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Abstract

Let T be a Noetherian ring and f a nonzerodivisor on T . We study concrete necessary and sufficient
conditions for a module over R = T/(f ) to be weakly liftable to T , in the sense of Auslander, Ding,
and Solberg. We focus on cyclic modules and obtain various positive and negative results on the lifting
and weak lifting problems. For a module over T we define the loci for certain properties: liftable, weakly
liftable, having finite projective dimension and study their relationships.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this note, all rings are commutative, Noetherian with identity, and all modules are finitely
generated. Let T → R be a ring homomorphism. An R-module M is said to lift (or liftable) to
T if there is a T -module M ′ such that M = M ′ ⊗T R and TorTi (M ′,R) = 0 for all i > 0. M is
said to weakly lift (or weakly liftable) to T if it is a direct summand of a liftable module. When
R = T/(f ) where f is a nonzerodivisor in T , a situation which will be our main focus, then the
Tor condition for lifting simply says that f must be a nonzerodivisor on M ′. The lifting questions
began with:

Question 1.1 (Grothendieck’s lifting problem). Let (T ,m, k) be a complete regular local ring and
R = T/(f ) where f ∈ m − m2. Does an R-module always lift to T ?
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Note that if T is equicharacteristic, then the answer is obviously “yes”: in that case T ∼= R�f �,
and we can simply choose M ′ = M�f �. The significance of this question was first publicly
realized by Nastold, who observed in [Na] that Serre’s multiplicity conjectures could be solved
completely (i.e., in the case of ramified regular local ring) if we can always lift in the sense of
Grothendieck. Hochster [Ho1] gave a negative answer to Grothendieck’s lifting problem (see
Example 3.5). However, he pointed out that a positive answer to the lifting problem for prime
cyclic modules, and even less would be enough for Serre’s conjectures. Specifically, he posed the
following, which was indeed the starting point for this note:

Question 1.2 (Hochster’s lifting problem). Let (T ,m, k) be a complete regular local ring and
R = T/(f ) where f ∈ m − m2. Let P ∈ Spec(R).

(1) When can M = R/P lift to T ?
(2) When does there exist an R-module M , liftable to T , such that Supp(M) = Supp(R/P )?

A negative answer to part (1) of the above question will be given in Section 4. A more general
version to the questions above, first addressed in [PS], is:

Question 1.3. Let (T ,m, k) be a regular local ring and R = T/(f ) where f is a regular element
in m. Let M be an R module such that pdR M < ∞. When can M lift to T ?

Over the years, a number of interesting results on the lifting problems have been published
(see [PS,BE,Hof,ADS,Jo1,Jo2,Yo]). They are almost exclusively homological in nature. In this
note, we will focus our attention on concrete sufficient and necessary conditions to weak lifta-
bility. In [ADS], Auslander, Ding and Solberg have made clear that understanding weak lifting
is essential to understanding lifting. Many of our results are ideal-theoretic, not homological. We
have several motivations for this approach. Firstly, in the context of Hochster’s lifting questions,
when R is itself a regular local ring, if one has to find a negative example, most homological
obstructions would not work (R is “homologically too nice”). In any case, to have any hope of
answering part (2) of Question 1.2 one needs to know “What annihilates a liftable module?”.
Secondly, for the more general lifting question, it would be very desirable to tell whether one
can weakly lift a module just from its presentation. We are able to give some modest answers
to these problems and shed some lights on why they are non-trivial. One thing is clear from our
work: the modules which are not liftable are abundant (in some sense, they can be parametrized
by a Zariski open set).

Section 2 reviews basic notations and important results we would use, including Hochster’s
characterization of approximately Gorenstein rings. In Section 3 we study some general neces-
sary and conditions for weak liftability that involves the annihilator of the module M (Theo-
rem 3.2). As applications, we revisit Hochster’s counterexample to Grothendieck’s lifting ques-
tion and show that it gives a lot more, namely an ideal that is not an annihilator of any weakly
liftable module (see 3.5).

In Section 4 we focus on weak liftings of cyclic modules. We collect some simple but useful
characterization of weakly liftable cyclic modules in Lemma 4.1. Many applications follow. We
revisit Jorgensen’s example of an unliftable module with finite projective dimension and give a
simple proof in 4.3, as well as a big class of such modules in 4.4. We also reprove a result related
to modular representation of cyclic groups in 4.5. A negative example to part (1) of Hochster’s
lifting question above is given in 4.6. Lastly, we prove very concrete characterizations of weak
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liftability for Gorenstein ideals of dimension 0 and Cohen–Macaulay, generically Gorenstein
ideals of dimension 1 in Theorem 4.9.

