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Historically, there exist two versions of the Riordan array concept.

Theolderone (betterknownas recursivematrix) consistsofbi-infinite

matrices (dn,k)n,k∈Z (k > n implies dn,k = 0), deals with formal

Laurent series and has been mainly used to study algebraic prop-

erties of such matrices. The more recent version consists of infi-

nite, lower triangular arrays (dn,k)n,k∈N (k > n implies dn,k = 0),

deals with formal power series and has been used to study com-

binatorial problems. Here we show that every Riordan array in-

duces two characteristic combinatorial sums in three parameters

n, k,m ∈ Z. These parameters can be specialized and generate an

indefinite number of other combinatorial identities which are valid

in the bi-infinite realm of recursive matrices.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The concept of a (proper) Riordan array was introduced [20,21] as a generalization of the Pascal

triangle. A Riordan array is defined as a pair of formal power series D = R(d(t), h(t)) with d(0) �= 0,

h(0) = 0, h′(0) �= 0. The usual way to represent the Riordan array R(d(t), h(t)) is by means of an

infinite matrix (dn,k), n, k ∈ N, its generic element being:

dn,k = [tn]d(t)h(t)k. (1.1)

As shown in Section 4, the Pascal triangle is just the case:

P = R
(

1

1 − t
,

t

1 − t

)
.
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Many properties of Riordan arrays have been studied in the literature, in particular their connection

with combinatorial sums.Actually, if (sn)n∈N is any sequencehaving s(t) = ∑∞
k=0 skt

k as its generating

function, it is possible to prove that:
n∑

k=0

dn,ksk = [tn]d(t)s(h(t))
thus reducing the sum to the extraction of a coefficient from a formal power series. For alternative

approaches see, e.g., [5,17].

Formally, Riordan arrays are a formulation of the 1-Umbral Calculus, as defined by Roman in [19],

although their name was only coined later in 1991 by Shapiro et al. [20]. Because of that, the history

of Riordan arrays is the same as the history of Umbral calculus, going back to Blissard, Bell, Schur,

Jabotinsky and others; the literature about Riordan arrays is still growing. Two important paper related

to the present work are Rogers [18] and Barnabei et al. [1]. In particular, Rogers [18], with the aim of

generalizing the Pascal triangle, introduced renewal arrays (a-posteriori a special case of Riordan arrays)

and observed that every element dn+1,k+1 (not belonging to row or column 0) could be expressed as

a linear combination of the elements in the preceding row, i.e.:

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · =
∞∑
j=0

ajdn,k+j. (1.2)

The sum is actually finite, the sequence A = (ak)k∈N is fixed, has a0 �= 0 and is called the A-sequence

of the Riordan array (see also [6,21]); A(t) denotes its generating function. The idea of A-sequence has

been later generalized to the concept of A-matrix in [13].

In 1982, Barnabei et al. [1] introduced the concept of recursive matrices, which are bi-infinite Rior-

dan arrays extending (1.1) to all indices n, k ∈ Z. Recursivematrices havemainly been used for dealing

with algebraic properties of the corresponding arrays. We can cite the following papers appearing in

the literature and following a similar approach: [2–4,9–12,22,23,25,26]. Instead, Riordan arrays have

been used as an approach to counting problems (see, e.g., [14–16]), especially for combinatorial sums

and inversion (see, e.g., [21]).

We can summarize the main contributions of the present paper into two points:

(1) We extend the traditional row and column construction of Riordan arrays to recursive matrices.

These constructions emphasize the role of the A-sequence in the theory and applications of

recursive matrices, an aspect somewhat wasted in the traditional approach to these arrays.

(2) We show that a Riordan array defines two combinatorial identities, representing a horizontal

(or row) and a vertical (or column) property of the array (Theorems 3.1 and 3.2). These sums

depend on three parameters and therefore they can be specialized into many combinatorial

sumswith two or also only one parameter. Some of these combinatorial identities are known in

the literature (e.g., are present in Gould’s collection [5]), but others are new and involve many

combinatorial quantities.

Sections 4–6 provide three meaningful examples. In Section 4 we deal with the Pascal triangle and

prove that the two corresponding induced identities are essentially related to Vandermonde convolu-

tion. In Section 5 we pass to the muchmore complex example of the triangle derived from the Catalan

sequence; in this case the induced identities are new in the literature. Finally, in Section 7, we propose,

as a third example, a recursive matrix related to central binomial coefficients.

