 log3 h3(Δ)

#N−
2 (X,m,48A2)

�
∑

Δ∈N−
2 (X,m,48A2) 2 1

2 (h3(Δ) − 1)

#N−
2 (X,m,48A2)

→ 1 as X → ∞, by Theorem 1.3.

If A < 0, then

∑
D∈N+

2 (X/4|A|,1,12|A|) dimF3 Sel(λ)(ED,K)

#N+
2 (X/4|A|,1,12|A|) �

∑
Δ∈N+

2 (X,m,48A2) 1 + 2 1
2 (h3(Δ) − 1)

#N+
2 (X,m,48A2)

→ 4

3
as X → ∞.

Since the λ-Selmer rank over K bounds from above the Mordell–Weil rank over Q, we
have proved
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Theorem 3.1. Let E/Q be an elliptic curve given by y2 = x3 −A where A is a square-free
integer such that A ≡ 1 or 25 mod 36.

If A > 0, then

lim sup
X→∞

∑
D∈N+

2 (X,1,12A) rank(ED(Q))

#N+
2 (X,1,12A)

� 1.

If A < 0, then

lim sup
X→∞

∑
D∈N+

2 (X,1,12|A|) rank(ED(Q))

#N+
2 (X,1,12|A|) � 4

3
.
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