In Section 5 we formulate a comparative study of liftable, weakly liftable and finite projective
dimension properties. We define a locus for each property in a quite general way: by fixing a
module over T and asking what hypersurfaces R would make the module satisfy that property.
Our definitions are inspired by the notions of “support sets” or “support varieties” of modules,
invented and studied recently by Avramov, Buchweitz [AB] and Jorgensen [Jo3]. We show in
many cases that weakly liftable and liftable are “open condition” (see 5.2, 5.3). This explains in
a conceptual way the existence of many examples of modules with finite projective dimension
but cannot lift: they can be parametrized by a Zariski open set in a certain affine space (see 5.4).
Examples 5.5 and 5.6 show that computing these loci is quite non-trivial, and in particular the
liftable locus may depend on the arithmetic of the residue field.

The author would like to thank Melvin Hochster, whose valuable insights and advices initiated
and inspired most of this work.

2. Notations and preliminary results

In this note, all rings are commutative, Noetherian with identity, and all modules are finitely
generated. Let R be a ring and M,N be R-modules. If N is a submodule of M , N is called a pure
(respectively, cyclically pure) if for every R-module E (respectively, every cyclic R-module E),
the induced map N ⊗ E → M ⊗ E is injective. If M/N is of finite presentation, then it is not
hard to show that N is a pure submodule of M if and only if N is a direct summand of M (see
[Ma, Theorem 7.14]).

A more interesting question is when cyclic purity implies purity, especially when N = R.
This was answered completely in [Ho2]. Recall that a local ring (R,m,k) is called approxi-
mately Gorenstein if for any integer N , there is an ideal I ⊂ mN such that R/I is Gorenstein.
A Noetherian ring R is called approximately Gorenstein if the localization at any maximal ideal
of R is approximately Gorenstein. Then:

Proposition 2.1. (See [Ho2, Proposition 1.4].) Let R be a Noetherian ring. The following are
equivalent:

(1) R is approximately Gorenstein.
(2) For every module extension R ↪→ M , cyclic purity implies purity.

Hochster’s paper also provided very concrete characterizations of approximately Gorenstein
ring. For our purpose, the following result would be enough:

Theorem 2.2. (See [Ho2, Theorem 1.7].) Let R be a locally excellent Noetherian ring and sup-
pose that R satisfies one of the conditions below:

(1) R is generically Gorenstein (i.e., the quotient ring of R is Gorenstein).
(2) For any prime P ∈ Ass(R) and maximal ideal m ⊃ P , dim(R/P )m � 2.

Then R is approximately Gorenstein.
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Let (R,m,k) be a local ring. Let M , N be R-modules such that l(M ⊗ N) < ∞. One can
define the Poincaré series for M , N as

P R
M,N(t) =

∑

i

l
(
TorRi (M,N)

)
t i .

When N = k, we shall simply write P R
M(t).

The result below is essential for our study of weak lifting. It is from [ADS, Proposition 3.2]:

Proposition 2.3. Consider R = T/(f ), where f is a nonzerodivisor on T , which is a Noetherian
algebra over a local ring. The following are equivalent:

(1) M is weakly liftable to T .
(2) syzT

1 (M)/f syzT
1 (M) ∼= M ⊕ syzR

1 (M), where syzR
1 (M) is induced from the free resolution

defining syzT
1 (M).

(3) M is liftable to R2 = T/(f 2).

Remark. Throughout this paper, when we consider the lifting in the situation R = T/(f ), we
will always assume the condition: “T is a Noetherian algebra over a local ring.” Since this covers
algebras over fields or DVRs and all local rings, it is not a serious restriction.

Finally, we would like to make a definition, mainly for notational conveniences (see 3.2).

Definition 2.4. Let J , L be ideals of a ring R. One defines:

intL(J ) := {
x ∈ R

∣∣ ∃ai ∈ J i, i = 1, . . . , n: xn + a1x
n−1 + · · · + an ∈ L

}
.

Lemma 2.5. It is easy to see that

intL(J ) = intL(J + L) ⊆ rad(J + L).

Lemma 2.6. If M is a T module and I = AnnT (M) then for any ideal J of T :

Ann(M/JM) ⊆ intI (J ).

Proof. See [Ma, Theorem 2.1]. �
3. Some general remarks on weak lifting

In this section we study several necessary conditions for a module over R = T/(f ) to be
weakly liftable to T . Our main purpose is to find concrete obstructions to weak liftability of M .
Note that an obstruction to weak lifting is naturally an obstruction to lifting.