2. Riordan arrays

We recall the main properties of Riordan arrays which will be used in this paper. The product of

two Riordan arrays is defined by:

D ∗ E = R(d1(t), h1(t)) ∗R(d2(t), h2(t)) = R(d1(t)d2(h1(t)), h2(h1(t)));



A. Luzón et al. / Linear Algebra and its Applications 436 (2012) 631–647 633

it corresponds to the usual row-by-column product of two (infinite) matrices. The Riordan array I =
R(1, t) acts as the identity and the inverse of D = R(d(t), h(t)) is the Riordan array:

D∗ = (d∗
n,k) = R(d∗(t), h∗(t)) = R

(
1

d(h(t))
, h(t)

)
,

where h(t) is the compositional inverse of h(t), that is the power series such that h(h(t))
= h(h(t)) = t. Since the product D ∗D∗ = D∗ ∗D equals the identity I = R(1, t), every Riordan

array induces the two-parameters basic identity:

n∑
j=k

dn,jd
∗
j,k = δn,k, (2.1)

where δ is the Kronecker delta.

In general, a superscripted asterisk denotes quantities related to the inverse Riordan arrays;

overlining denotes compositional inversion. We observe that h∗(t) = h(t), but d∗(t) �= d(t). The
set R of all Riordan arrays is a group with the product defined above. Important subgroups are (see

[8]):

RA Appell or Toeplitz subgroup R(d(t), t),

RL Lagrange or associated subgroup R(1, h(t)) ,

RD co-Lagrange or Derivative subgroup R(h′(t), h(t)),

RN Renewal or Rogers subgroup R(d(t), td(t)),

RH Hitting-time subgroup R(th′(t)/h(t), h(t)).

An immediate, but important observation is that every Riordan array can be seen as the product of

a Toeplitz by a Lagrange array:

R(d(t), h(t)) = R(d(t), t) ∗R(1, h(t)). (2.2)

The following Theorem 2.2 allows us to compute the generic element of the inverse array of

D = R(d(t), h(t)) by using the functions d(t) and h(t). It is based on the Lagrange Inversion

Formula, whichwe give in the two following forms andwhose proof can be found in the literature (see

[7,24]):

Theorem 2.1 (LIF). Let h(t) be a formal power series with h(0) = 0, h′(0) �= 0 and let h(t) be its

compositional inverse; then we have:

[tn]h(t)k = h
(k)
n = [tn−k]h′(t)

(
t

h(t)

)n+1

= k

n
[tn−k]

(
t

h(t)

)n

.

Besides, let w = w(t) be the solution of the functional equation w = tφ(w) and let F(t) be any formal

power series such that F(0) �= 0; then we have:

[tn]F(w(t)) = 1

n
[tn−1]F ′(t)φ(t)n = [tn]F(t)φ(t)n−1(φ(t) − tφ′(t)).

Theorem 2.2. Given the Riordan array D = (dn,k) = (d(t), h(t)), the generic element of its inverse is

given by:

d∗
n,k = [t−k−1] h′(t)

d(t)h(t)n+1
= [tn−k] h′(t)

d(t)(h(t)/t)n+1
(2.3)
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or, equivalently:

d∗
n,k = 1

n
[tn−k]

(
k

d(t)
− td′(t)

d(t)2

) (
t

h(t)

)n

. (2.4)

Proof. The two formulas in Theorem 2.1 prove these results. �

For what concerns the A-sequence, we can state the following theorem, the proof of which can be

found in [6,13]:

Theorem 2.3. An infinite lower triangular array D = (
dn,k

)
n,k∈N is a Riordan array if and only if a

sequence A = (a0 �= 0, a1, a2, . . .) exists such that for every n, k ∈ N relation (1.2) holds true. Besides,

the A-sequence is uniquely determined by the function h(t), and vice versa, by the formulas:

h(t) = tA(h(t)) and A(t) =
[
h(y)

y

∣∣∣ t = h(y)

]
=

[
t

y

∣∣∣ t = h(y)

]
. (2.5)

The identity h(t) = tA(h(t)) will be called the basic relation (not to be confused with the basic

identity (2.1)) and from it the following result follows immediately:

Theorem 2.4. Let D = R(d(t), h(t)) any Riordan array, and D∗ its inverse; then we have:

A(t) = t

h(t)
and A∗(t) = t

h(t)
.

Proof. The first relation is obtained by setting t �→ h(t) in the basic relation. The second relation

follows from the fact that the h-function of D∗ is h(t). �

3. Recursive matrices

If D = R(d(t), h(t)) is a Riordan array, the corresponding infinite lower triangular matrix is

defined by the relation (1.1). Note that if k > n then dn,k = 0. This corresponds to the fact that

d(t)h(t)k is the generating function of the elements in column k, the order of which is k according

to the conditions imposed on d(t) and h(t). Many Riordan arrays have a combinatorial meaning and

their elements count specific characteristics of combinatorial objects. For example, if P is the Pascal

triangle, Pn,k counts the number of subsets with k elements of a set with n elements. From this point of

view, the usual restriction 0 � k � n makes sense. However, from an algebraic standpoint, d(t)h(t)k

is a formal Laurent serieswhen k is negative, and k is its order. Therefore, we can extract the coefficient

[tn]d(t)h(t)k for any integers n and k thus obtaining the recursivematrix (dn,k)n,k∈Z. If we consider this

bi-infinite triangle (dn,k), it contains the Riordan array located at the places (n, k) for n � 0, k � 0.