To state the first result, let us recall the change of rings exact sequence for Tor. Let R =
T/(f ), where f is a nonzerodivisor on T . Let M,N be R-modules. Then we have the long exact
sequence of Tors
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· · · → TorRn (M,N) → TorTn+1(M,N) → TorRn+1(M,N)

→ TorRn−1(M,N) → TorTn (M,N) → TorRn (M,N) → ·· ·
→ TorR0 (M,N) → TorT1 (M,N) → TorR1 (M,N) → 0.

In the long exact sequence above, let αi be the connecting map TorRi+2(M,N) → TorRi (M,N).

Proposition 3.1. Let T be a Noetherian algebra over a local ring. Let f be a nonzerodivisor in
T and R = T/(f ). Let M be an R-module. The following are equivalent:

(1) M is weakly liftable.
(2) The map θ : 0 → M → syzT

1 M/f syzT
1 M splits.

(3) For any R-module N , the map α0 : TorR2 (M,N) → TorR0 (M,N) is 0.
(4) For any R-module N and any integer i � 0 the map αi : TorRi+2(M,N) → TorRi (M,N) is 0.

Proof. The equivalence of (1) and (2) is from [ADS]. That (4) implies (3) is obvious. It remains
to show that (2) and (3) are equivalent and (2) implies (4). For that we need to understand how
the maps α0 arises. Let

0 → syzT
1 M → T a → M

be the projective covering of M with respect to T . Tensoring with R = T/(f ), since
TorT1 (T ,R) = 0 and TorT1 (M,R) = M , we get

0 → M → syzT
1 M/f syzT

1 M → Ra → M.

Breaking down this exact sequence we have

0 → M → syzT
1 M/f syzT

1 M → syzR
1 M → 0.

Tensoring the above exact sequence with N over R gives the connecting map
TorR1 (syzR

1 M,N) → M ⊗R N , which is α0. From this discussion we can see that (3) is equiv-
alent to the assertion that the injection θ :M ↪→ syzT

1 M/f syzT
1 M remains injective when we

tensor with any R-module N . But this is equivalent to θ splits (see [Ma, Theorem 7.14]). Also, if
θ splits then all the maps TorRi+1(syzR

1 M,N) → TorRi (M,N) must also be 0, which shows that
(2) implies (4). �

The following theorem gives necessary conditions for an ideal to be the annihilator of a weakly
liftable module.

Theorem 3.2. Let T be a Noetherian algebra over a local ring. Let f be a nonzerodivisor in T

and R = T/(f ). Let M be an R-module and I = AnnT (M). If M is weakly liftable to T then:

(1) (I 2 : f ) ⊆ I .
(2) (J I : f ) ⊆ intI (J ) for all ideals J of T .
(3) (J I : f ) ⊆ rad(I + J ) for all ideals J of T .
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We begin with some lemmas. Let us try to understand concretely what weak liftability imposes
on the annihilator of a module. Let M be an R-module and we pick a free covering of M as a
T -module:

0 → W → G → M → 0.

Here G = T n. Let I = AnnT (M). By the above proposition, the map θ :

0 → G/W
h−→ W/f W

which takes x + W to f x + f W splits.

Lemma 3.3. Let T , R, M , G, W be as above. If M is weakly liftable to T then for any ideal
J ⊆ T we have (JW : f ) ⊆ (JG + W).

Proof. We use the simple fact that for T -modules P ⊆ Q such that P is a direct summand of Q,
then for any ideals J of T , P/JP injects into Q/JQ (in other words, P is a cyclically pure
submodule of Q).

Applying that to G/W and W/f W we have G/(W +JG) injects into W/(f W +JW) ( with
the map induced from h), which is equivalent to (f W + JW) : f ⊆ (W + JG), or equivalently,
(JW : f ) ⊆ (W + JG) �
Lemma 3.4. Let T , R, M , G, W , I be as above. Then for any ideal J in T we have (J I : f ) ⊆
AnnT (G/(JW : f )).

Proof. Let v ∈ (J I : f ). So vf ∈ JI . Hence vf G ⊆ JIG. But I kills G/W , so IG ⊆ W . It
implies that vf G ⊆ JW ⇒ vG ⊆ (JW : f ) ⇒ v ∈ AnnT (G/(JW : f )). �

Now we can prove Theorem 3.2.

Proof of Theorem 3.2. By the previous lemmas we have

(J I : f ) ⊆ AnnT

(
G/(JW : f )

) ⊆ AnnT

(
G/(JG + W)

)

= AnnT

(
(G/W)/

(
J (G/W)

)) = AnnT (M/JM).

The last term is I if J = I , and it is contained in intI (J ) otherwise (by 2.5). Finally, by 2.6 we
have intI (J ) ⊆ rad(I + J ), as required. �

As an application we will revisit Hochster’s counterexample to Grothendieck lifting question
(see [Ho1]).

Example 3.5. Let T = Z(2)�x, y, z, a, b, c�. Let f = 2 and R = T/(f ). Let I = (2, x2, y2, z2, a2,

b2, c2, xa + yb + zc) and g = xayb + ybzc + zcxa. Because of the relation

2g = (xa + yb + zc)2 − x2a2 + y2b2 + z2c2.



H. Dao / Journal of Algebra 318 (2007) 723–736 729
It follows that g ∈ (I 2 : f ). But is not hard to show g /∈ I . By 3.2, not only T/I is not liftable to
T , as Hochster showed, but I cannot be the annihilator of any R-module which is weakly liftable
to T .

Next, we present a simple corollary of 3.2:

Corollary 3.6. Let (T ,m, k) be a local ring and R = T/(f ) where f is a nonzerodivisor in T .
Suppose M , N are R-modules such that M ⊗ N is of finite length and M is weakly liftable to T .
Then P T

M,N(t) = (t + 1)P R
M,N(t). If T is regular, M is weakly liftable to T and dimM < dimR,

then (t + 1)2 | P T
M(t).

Proof. By Theorem 3.2, the change of rings long exact sequence for Tor would break down into
short exact sequences:

0 → TorRi (M,N) → TorTi+1(M,N) → TorRi+1(M,N) → 0

for all i � 0. The first statement is immediate. As for the second, first note that pdR M < ∞. Since
dimM < dimR, P R

M(−1) = χR(M,k) = 0. So (t + 1) | P R
M(t), this fact and the first statement

finish the proof. �
As an application, we will show that weakly liftable Cohen–Macaulay or Gorenstein ideals of

small heights often are complete intersections:

Corollary 3.7. Let (T ,m, k) be a regular local ring and R = T/(f ) where f is a nonzerodivisor
in T . Let I be an ideal in R such that R/I is weakly liftable to T . If height(I ) = 1 and R/I is
Cohen–Macaulay then I is principal. If height(I ) = 2 and R/I is Gorenstein then I is generated
by two elements.

Proof. Let J be the preimage of I in T . By Corollary 3.6 we have (t + 1)2 | P T
T/J (t). In the

first case P T
T/J (t) has to be equal to (t + 1)2 (because pdT T /J = 2). In the second case P T

T/J (t)

has to be equal to (t + 1)3 (because pdT T /J = 3 and the last Betti number is 1 since T/J is
Gorenstein). In both cases we must conclude that J is a complete intersection, and so is I . �
Example 3.8. Let T = k�x1, . . . , xn�, f = x1 and R = k�x2, . . . , xn�. Then any R-module is
liftable to T and the above corollary says that in R, a height 1 Cohen–Macaulay ideal has to
be principal and a height 2 Gorenstein ideal has to be 2-generated. So there is little hope to
strengthen the previous result.

4. Weakly liftable cyclic modules

In the case of cyclic modules, the statements of the previous section can be simplified or
strengthened. Let us recall the basic setup. Let T be a Noetherian algebra over a local ring and
f be a nonzerodivisor in T . Let R = T/(f ) and I be an ideal in T which contains f . We will
focus on finding conditions for T/I to be weakly liftable (as an R-module) to T .

Lemma 4.1. Let T , f , R, I be as above. Fix v = (f,f1, . . . , fn) a set of generators for I . The
following are equivalent:
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(1) M = T/I is weakly liftable to T .
(2) The T -linear map h :T/I → I/f I which takes 1 + I to f + f I splits.
(3) The T -linear map g :T/I → I/I 2 which takes 1 + I to f + I 2 splits.
(4) For any presentation of I :

T m X−→ T n+1 v−→ I → 0.

Let r, r1, . . . , rn be the rows of X. There exist x1, . . . , xn ∈ T such that

r − x1r1 + · · · + xnrn ∈ IT m

and they imply the following equivalent conditions:
(5) (IJ : f ) ⊆ (J + I ) for any ideal J .
(6) (IJ : f ) ⊆ J for any ideal J ⊇ I .
(7) (If T is local) (IJ : f ) ⊆ J for any irreducible ideal J .

If in addition, T/I is approximately Gorenstein, then all the conditions (1) to (6) (and (7) in the
local case) are equivalent.