As an example, in Table 1 we show the recursive matrix corresponding to the Catalan Riordan array:

C = R
(
1 − √

1 − 4t

2t
,
1 − √

1 − 4t

2

)
.

In this paper, the recursive matrix derived by the Riordan array D = R(d(t), h(t)) will be denoted by

D = X (d(t), h(t)) without ambiguity.

Combinatorially, this extension is not particularly meaningful, at least at a first sight. For example,

row sums, alternate row sums and weighted row sums, all having a specific combinatorial meaning,

loose their sense, since rows and columns are all infinite. However, as we will see, recursive matrices

are the natural structure for proving some identities induced by Riordan arrays, which are the main

topic of this paper.
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Table 1

The Catalan recursive matrix.

n\k −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6 1 0 0 0 0 0 0 0 0 0 0 0 0

−5 −5 1 0 0 0 0 0 0 0 0 0 0 0

−4 5 −4 1 0 0 0 0 0 0 0 0 0 0

−3 0 2 −3 1 0 0 0 0 0 0 0 0 0

−2 0 0 0 −2 1 0 0 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1 1 0 0 0 0 0 0 0

0 −5 −4 −3 −2 −1 0 1 0 0 0 0 0 0

1 −20 −14 −9 −5 −2 0 1 1 0 0 0 0 0

2 −75 −48 −28 −14 −5 0 2 2 1 0 0 0 0

3 −275 −165 −90 −42 −14 0 5 5 3 1 0 0 0

4 −1001 −572 −297 −132 −42 0 14 14 9 4 1 0 0

5 −3640 −2002 −1001 −429 −132 0 42 42 28 14 5 1 0

6 −13260 −7072 −3432 −1430 −429 0 132 132 90 48 20 6 1

First of all, it is necessary to point out that the introduction of recursive matrices simply extends

the properties of Riordan arrays. In particular, the product of two Riordan arrays becomes the product

of the corresponding recursive matrices; we explicitly observe that, in the corresponding recursive

matrices, every element is obtained by a finite sum. The identity of this product is X (1, t), the matrix

which is everywhere 0, except on the main diagonal, which is all composed by 1’s. Finally, the inverse

is computed as for Riordan arrays. In this spirit, we can immediately generalize Theorem 2.3, which

is a classical result in the theory of Riordan arrays; moreover, in Theorem 3.1 we obtain a particular

identity, called the row or horizontal identity of the recursive matrix. The generating function A(t) of

the A-sequence is an invertible formal power series since a0 �= 0. Therefore, we can also consider

its powers A(t)m, where m ∈ Z, and we will use the notation a
(m)
j for the coefficient [tj]A(t)m. The

case m = −1 has already been studied in the literature of Riordan arrays and the coefficients of

A(t)−1(= B(t)) are known as the B-sequence of the array (see [13, p. 309]).

Theorem 3.1. In every recursive matrix X (d(t), h(t)) the following identity holds true for every integer

k, n,m ∈ Z:

dn+m,k+m =
n−k∑
j=0

a
(m)
j dn,k+j. (3.1)

Proof. We proceed as in the proof of Theorem 2.3 in [6]. Let m ∈ Z and define the recursive matrix

X (W(t), M(t)) (withW(t) = ∑∞
k=0 wkt

k) by the relation:

X (d(t), h(t)) ∗X (W(t), M(t)) = X (d(t)h(t)m/tm, h(t)).

Obviously, M(t) = t and W(h(t)) = h(t)m/tm. The generic element of the product on the left hand

side is:∑
j

dn,jwk−j = ∑
j

dn,k+jwj.

The right hand side gives:

[tn]d(t)h(t)
m

tm
h(t)k = [tn+m]d(t)h(t)k+m = dn+m,k+m.

In Theorem 2.3 it was proved that A(h(t)) = h(t)/t or h(t)m/tm = A(h(t))m; this impliesW(h(t)) =
A(h(t))m that is W(t) = A(t)m. Finally, we have wj = a

(m)
j and the proof is complete. �
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The power series h(t) cannot be inverted with respect to the Cauchy product, since h(0) = 0;

however, we also have h′(0) �= 0, so that h(t)/t is invertible. Therefore, we will write h
(m)
j+m for the

coefficient [tj+m]h(t)m = [tj](h(t)/t)m, for every m ∈ Z. Depending on the function h(t), we have a

vertical or column identity:

Theorem 3.2. The following identity holds true for every recursive matrix and for every m ∈ Z:

dn+m,k+m =
n−k∑
j=0

h
(m)
j+mdn−j,k. (3.2)

Proof. The proof is almost immediate:

dn+m,k+m = [tn+m]d(t)h(t)k+m = [tn]d(t)h(t)k
(
h(t)

t

)m

=
n∑

j=0

h
(m)
j+mdn−j,k. �

Aspointedoutbyananonymous referee, theproofof Theorems3.1and3.2 canbesimplifiedbyusing

the factorization (2.2). However, the method hides the role of the A-sequence, which is fundamental

in our approach.