Remark. The last assertion (when T/I is approximately Gorenstein) was first suggested in [Ho1,
p. 462].

Proof of Lemma 4.1. The equivalence of (1) and (2) is a restatement of 3.2. If (2) holds, then
I/f I = T/I ⊕ N for some T -module N . Tensoring with T/I we get I/I 2 = T/I ⊕ N/IN ,
which gives (3). Now assume (3) which says the map g splits. But g is a composition of

T/I
h−→ I/f I → I/I 2,

so h also splits.
For the equivalence of (3) and (4), let Z = Im(X) be the first syzygy of I . Tensoring the exact

sequence

0 → Z → T n+1 → I → 0

with T/I we get

0 → (
Z ∩ IT n+1)/IZ → Z/IZ → (T /I)n+1 → I/I 2 → 0

which shows that Z/(Z ∩ IT n+1) is a first syzygy of I/I 2 (as a module over T/I ). So there is
no new relations, and I/I 2 admits the following presentation:

T m X−→ T n+1 v−→ I/I 2 → 0.

Here ¯ denotes mod I . Then (3) means exactly that there exist x1, . . . , xn ∈ T such that

r = x1r1 + · · · + xnrn.
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Next, (1) implies (5) is a restatement of Lemma 3.3. The equivalence of (5) and (6) is trivial. The
only thing to check now is equivalence of (6) and (7). Clearly (6) implies (7). Suppose (6) fails
and we have an ideal J such that (IJ : f ) � J . Pick x /∈ J such that xf ∈ IJ . Choose a maximal
ideal J1 containing J such that x /∈ J1. Then J1 is irreducible, and (7) fails as well.

Finally, suppose that in addition T/I is approximately Gorenstein. Condition (4) says that the
map g, viewed as a T/I -module extension, is cyclically pure. Then Proposition 2.1 implies that
T/I is a pure submodule of I/I 2 via g, so (3) holds. That finishes our proof. �
Example 4.2. We give an example to show that if T/I is not approximately Gorenstein, the
last assertion of Lemma 4.1 would fail even in simplest cases. Let T = Q�x, y�, m = (x, y),
I = m2 and f = x2 + y2. Clearly Im : f ⊂ m and I 2 : f ⊂ I . Let J be any ideal lying strictly
between I and m. Then J = m2 + (ux + vy), with u,v ∈ Q. We want to show that IJ : f ⊂ J .
Pick g ∈ m such that fg ∈ IJ = m4 + (ux + vy)m2. Let g′ be the linear part of g, then clearly
g′f ∈ (ux + vy)m2. Since f is irreducible in T , g′ ∈ (ux + vy), thus g ∈ J . So condition (6)
of Lemma 4.1 is satisfied. However T/I = T/m2 is not weakly liftable to T . One can see it by
using Theorem 4.4 or simply observing that pdT/(f ) T /m2 = ∞.

It is now quite easy to show that one of the main examples in a paper by Jorgensen (Exam-
ple 3.3 in [Jo1]) gives a cyclic module of finite projective dimension but is unliftable:

Example 4.3. Let k be a field, T = k�x1, x2, x3, x4�, f = x1x2 − x2
3 , R = T/(f ), I =

(f, i1, i2, i3, i4), where:

i1 = −x2x3 + x2x4, i2 = x1x3 + x2x3, i3 = −x2
2 − x3x4, i4 = x2

1 − x2
2 + x2

3 − x2
4 .

Finally, let J = (x1, x3, x4, x
2
2) ⊃ I . It can be shown using Macaulay that pdR T/I = 3. But

−x3b1 + x4b2 + x1b3 = x2f , so x2 ∈ (J I : f ). Obviously x2 /∈ J , so T/I is not even weakly
liftable.

The above example suggests the following:

Theorem 4.4. Let T = ⊕
n�0 Tn be a graded ring with T0 = k is a field. Let I be a T -ideal

generated by homogeneous elements of degree a. Let f ∈ I be a homogeneous nonzerodivisor of
degree a such that (f ) � I . Assume that I admits a free presentation

F
X−→ G

Y−→ I → 0

such that all the entries of the matrix X has degree b < a. Then T/I as a module over R = T/(f )

is not weakly liftable to T .

Proof. As f must be a k-linear combination of the generators of I , we may as well assume
that Y = (f,f1, . . . , fn). Then let r, r1, . . . , rn be the rows of X. By part (4) of 4.1 there exist
x1, . . . , xn ∈ T such that

r − x1r1 + · · · + xnrn ∈ IT m.
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Counting degree, there must be y1, . . . , yn ∈ k such that

r = y1r1 + · · · + ynrn.