Finally, we will also use a
∗(m)
j and h

∗(m)
j+m = h

(m)
j+m for the analogous quantities relative to the inverse

Riordan array. The following theorem greatly simplifies the computation of the coefficients for the

horizontal and vertical identities:

Theorem 3.3. Let D= X (d(t), h(t)) be any recursive matrix with A(t) being its A-sequence, and let a
(m)
j ,

a
∗(m)
j , h

(m)
j+m and h

(m)
j+m be as above; then we have:

a
(m)
j = h

(−m)
j−m and a

∗(m)
j = h

(−m)
j−m .

Proof. Consider the basic relation h(t) = tA(h(t)) and perform the substitution t �→ h(t); we find

t = h(t)A(t) or A(t) = t/h(t), and this proves the two identities, when we also consider the inverse

Riordan array D∗. �

The following shifted version of the horizontal and vertical identities can be useful:

dn,k =
n−k∑
j=0

a
(m)
j dn−m,k−m+j, dn,k =

n−k∑
j=0

h
(m)
j+mdn−m−j,k−m. (3.3)

4. The Pascal triangle

As a very simple example, let us consider the Pascal triangle, the infinite, lower triangular array

which generated the concept of a Riordan array. It is very elementary and the identities we find are

known. We start by giving the definition of the triangle as a Riordan array:

P = R
(

1

1 − t
,

t

1 − t

)
.

The general term is easily shown to be the appropriate binomial coefficient:

Pn,k = [tn] 1

1 − t
· tk

(1 − t)k
= [tn−k](1 − t)−k−1 =

(−k − 1

n − k

)
(−1)n−k.
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Table 2

The Pascal recursive matrix.

n\k −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6 1 0 0 0 0 0 0 0 0 0 0 0 0

−5 −5 1 0 0 0 0 0 0 0 0 0 0 0

−4 10 −4 1 0 0 0 0 0 0 0 0 0 0

−3 −10 6 −3 1 0 0 0 0 0 0 0 0 0

−2 5 −4 3 −2 1 0 0 0 0 0 0 0 0

−1 −1 1 −1 1 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 0 0 0 0 0

2 0 0 0 0 0 0 1 2 1 0 0 0 0

3 0 0 0 0 0 0 1 3 3 1 0 0 0

4 0 0 0 0 0 0 1 4 6 4 1 0 0

5 0 0 0 0 0 0 1 5 10 10 5 1 0

6 0 0 0 0 0 0 1 6 15 20 15 6 1

When 0 � k � n, this is
(
n

k

)
; for k < 0 and k � n this formula can be interpreted as a definition of

the same binomial coefficient. The central part of the triangle is given in Table 2.

We now solve the functional equation h(t) = tA(h(t)), that is we solve y = t/(1 − t) in t = t(y)
and use the relation A(y) = y/t(y) to find the A-sequence. We have:

A(t) = 1 + t A = (1, 1, 0, 0, 0, . . .).

Inorder tofind the inverse array,we invert the relationy = t/(1−t)andfindeasilyh(t) = t/(1+t).
We now substitute this expression in d∗(t) = d(h(t))−1 and eventually get:

P∗ = R
(

1

1 + t
,

t

1 + t

)
.

The general term is obtained as before, producing the basic identity (2.1):

P∗
n,k = (−1)n−k

(
n

k

)
n∑

j=k

(
n

j

)
(−1)j−k

(
j

k

)
= δn,k.

The A-sequence is A∗(t) = 1 − t or A∗ = (1, −1, 0, 0, 0, . . .). The horizontal and vertical identities

are easily found:

Theorem 4.1. For every n, k,m ∈ Z, k � n, we have:

(
n + m

k + m

)
=

n−k∑
j=0

(
m

j

) (
n

k + j

)
=

n−k∑
j=0

(
m

j

) (
n

n − k − j

)

(
n + m

k + m

)
=

n∑
j=0

(
m + j − 1

j

) (
n − j

k

)
.

Proof. From the previous expressions we have:

a
(m)
j =

(
m

j

)
a
∗(m)
j = (−1)j

(
m

j

)

hmm+j =
(
m + j − 1

j

)
h
m

m+j = (−1)j
(
m + j − 1

j

)
,

which agree with Theorem 3.3. The two identities now follow immediately. �
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The first identity is equivalent to Vandermonde convolution, the second is less common. The cor-

responding identities relative to P∗ are at all similar and we do not give them explicitly.

5. The Catalan triangle

The Catalan triangle is characterized by the function h(t) = tC(t), where:

C(t) = 1 − √
1 − 4t

2t
= 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + · · · .

is the generating function of the Catalan numbers.

One of the simplest way to introduce the Catalan triangle is to consider the following path problem.

Let us define a Catalan path as an underdiagonal path starting at the origin and composed by steps

(1, s), where s = 0, 1, 2, 3, . . .; the infinite, lower triangular array (Cn,k) counts the number of paths

from the origin to the point (n, n − k). If we fix the number Cn+1,k+1, it is formed by the contribution

of all the paths counted by Cn,k+j , with j = 0, 1, 2, . . ., that is:

Cn+1,k+1 = Cn,k + Cn,k+1 + · · · + Cn,n;
obviously, for the elements in column 0 we have:

Cn+1,0 = Cn,0 + Cn,1 + · · · + Cn,n.

This gives us the A-sequence of the triangle and proves that it is a Riordan array:

A = (1, 1, 1, 1, . . .) or A(t) = 1

1 − t
.

Theorem 5.1. The Catalan triangle is the renewal array:

C = R
(
1 − √

1 − 4t

2t
,
1 − √

1 − 4t

2

)
.

Proof. By the formula connecting the A-sequence and the function h(t) we have:

h(t) = t

1 − h(t)
or h(t) = 1 ± √

1 − 4t

2
;

since we should have h(0) = 0, the minus sign is correct. For what concerns the function d(t), we

already observed that every element in column 0 should equal the corresponding element in column 1

(since they are the sum of the same elements), except for d0,0 = 1 but d0,1 = 0. In terms of generating

function, we have:

d(t) − 1 = d(t)h(t) or d(t) = 1 − √
1 − 4t

2t

and this shows that C is a renewal array. �

It is now convenient to find the inverse triangle:

Theorem 5.2. The inverse of the Catalan triangle is:

C∗ = R(1 − t, t − t2)
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and therefore its generic element is:

C∗
n,k = (−1)n−k

(
k + 1

n − k

)
.

Proof. We begin by solving in t = t(y) the functional equation y = h(t):

y = 1 − √
1 − 4t

2
or

√
1 − 4t = 1 − 2t or t = y − y2.

This result gives h(t) = t(1 − t). Since the inverse of a renewal array is also a renewal array, we have

d∗(t) = 1 − t. Finally, the generic element is:

C∗
n,k = [tn−k](1 − t)(1 − t)k = (−1)n−k

(
k + 1

n − k

)

as desired. �

The two recursive matrices C and C∗ are given in Tables 1 and 3. It is easy to find the A-sequence of

C∗:

A∗(t) = 1 + √
1 − 4t

2
= 1 − 1 − √

1 − 4t

2
= 1 − tC(t);

A∗ = (1, −1, −1, −2, −5, −14, −42, . . .)

We are now in a position to find an explicit expression for the generic element of C.

Theorem 5.3. The general term of the array C and the basic identity (2.1) read:

Cn,k = k + 1

n + 1

(
2n − k

n − k

)
,

n∑
j=k

j + 1

n + 1

(
2n − j

n − j

)
(−1)j−k

(
k + 1

j − k

)
= δn,k.

Proof. The proof makes use of the formula for the explicit form of the element C∗
n,k , that is the generic

element of the inverse Riordan array as given by Theorem 2.2. In this case we apply the formula to

d∗(t) = 1− t and h(t) = t− t2, as shown in the previous theorem. In other words, we see the Catalan

triangle as the inverse of the inverse array:

Cn,k = [tn−k] 1 − 2t

(1 − t)(1 − t)n+1
= [tn−k]

(
1

(1 − t)n+1
− t

(1 − t)n+2

)

=
(
2n − k

n − k

)
−

(
2n − k

n − k − 1

)

from which the desired formula follows immediately. �

We observe explicitly that in this proof the application of the Lagrange Inversion Formula is hidden

in the general theorem to find the inverse of a Riordan array. We can specialize the basic identity in

many ways, but let us only consider the case n �→ 2n and k �→ n (central coefficients):

2n∑
j=n

j + 1

2n + 1

(
4n − j

2n − j

)
(−1)j−n

(
n + 1

j − n

)
= δn,0.
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Table 3

The inverse Catalan recursive matrix.

n\k −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6 1 0 0 0 0 0 0 0 0 0 0 0 0

−5 5 1 0 0 0 0 0 0 0 0 0 0 0

−4 15 4 1 0 0 0 0 0 0 0 0 0 0

−3 35 10 3 1 0 0 0 0 0 0 0 0 0

−2 70 20 6 2 1 0 0 0 0 0 0 0 0

−1 126 35 10 3 1 1 0 0 0 0 0 0 0

0 210 56 15 4 1 0 1 0 0 0 0 0 0

1 330 84 21 5 1 0 −1 1 0 0 0 0 0

2 495 120 28 6 1 0 0 −2 1 0 0 0 0

3 715 165 36 7 1 0 0 1 −3 1 0 0 0

4 1001 220 45 8 1 0 0 0 3 −4 1 0 0

5 1365 286 55 9 1 0 0 0 −1 6 −5 1 0

6 1820 364 66 10 1 0 0 0 0 −4 10 −6 1

Let us now observe that:

h
(m)
j+m = [tj]