But this means that (f ) is a direct summand of I as T -modules. This is impossible unless
(f ) = I , so we are done. �

As another application, we would prove the following, which is relevant to the theory of mod-
ular representation of cyclic groups (see [The]). We give a brief explanation. Let D be a discrete
valuation ring whose maximal ideal is generated by a prime number p. Let Cp be the cyclic group
of order p. Let A = D/p2 and k = D/pD. One wishes to study the ACp

∼= A[X]/(Xp − 1)-
modules. Let M be such a module. Then M/pM is a kCp

∼= k[X]/(Xp − 1) ∼= k[X]/(X − 1)p

module. The indecomposable modules over kCp must be of the form Si = k[X]/(X − 1)i . So
M/pM is a direct sum of Si ’s. The interesting questions is which i may occur? Clearly this cor-
responds to when is Si liftable to ACp , or equivalently, weakly liftable to DCp (by 2.3). In view
of this, the following corollary is a special case of Theorem 5.5 in [The].

Corollary 4.5. Let (D,m,K) be a discrete valuation ring whose maximal ideal is generated by
a prime number p. Let T = D[X]/(Xp − 1), R = T/(p) ∼= K[X]/(Xp − 1) ∼= K[X]/(X − 1)p .
Let Si = K[X]/(X − 1)i (1 � i � p) be R-modules. Then Si is weakly liftable to T if and only if
i ∈ {1,p − 1,p}.

Proof. Clearly Sp = R lifts and S1 lifts (take S = T/(X − 1), then S is a lift of S1). We assume
1 < i < p. Note that Si = T/(p, (X−1)i). Over T , the ideal I = (p, (X−1)i) has a presentation

T 2 X−→ T 2 v−→ I → 0.

Here v = (p, (X − 1)i) and X has 2 rows: r = ((X − 1)p, g(X)) where g(X) = (Xp−1)−(X−1)p

p

and r1 = (−p, (X − 1)p−i ). By Theorem 4.1 (equivalence of (1) and (4)), T/I is weakly liftable
if and only if g(X) is a multiple of (X − 1)p−i (mod I ). Rewriting:

g(X) = ((X − 1 + 1)p − 1) − (X − 1)p

p
=

p−1∑

j=1

(
p
j

)

p
(X − 1)j .

One can see that it happens if and only if p − i = 1. �
Next we gives an example in which R = T/(f ) is a ramified regular local ring of dimension

11 and a prime cyclic module of R that is not weakly liftable. This shows that there is a negative
example to part (1) of Question 1.2.

Example 4.6. Let T = V �x, y, z, a, b, c,u, v,w, t�, in which (V ,2V ) is a DVR. Let f = 2 and
R = T/(f ) and let ¯ denote mod f . Abusing notation, we do not use ¯ for the indeterminates. Let
I = (2, tu − x2, tv − y2, tw − z2, xa + yb + zc). Since t is not nilpotent modulo I , we can pick
a minimal prime P over I which does not contain t . It is easy to see that actually, P = I : t∞ =
I : t . Using Macaulay 2, we can actually calculate P = (I, ua2 + vb2 + wc2, uayz + vbzx +
wcxy). For our purpose, we only need to see that P ⊂ (u, v,w,x2, y2, z2, xa + yb + zc). Now,
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let P be the preimage of P in T , J = (P, t, a2, b2, c2) and g = xayb + ybzc + zcxa. Because
of the relation

2g = (xa + yb + zc)2 + (
tu − x2)a2 + (

tv − y2)b2 + (
tw − z2)c2 − t

(
ua2 + vb2 + wc2).

It follows that fg ∈ PJ . It suffices to show g /∈ J . We can do so modulo 2, u, v, w, t . It is
enough to show g /∈ (x2, y2, z2, a2, b2, c2, xa + yb + zc). But this is true by 3.5. By 5.3 we can
replace f by 2 + f ′ with f ′ ∈ mP to get an example where R is an honest ramified regular local
ring.

Remark. Similar examples surely exist for all characteristics.

Lemma 4.1 still leaves much to be desired when one wants to show some module to be weakly
liftable, since checking cyclic purity involves infinitely many ideals J . To really take advantage
of the conditions, we need a few lemmas:

Lemma 4.7. Let (T ,m, k) be a local ring and I ⊆ J1 ⊆ J2 be ideals in T . Assume that T/J1
is 0-dimensional and Gorenstein (in other words, J1 is irreducible). Then IJ2 : f ⊆ J2 if
IJ1 : f ⊆ J1.