(
1 − √

1 − 4t

2t

)m

= [tj]C(t)m

and the following theorem becomes important:

Theorem 5.4. The coefficients of the powers of C(t) have the following form:

C
(m)
j = hmj+m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[tj]C(t)m = m

m + 2j

(
m + 2j

j

)
for j �= −m/2

C
(−2j)
j = (−1)j2 for j = −m/2

Proof. Weobserve thatCn,k = [tn−k]C(t)k+1 and therefore it is enough to set j = n−k andm = k+1,

or k = m − 1 and n = j + m − 1. Consequently:

[tj]C(t)m = m

j + m

(
2j + m − 1

j

)
= m

m + 2j

(
m + 2j

j

)
.

Since j � 0, for m > 0 the two formulas coincide. For m < 0 the first formula cannot be computed

for j = −m, and the second for j = −m/2. If, as usual, we use the second formula, we can compute

its degenerate case by means of the first formula:

C
(−2j)
j = [tj]C(t)−2j = −2j

−j

(−1

j

)
= 2

(
1 + j − 1

j

)
(−1)j = 2(−1)j

as desired. �

Let us observe:

a
(m)
j = [tj]A(t)m = [tj](1 − t)−m =

(−m

j

)
(−1)j =

(
m + j − 1

j

)
.

We can therefore prove the following result:
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Theorem 5.5. The horizontal and vertical identities relative to the Catalan triangle are the identities with

three parameters m, n, k ∈ Z, n � k:

n−k∑
j=0

m

m + 2j

(
m + 2j

j

)
k + 1

n − j + 1

(
2n − 2j − k

n − j − k

)
= k + m + 1

n + m + 1

(
2n + m − k

n − k

)

n−k∑
j=0

(
m + j − 1

j

)
k + j + 1

n + 1

(
2n − j − k

n − j − k

)
= k + m + 1

n + m + 1

(
2n + m − k

n − k

)
.

Proof. We apply Theorems 3.1 and 3.2, taking into account, for negative, even values of m, the obser-

vation of the previous theorem. �

We can now specialize these identities. For example, by changing n �→ n, m �→ n, k �→ 0 we get:

n∑
j=0

n

n + 2j

(
n + 2j

j

)
1

n − j + 1

(
2n − 2j

n − j

)
=

n∑
j=0

j + 1

n + 1

(
n + j − 1

j

) (
2n − j

n − j

)
= n + 1

2n + 1

(
3n

n

)
.

Analogously, by performing the change of variables n �→ 2n, m �→ n, k �→ n, we find:

n∑
j=0

n

n + 2j

(
n + 2j

j

)
n + 1

2n − j + 1

(
3n − 2j

n − j

)
=

n∑
j=0

n + j + 1

2n + 1

(
n + j − 1

j

) (
3n − j

n − j

)

= 2n + 1

3n + 1

(
4n

n

)
.

and so on. When we setm = −k, column 0 is involved; a two parameters identity is:

n−k∑
j=0

k

k − 2j

(
2j − k

j

)
k + 1

n − j + 1

(
2n − 2j − k

n − j − k

)
=

n−k∑
j=0

k + j + 1

n + 1

(−k + j − 1

j

) (
2n − k − j

n − k − j

)

= 1

n − k + 1

(
2n − 2k

n − k

)
= Cn−k;

some attention should be paid when k is even, because k − 2j can annihilate. In that case, the value

of the first two factors is 2(−1)j as we observed before. We conclude with the following identity,

corresponding tom = 1 in the horizontal identity (A-identity):

n−k∑
j=0

k + j + 1

n + 1

(
2n − k − j

n − k − j

)
= k + 2

n + 2

(
2n − k + 1

n − k

)
;

by setting k �→ n and n �→ 2n we get:

n∑
j=0

n + j + 1

2n + 1

(
3n − j

n − j

)
= n + 2

2n + 2

(
3n + 1

n

)
;

by setting k �→ 0:

n∑
j=0

j + 1

n + 1

(
2n − j

n − j

)
= 2

n + 2

(
2n + 1

n

)
= Cn+1.
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For what concerns the inverse array, h
(m)
j+m can be computed by using Theorem 3.3 or directly:

h
(m)
j+m = [tj] (t − t2)m

tm
= [tj](1 − t)m = (−1)j

(
m

j

)
.

Theorem 3.3 allows us to find a
∗(m)
j :

Theorem 5.6. For the inverse of the Catalan triangle we have:

a
∗(m)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)j
m

j

(
m − j − 1

j − 1

)
for j �= 0

1 for j = 0.

Proof. We have:

a
∗(m)
j = h

(−m)
j−m = −m

−m + 2j

(−m + 2j

j

)
= −m

j

(−m + 2j − 1

j − 1

)
= (−1)j

m

j

(
m − j − 1

j − 1

)
.

When j = 0 this expression does not work; however, we have:

a
∗(m)
j = (−1)j

m

m − j

(
m − j

j

)
,

(another interesting expression), and if we set j = 0 we find immediately a
∗(m)
0 = 1 as desired. �

The desired identities are:

Theorem 5.7. The horizontal and vertical identities related to C∗ are:

n−k∑
j=1

m

j

(
m − j − 1

j − 1

) (
k + j + 1

n − k − j

)
=

(
k + m + 1

n − k

)
−

(
k + 1

n − k

)

where we isolated the term with j = 0, and

n−k∑
j=0

(
m

j

) (
k + 1

n − k − j

)
=

(
k + m + 1

n − k

)
,

this last identity being another version of the Vandermonde convolution.

6. The central binomial triangle

The central binomial triangle is defined by its A-sequence, which is A(t) = 1+ 2t + t2 = (1+ t)2,
and by its 0th column, composed by the central binomial coefficients:

d(t) = 1√
1 − 4t

= 1 + 2t + 6t2 + 20t3 + 70t4 + 252t5 + 924t6 + · · · .

By solving the functional equation h(t) = tA(h(t)) we find:

h(t) = 1 − 2t − √
1 − 4t

2t
= t + 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + 429t7 + · · ·
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Table 4

The central binomial recursive matrix.

n\k −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6 1 0 0 0 0 0 0 0 0 0 0 0 0

−5 −10 1 0 0 0 0 0 0 0 0 0 0 0

−4 36 −8 1 0 0 0 0 0 0 0 0 0 0

−3 −56 21 −6 1 0 0 0 0 0 0 0 0 0

−2 35 −20 10 −4 1 0 0 0 0 0 0 0 0

−1 −6 5 −4 3 −2 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 1 2 1 0 0 0 0 0

2 0 0 0 0 1 4 6 4 1 0 0 0 0

3 0 0 0 1 6 15 20 15 6 1 0 0 0

4 0 0 1 8 28 56 70 56 28 8 1 0 0

5 0 1 10 45 120 210 252 210 120 45 10 1 0

6 1 12 66 220 495 792 924 792 495 220 66 12 1

showing a relation with the Catalan triangle; actually, we have h(t) = C(t) − 1. The existence of the

A-sequence assures that the triangle is a Riordan array. In conclusion, we have:

B = R
(

1√
1 − 4t

,
1 − 2t − √

1 − 4t

2t

)
;

the recursive matrix is shown in Table 4.

First of all, we determine the inverse array B∗

Theorem 6.1. The inverse Riordan array of B is:

B∗ = R
(
1 − t

1 + t
,

t

(1 + t)2

)
with B∗

n,k = (−1)n−k 2n

n + k

(
n + k

n − k

)
.

Proof. We begin by finding the compositional inverse of h(t); if we set y = h(t) we have 2ty =
1 − 2t − √

1 − 4t, and by solving in t = t(y) we find:

h(t) = t

(1 + t)2

after an obvious change of variables. By substitution we also find d∗(t):

d∗(t) = 1

d(h(t))
=

√
1 − 4t

(1 + t)2
= 1 − t

1 + t
.

Finally, we have:

d∗
n,k = [tn]1 − t

1 + t

tk

(1 + t)2k
= [tn−k](1 − t)(1 + t)−2k−1 = (−1)n−k 2n

n + k

(
n + k

n − k

)

as desired. �

The A-sequence is obtained from h(t):

A∗(t) = 1 − 2t + √
1 − 4t

2
= 1−t−tC(t) = 1−2t−t2−2t3−5t4−14t5−42t6−132t7+· · · .
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Table 5

The central binomial inverse recursive matrix.

n\k −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6 1 0 0 0 0 0 0 0 0 0 0 0 0

−5 10 1 0 0 0 0 0 0 0 0 0 0 0

−4 44 8 1 0 0 0 0 0 0 0 0 0 0

−3 110 27 6 1 0 0 0 0 0 0 0 0 0

−2 165 48 14 4 1 0 0 0 0 0 0 0 0

−1 132 42 14 5 2 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 −132 −42 −14 −5 −2 −1 −2 1 0 0 0 0 0

2 −165 −48 −14 −4 −1 0 2 −4 1 0 0 0 0

3 −110 −27 −6 −1 0 0 −2 9 −6 1 0 0 0

4 −44 −8 −1 0 0 0 2 −16 20 −8 1 0 0

5 −10 −1 0 0 0 0 −2 25 −50 35 −10 1 0

6 −1 0 0 0 0 0 2 −36 105 −112 54 −12 1

By Theorem 3.2 in [13], we have the identity:

B∗
n+1,k+1 = B∗

n,k − 2B∗
n,k+1 + B∗

n−1,k+1

which can be easily checked in Table 5

At this point we can eventually compute the explicit value of Bn,k:

Theorem 6.2. The central binomial triangle elements have the following form and generate the basic

identity (2.1):

Bn,k =
(

2n

n − k

)
,

n∑
j=k

(
2n

n − j

)
(−1)k−j 2j

j + k

(
j + k

j − k

)
= δn,k.