Proof. The assumption implies that the map T/J1 → I/IJ1 induced by multiplication by f is
injective. Since T/J1 is injective, the map splits, thus tensoring with T/J2 preserves injectiv-
ity. �
Lemma 4.8. Let (T ,m, k) be a local ring and I ⊆ J be ideals in T . Assume that T/J is
0-dimensional and Gorenstein. Let u ∈ T represent the generator of the socle of T/J . Then
IJ : f ⊂ J if and only if f u /∈ IJ .

Proof. Again, we consider the map T/J → I/IJ induced by multiplication by f . As T/J is
Gorenstein, this map is injective if and only if it splits if and only if the image of the socle element
is nonzero. �
Theorem 4.9. Let R = T/(f ) where (T ,m, k) is a local ring and f is a nonzerodivisor in T . Let
T/I be an R-module (so f ∈ I ).

(1) Suppose that T/I is 0-dimensional and Gorenstein. Let u ∈ T represent the generator of
the socle of T/I . Then T/I is weakly liftable if and only if uf /∈ I 2.

(2) Suppose that T/I is 1-dimensional, Cohen–Macaulay and generically Gorenstein. Let
J ⊂ T represent the canonical ideal of T/I . Let u ∈ T represent the generator of the socle of
T/J . Then T/I is weakly liftable if and only if uf /∈ IJ + I (2).

Proof. (1) By Lemmas 4.1 and 4.7.
(2) Let S = T/I . Then since S is generically Gorenstein, its canonical module ωS is iso-

morphic to an ideal of height 1. Let J be that ideal in S (here J is an ideal in T and ¯ denotes
modulo I ). Since S is Cohen–Macaulay and J is the canonical ideal of S, S/J is 0-dimensional
and Gorenstein. Let x be a nonzerodivisor in S. Then xJ ∼= J ∼= ωS so xJ must also be an irre-
ducible ideal. Note that xu represent the generator of Soc(S). By Lemmas 4.1 and 4.7 we only
need to check that xuf /∈ I (I + xJ ) for any x such that x is a nonzerodivisor in S . This is
equivalent to uf /∈ IJ + (I 2 : x) for all such x, or uf /∈ IJ + I (2) as desired. �
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5. The (non) liftable and weakly liftable loci

This section is a comparative study of liftable, weakly liftable and finite projective dimension
properties. Throughout the section we will assume that (T ,m, k) is a local ring, and M is a T -
module. Let I ⊂ AnnT (M) be an ideal in T and fix a minimal system of generators (f1, . . . , fn)

for I . Then there is a map α : I → kn ∼= I/mI induced by (f1, . . . , fn). For a property P we
define the P-locus of M in I as

LP (I,M) := {
f ∈ I

∣∣ M satisfies P as a module over T/(f )
}

and the geometric P-locus of M in I as

VP (I,M) := α
(
LP (M)

)
.

If I = AnnT (M) we shall simply write LP (M) and VP (M). The set VP (M) parametrizes
the hypersurfaces R for which M , as an R module, has property P . For P = {not liftable} (re-
spectively not weakly liftable, not finite projective dimension) we will write Lnl (respectively
Lnwl, Lnpd) (by convention 0 is in all of these sets) and Vnl (respectively Vnwl, Vnpd). It is more
convenient to work with the negative properties, as they turns out to be “closed” conditions.

Remark. When (f1, . . . , fn) form a regular sequence on T , then Vnpd(I,M) agrees with the
“support variety” of M as defined in [AB]. When I = Ann(M), Vnpd(M) agrees with the “sup-
port set” of M defined in [Jo3].

We first observe that:

Proposition 5.1. Suppose T is a regular local ring and M is a T -module. Let I = AnnT (M).
Then

I ⊇ Lnl(M) ⊇ Lnwl(M) ⊇ Lnpd(M) ⊇ mI

and

kn ⊇ Vnl(M) ⊇ Vnwl(M) ⊇ Vnpd(M).

Proof. The only thing needs to be proved is Lnpd(M) ⊇ mI . Let us assume f ∈ mI and R =
T/(f ). By a result of Shamash [Sha], in this situation:

P T
M(t) = (

1 − t2)P R
M(t)

which clearly shows that the P R
M(t) cannot be finite series (otherwise P T

M(t) would have negative
terms!). �
Proposition 5.2. Lnl(T /I) is an ideal.

Proof. First, let f ∈ Lnl(T /I) and a ∈ T . We want to show af ∈ Lnl(T /I). Assume it is not true,
so there exists a T -ideal J such that af is a nonzerodivisor on T = T/J and J + (af ) = I . The
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first condition shows that f is also a nonzerodivisor on T , and the second shows that f T ⊂ af T .
By Nakayama’s Lemma, a is an unit in T , so T is also a lift of T/I with respect to f .