Proof. First, we observe that h
′
(t) = (1 − t)/(1 + t)3 and so we can apply Theorem 2.1:

Bn,k = [tn−k] 1 − t

(1 + t)3

1 + t

1 − t
(1 + t)2n+2 = [tn−k](1 + t)2n =

(
2n

n − k

)

as can be easily checked against the values in Table 4. �

The relevant quantities for the horizontal and vertical identities can now be computed:

Theorem 6.3. We have the following values for the central binomial triangle:

h
(m)
j+m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

j + m

(
2m + 2j

j

)
for j �= −m

(−1)j for j = −m

and a
(m)
j =

(
2m

j

)
.

Proof. The coefficients h
(m)
j+m are computed as in the previous theorem, setting d(t) = 1. Obviously, for

j = −m the expression is singular, but we can eliminate j + m from the denominator and eventually

get (−1)j . For what concerns the A-sequence, we have a
(m)
j = [tj](1+ t)2m, which immediately gives

the desired value. �

Consequently, we have our identities:
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Theorem 6.4. The horizontal and vertical identities relative to the central binomial triangle are:

n−k∑
j=0

(
2n

n − k − j

) (
2m

j

)
=

(
2n + 2m

n − k

)
,

another occurrence of Vandermonde convolution, and:

n−k∑
j=0

(
2n − 2j

n − k − j

)
m

j + m

(
2m + 2j

j

)
=

(
2n + 2m

n − k

)
.

Proof. Immediate. �

We could specialize the three parameters in many ways, but we limit ourselves to the following

identity; by setting k �→ 0 andm �→ n/2, we obtain:

n∑
j=0

(
2n − 2j

n − j

)
n

n + 2j

(
n + 2j

j

)
=

(
3n

n

)
n � 1.

For what concerns the inverse array (see Table 5), we use Theorem 3.3 to compute the appropriate

coefficients:

Theorem 6.5. For the inverse of the central binomial triangle we have:

h
(m)
j+m = (−1)j

(
2m + j − 1

j

)
and a

∗(m)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

m − j

(
2j − 2m

j

)
for j �= m

2(−1)j for j = m.
.

Proof. We find:

h
(m)
j+m = a

(m)
j =

(−2m

j

)
= (−1)j

(
2m + j − 1

j

)
.

Analogously:

a
∗(m)
j = h

(−m)
j−m = m

m − j

(
2j − 2m

j

)
,

and leave the singular case j = m as an exercise to the reader. �

From these considerations we have:

Theorem 6.6. The horizontal and vertical identities for the inverse central binomial triangle are:

n−k∑
j=0

m

m − j

(
2j − 2m

j

)
(−1)j

2n

n + k + j

(
n + k + j

n − k − j

)
= 2n + 2m

n + k + 2m

(
n + k + 2m

n − k

)
.

n−k∑
j=0

(
2m + j − 1

j

)
2n − 2j

n + k − j

(
n + k − j

n − k − j

)
= 2n + 2m

n + k + 2m

(
n + k + 2m

n − k

)
.

Proof. Immediate. �
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We can specialize these identities in many ways. For example, if we substitute n �→ n, k �→ 0 and

m �→ n in the horizontal identity, and isolate the term with j = n, we obtain the following identity:

n−1∑
j=0

(−1)j
2n2

n2 − j2

(
2j − 2n

j

) (
n + j

n − j

)
= 4

3

(
3n

n

)
− 2 n > 0.

An example of a different nature is obtained from the horizontal identity whenm = 1, corresponding

to the so called A-identity. This is:

B∗
n+1,k+1 = B∗

n,k − B∗
n,k+1 − C0B

∗
n,k+1 − C1B

∗
n,k+2 − · · · ,

where, as before, Ck is the kth Catalan number. This expression can be rewritten as:

B∗
n+1,k+1 − B∗

n,k + B∗
n,k+2 = −

n−k∑
j=0

CjB
∗
n,j+1.

The three constant terms simplify:

2n + 2

n + k + 2

(
n + k + 2

n − k

)
− 2n

n + k

(
n + k

n − k

)
− 2n

n + k + 1

(
n + k + 1

n − k − 1

)
= 2n − 1

2k + 1

(
n + k − 1

n − k − 1

)
,

and we conclude with the identity:

n−k∑
j=0

(−1)j

j + 1

(
2j

j

)
2n

n + k + j + 1

(
n + k + j + 1

n − k − j − 1

)
= 2n − 1

2k + 1

(
n + k − 1

n − k − 1

)

which is rather remarkable.
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