Secondly, let f,g ∈ Lnl(T /I). Similarly, suppose f + g /∈ Lnl(T /I), we seek a contradic-
tion. Again, there exists a T -ideal J such that f + g is a nonzerodivisor on T = T/J and
J + (f + g) = I . Since f,g ∈ I we must have, in T , f = (f + g)e1 and g = (f + g)e2. Adding
the two equations and using that f + g is a nonzerodivisor on T , we get e1 + e2 = 1 in T . This
forces e1 or e2 to be a unit in T , but then T must be a lift of T/I with respect to either f or g. �
Proposition 5.3. If T/I is approximately Gorenstein, then Lnwl(T /I) is an ideal.

Proof. We first construct a sequence {Li} of irreducible ideals in T/I such that Li+1 � Li ∀i

and {Li} in T/I are cofinal with the powers of the maximal ideal in T = T/I . Just pick L1 as
any irreducible ideal in T . Then there is a power of m, ml ⊂ L1. By assumption we can pick
an irreducible ideal L2 ⊂ ml , and so on. Let Ji be the preimage of Li in T . By 4.1 and 4.7 we
have f ∈ Lnwl(T /I) if and only if IJi : f � Ji for some i (since any irreducible ideal would
contain some Ji ). Let Ii := {f ∈ I | IJi : f � Ji}. By 4.8, Ii = (IJi : si) ∩ I , here si represent
the socle element of Ji . So each Ii is an ideal in T . But 4.7 and the fact that Ji+1 ⊆ Ji shows
that Ii ⊆ Ii+1. Hence the sequence of ideals {Ii} must stabilize, and since Lnwl(T /I) = ⋃∞

1 Ii

we are done. �
Example 5.4. Proposition 5.2 implies that Vnl(T /I) is an affine space. So as long as Vnpd(T /I) is
not a linear algebraic set, then there should be quite a few example of finite projective dimension,
unliftable cyclic modules: they form the non-empty Zariski open set Vnl(T /I) \ Vnpd(T /I) in
Vnl(T /I). Such nonlinear Vnpd(T /I) are known to be quite common, see the examples at the end
of [Jo3].

Example 5.5. Theorem 4.9 gives explicit formula for Lnwl(T /I) in some cases. Specifically,
using the notations of Theorem 4.9 we have Lnwl(T /I) = I 2 : u when T/I is Gorenstein of
dimension 0 and Lnwl(T /I) = (IJ + I (2)) : u if T/I is Cohen–Macaulay, generically Gorenstein
of dimension 1.

Example 5.6. Let T = k�X,Y,Z�/(X2 + Y 2 + Z2), here k is a field. Let x, y, z be the images
of X, Y , Z, respectively, and let m = (x, y, z). We claim that Lnl(T /m) = m2 if k = C and
Lnl(T /m) = m if k = Q.

First, let k = C. Choose any element f = ax + by + cz with a, b, c ∈ C. We have to show
f /∈ Lnl(T /m), in other words, T/m is liftable to T as a T/(f )-module. Let I1 = (x, y + iz),
I2 = (y, z + ix), I3 = (z, x + iy). Note that they are prime ideals of height 1 in T . We claim
that one of these ideals together with f will generate m. Let Vi = α(Ii) (so for example V1
is generated by the vectors (1,0,0) and (0,1, i)). Then the planes V1,V2,V3 intersect at only
the origin in C3 so one of them, say V1, cannot contain the vector (a, b, c). This shows that
(I1, f ) = m. But f is clearly a nonzerodivisor on T/I1, and so T/m is liftable.

Next, assume k = Q. It suffices to show that x ∈ Lnl(T /m), as then y, z ∈ Lnl(T /m) by
symmetry and hence m = (x, y, z) ⊆ Lnl(T /m) by Proposition 5.2. Suppose T/I is a lift of T/m

as a module over T/(x). Then I + (x) = m. So there are a, b ∈ T such that y − ax, z − bx ∈ I .
But since x2 + y2 + z2 = 0 this forces x2(1 + a2 + b2) ∈ I . Since k = Q, (1 + a2 + b2) must be
a unit, hence x2 ∈ I . But then x cannot be a nonzerodivisor on T/I .
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Finally, observe that Lnwl(T /m) = m2 in both cases. Indeed, by the previous example, since
the socle element of T/m is 1, we have Lnwl(T /m) = m2 : 1 = m2.
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